1
|
Soni M, Tulsian K, Barot P, Vyas VK. Recent Advances in Therapeutic Approaches Against Ebola Virus Infection. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:276-299. [PMID: 38279760 DOI: 10.2174/0127724344267452231206061944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.
Collapse
Affiliation(s)
- Molisha Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Kartik Tulsian
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Parv Barot
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Malik S, Waheed Y. Tracing down the updates on Ebola virus surges: An update on anti-ebola therapeutic strategies. J Transl Int Med 2023; 11:216-225. [PMID: 37662888 PMCID: PMC10474883 DOI: 10.2478/jtim-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Ebola virus (EBOV) related health complications have presented a great threat to the healthcare system in the endemic regions. The outbreaks of 2013-2016 and 2018-2020 brought along a huge healthcare burden for the afected communities. Knowing the seriousness of the matter, a series of research experiments have been actively carried out to devise efective therapeutics, drugs, and vaccination protocols against the Ebola virus disease (EVD) in the past decade. The purpose of this piece of literature is to shed light on vaccination protocols being clinically evaluated for EVD. A methodological approach has been adopted to gather relevant data from the latest publications. The compiled data include the molecular mechanistic insights into Ebola infection and a brief overview of diferent vaccination strategies: inactivated and DNA vaccines, virus-like particles and replicons, reverse genetic and recombinant approaches, entry, ion, and gene expression inhibitors, and some repurposed drugs. This data will help the scientific community to get a comprehensive overview of therapeutic interventions against Ebola that could be related to modifying EBOV vaccines and designing other antiviral vaccinations. Having said that, further work in modern therapeutic design is pertinent to tackle and lessen the healthcare burden expected from such outbreaks in the future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab46000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos1401, Lebanon
| |
Collapse
|
3
|
Ithinji DG, Buchholz DW, Ezzatpour S, Monreal IA, Cong Y, Sahler J, Bangar AS, Imbiakha B, Upadhye V, Liang J, Ma A, Bradel-Tretheway B, Kaza B, Yeo YY, Choi EJ, Johnston GP, Huzella L, Kollins E, Dixit S, Yu S, Postnikova E, Ortega V, August A, Holbrook MR, Aguilar HC. Multivalent viral particles elicit safe and efficient immunoprotection against Nipah Hendra and Ebola viruses. NPJ Vaccines 2022; 7:166. [PMID: 36528644 PMCID: PMC9759047 DOI: 10.1038/s41541-022-00588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental vaccines for the deadly zoonotic Nipah (NiV), Hendra (HeV), and Ebola (EBOV) viruses have focused on targeting individual viruses, although their geographical and bat reservoir host overlaps warrant creation of multivalent vaccines. Here we explored whether replication-incompetent pseudotyped vesicular stomatitis virus (VSV) virions or NiV-based virus-like particles (VLPs) were suitable multivalent vaccine platforms by co-incorporating multiple surface glycoproteins from NiV, HeV, and EBOV onto these virions. We then enhanced the vaccines' thermotolerance using carbohydrates to enhance applicability in global regions that lack cold-chain infrastructure. Excitingly, in a Syrian hamster model of disease, the VSV multivalent vaccine elicited safe, strong, and protective neutralizing antibody responses against challenge with NiV, HeV, or EBOV. Our study provides proof-of-principle evidence that replication-incompetent multivalent viral particle vaccines are sufficient to provide protection against multiple zoonotic deadly viruses with high pandemic potential.
Collapse
Affiliation(s)
- Duncan G Ithinji
- School for Global Animal Health, Washington State University, Pullman, WA, USA.,Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - David W Buchholz
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Yu Cong
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Janie Liang
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Andrew Ma
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Benjamin Kaza
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Eun Jin Choi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Gunner P Johnston
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Louis Huzella
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Erin Kollins
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Saurabh Dixit
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Shuiqing Yu
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Elena Postnikova
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Mohamed EAR, Abdelwahab SF, Alqaisi AM, Nasr AMS, Hassan HA. Identification of promising anti-EBOV inhibitors: de novo drug design, molecular docking and molecular dynamics studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220369. [PMID: 36177201 PMCID: PMC9515638 DOI: 10.1098/rsos.220369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The Ebola virus (EBOV) outbreak was recorded as the largest in history and caused many fatalities. As seen in previous studies, drug repurposing and database filtration were the two major pathways to searching for potent compounds against EBOV. In this study, a deep learning (DL) approach via the LigDream tool was employed to obtain novel and effective anti-EBOV inhibitors. Based on the galidesivir (BCX4430) chemical structure, 100 compounds were collected and inspected using various in silico approaches. Results from the molecular docking study indicated that mol1_069 and mol1_092 were the best two potent compounds with a docking score of -7.1 kcal mol-1 and -7.0 kcal mol-1, respectively. Molecular dynamics simulations, in addition to binding energy calculations, were conducted over 100 ns. Both compounds exhibited lower binding energies than BCX4430. Furthermore, compared with BCX4430 (%Absorption = 60.6%), mol1_069 and mol1_092 scored higher values of % Absorption equal to 68.1% and 63.7%, respectively. The current data point to the importance of using DL in the drug design process instead of conventional methods such as drug repurposing or database filtration. In conclusion, mol1_069 and mol1_092 are promising anti-EBOV drug candidates that require further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Eslam A. R. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, Minia 61511, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | | | | | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Pinski AN, Messaoudi I. Therapeutic vaccination strategies against EBOV by rVSV-EBOV-GP: the role of innate immunity. Curr Opin Virol 2021; 51:179-189. [PMID: 34749265 DOI: 10.1016/j.coviro.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family. Infection with EBOV causes Ebola virus disease (EVD) characterized by excessive inflammation, lymphocyte death, coagulopathy, and multi-organ failure. In 2019, the FDA-approved the first anti-EBOV vaccine, rVSV-EBOV-GP (Ervebo® by Merck). This live-recombinant vaccine confers both prophylactic and therapeutic protection to nonhuman primates and humans. While mechanisms conferring prophylactic protection are well-investigated, those underlying protection conferred shortly before and after exposure to EBOV remain poorly understood. In this review, we review data from in vitro and in vivo studies analyzing early immune responses to rVSV-EBOV-GP and discuss the role of innate immune activation in therapeutic protection.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
The 2013-2016 Ebola virus disease outbreak in West Africa. Curr Opin Pharmacol 2021; 60:360-365. [PMID: 34537503 DOI: 10.1016/j.coph.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
The largest, longest, and deadliest ever-recorded outbreak of Ebola virus disease in human history occurred in West Africa from December 2013 to March 2016 causing 28,652 infections resulting in 11,325 deaths in 10 countries with 99% of the fatality occurred in neighboring Guinea, Sierra Leone, and Liberia. This was the first time the virus outbreak occurred outside its niche in East and Central Africa. This study identified some of the factors that complicated the outbreak, which include delay in the identification of the pathogen, weak health systems, unavailability of licensed drugs or vaccines for the disease, delay in global responses, and cultural practices. Responses were mostly limited to testing, barrier nursing, and treatment of complications. Experimental drugs and vaccines were deployed on compassionate grounds, few have been further developed, trialed, and licensed. It is therefore expected that the current outbreak of Ebola virus disease in Guinea will be better managed.
Collapse
|
7
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Ciftci S, Neumann F, Abdurahman S, Appelberg KS, Mirazimi A, Nilsson M, Madaboosi N. Digital Rolling Circle Amplification-Based Detection of Ebola and Other Tropical Viruses. J Mol Diagn 2020; 22:272-283. [PMID: 31837428 DOI: 10.1016/j.jmoldx.2019.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/04/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Emerging tropical viruses have caused serious outbreaks during the recent years, such as Ebola virus (EBOV) in 2014 and the most recent in 2018 to 2019 in Congo. Thus, immediate diagnostic attention is demanded at the point of care in resource-limited settings, because the performance and the operational parameters of conventional EBOV testing are limited. Especially, their sensitivity, specificity, and coverage of other tropical disease viruses make them unsuitable for diagnostic at the point of care. Here, a padlock probe (PLP)-based rolling circle amplification (RCA) method for the detection of EBOV is presented. For this, a set of PLPs, separately targeting the viral RNA and complementary RNA of all seven EBOV genes, was used in the RCA assay and validated on virus isolates from cell culture. The assay was then translated for testing clinical samples, and simultaneous detection of both EBOV RNA types was demonstrated. For increased sensitivity, the RCA products were enriched on a simple and pump-free microfluidic chip. Because PLPs and RCA are inherently multiplexable, we demonstrate the extension of the probe panel for the simultaneous detection of the tropical viruses Ebola, Zika, and Dengue. The demonstrated high specificity, sensitivity, and multiplexing capability in combination with the digital quantification rendered the assay a promising diagnostic tool toward tropical virus detection at the point of care.
Collapse
Affiliation(s)
- Sibel Ciftci
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Felix Neumann
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | | | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden; LABMED, Karolinska Institute and Karolinska Hospital University, Solna, Sweden; National Veterinary Institute, Uppsala, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | - Narayanan Madaboosi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
9
|
Wu F, Zhang S, Zhang Y, Mo R, Yan F, Wang H, Wong G, Chi H, Wang T, Feng N, Gao Y, Xia X, Zhao Y, Yang S. A Chimeric Sudan Virus-Like Particle Vaccine Candidate Produced by a Recombinant Baculovirus System Induces Specific Immune Responses in Mice and Horses. Viruses 2020; 12:v12010064. [PMID: 31947873 PMCID: PMC7019897 DOI: 10.3390/v12010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/21/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Ebola virus infections lead to severe hemorrhagic fevers in humans and nonhuman primates; and human fatality rates are as high as 67%–90%. Since the Ebola virus was discovered in 1976, the only available treatments have been medical support or the emergency administration of experimental drugs. The absence of licensed vaccines and drugs against the Ebola virus impedes the prevention of viral infection. In this study, we generated recombinant baculoviruses (rBV) expressing the Sudan virus (SUDV) matrix structural protein (VP40) (rBV-VP40-VP40) or the SUDV glycoprotein (GP) (rBV-GP-GP), and SUDV virus-like particles (VLPs) were produced by co-infection of Sf9 cells with rBV-SUDV-VP40 and rBV-SUDV-GP. The expression of SUDV VP40 and GP in SUDV VLPs was demonstrated by IFA and Western blot analysis. Electron microscopy results demonstrated that SUDV VLPs had a filamentous morphology. The immunogenicity of SUDV VLPs produced in insect cells was evaluated by the immunization of mice. The analysis of antibody responses showed that mice vaccinated with SUDV VLPs and the adjuvant Montanide ISA 201 produced SUDV GP-specific IgG antibodies. Sera from SUDV VLP-immunized mice were able to block infection by SUDV GP pseudotyped HIV, indicating that a neutralizing antibody against the SUDV GP protein was produced. Furthermore, the activation of B cells in the group immunized with VLPs mixed with Montanide ISA 201 was significant one week after the primary immunization. Vaccination with the SUDV VLPs markedly increased the frequency of antigen-specific cells secreting type 1 and type 2 cytokines. To study the therapeutic effects of SUDV antibodies, horses were immunized with SUDV VLPs emulsified in Freund’s complete adjuvant or Freund’s incomplete adjuvant. The results showed that horses could produce SUDV GP-specific antibodies and neutralizing antibodies. These results showed that SUDV VLPs demonstrate excellent immunogenicity and represent a promising approach for vaccine development against SUDV infection. Further, these horse anti-SUDV purified immunoglobulins lay a foundation for SUDV therapeutic drug research.
Collapse
Affiliation(s)
- Fangfang Wu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
| | - Shengnan Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Ruo Mo
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China
| | - Feihu Yan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Hualei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Gary Wong
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai 20031, China;
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada
| | - Hang Chi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Tiecheng Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Na Feng
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yongkun Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
- Correspondence: (Y.Z.); (S.Y.)
| | - Songtao Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China; (F.W.); (S.Z.); (Y.Z.); (R.M.); (F.Y.); (H.W.); (H.C.); (T.W.); (N.F.); (Y.G.); (X.X.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
- Correspondence: (Y.Z.); (S.Y.)
| |
Collapse
|
10
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
11
|
Mirza MU, Vanmeert M, Ali A, Iman K, Froeyen M, Idrees M. Perspectives towards antiviral drug discovery against Ebola virus. J Med Virol 2019; 91:2029-2048. [PMID: 30431654 PMCID: PMC7166701 DOI: 10.1002/jmv.25357] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11 500 deaths according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays one of the most deadly infectious diseases. However, no Food and Drug Administration‐approved Ebola drugs or vaccines are available yet with the mainstay of therapy being supportive care. The high fatality rate and absence of effective treatment or vaccination make Ebola virus a category‐A biothreat pathogen. Fortunately, a series of investigational countermeasures have been developed to control and prevent this global threat. This review summarizes the recent therapeutic advances and ongoing research progress from research and development to clinical trials in the development of small‐molecule antiviral drugs, small‐interference RNA molecules, phosphorodiamidate morpholino oligomers, full‐length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the search for effective countermeasures against EVD with additional focus on the interplay between available in silico prediction methods and their evidenced potential in antiviral drug discovery.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory (BIRL), Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Muhammad Idrees
- Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.,Hazara University Mansehra, Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
12
|
Natalia AH, Tambunan USF. Screening of terpenoids as potential therapeutics against Zaire ebolavirus infection through pharmacophore-based drug design. F1000Res 2019. [DOI: 10.12688/f1000research.19238.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Backgroud: Ebola virus disease (EVD) has spread to various countries in the world and has caused many deaths. Five different virus species can cause EVD, but the most virulent is Zaire ebolavirus (EBOV). The genome of EBOV includes seven genes that encode proteins playing essential roles in the virus lifecycle. Among these proteins, VP24 plays a vital role in the inhibition of the host cells’ immune system. Therefore, VP24 is a potential target for EVD therapy. In the present study, a potential inhibitor of EBOV VP24 activity was identified through pharmacophore-based drug design. Methods: This research was a in silico study, using pharmacophore based molecular docking simulation to obtain inhibitor candidates. Result: Terpenoids were used as VP24 inhibitor candidates. In particular, 55,979 terpenoids were obtained from the PubChem database. An initial screening based on the toxicity prediction test was performed with DataWarrior software: 3,353 ligands were shown to have a favorable toxicity profile, but only 1,375 among them had suitable pharmacophore features. These ligands were used for pharmacophore-based rigid and flexible molecular docking simulations with PDB ID: 4M0Q, chosen as the crystal structure of EBOV VP24. Six ligands predicted to have strong molecular interactions with EBOV VP24 underwent pharmacological property analysis through various software packages, including DataWarrior, SwissADME, admetSAR, pkCSM, and Toxtree. Conclusions: Taxumairol V was identified as the best candidate for EVD drug therapy via EBOV VP24 inhibition based on its molecular properties, predicted molecular interactions with the target molecule, and predicted pharmacological properties.
Collapse
|
13
|
Marshall Lyon G, Mehta AK, Ribner BS. Clinical Management of Patients with Ebola Virus Disease in High-Resource Settings. Curr Top Microbiol Immunol 2019; 411:115-137. [PMID: 28601946 PMCID: PMC7120076 DOI: 10.1007/82_2017_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Like most viral illnesses in humans, supportive care of the patient is the mainstay of clinical care for patients with Ebola virus disease (EVD). The goal is to maintain and sustain the patient until a specific immune response develops and clears the viral infection. Clearly, antiviral therapy may eventually help speed recovery, but supportive care will likely always be the centerpiece of care of the patient with EVD. While terrible in terms of human suffering and loss, the EVD outbreak of 2014–2016 provided an unheralded opportunity to advance our understanding in the care of patients (WHO 2016). Regardless of the care setting, resource-rich or resource-constrained, it is beneficial to have an established team of care providers. This team should consist of nurses and physicians who are familiar with clinical care of patients with EVD and have demonstrated competency using necessary personal protective equipment (PPE). Consideration should be given to having several physician specialties on the team, including critical care, infectious diseases, and anesthesiology. Additional individuals in other medical specialties should be identified in case needed during the course of caring for a patient. The National Ebola Training and Education Center (NETEC) has detailed guidance on preparations for developing a high-containment unit and care team (NETEC 2016).
Collapse
Affiliation(s)
- G Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, 101 Woodruff Circle, WMRB 2101, Atlanta, GA, 30322, USA
| | - Aneesh K Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, 101 Woodruff Circle, WMRB 2101, Atlanta, GA, 30322, USA
| | - Bruce S Ribner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Emory University Hospital, 1364 Clifton Road NE, Suite B705, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Ning YJ, Kang Z, Xing J, Min YQ, Liu D, Feng K, Wang M, Deng F, Zhou Y, Hu Z, Wang H. Ebola virus mucin-like glycoprotein (Emuc) induces remarkable acute inflammation and tissue injury: evidence for Emuc pathogenicity in vivo. Protein Cell 2019; 9:389-393. [PMID: 28956289 PMCID: PMC5876185 DOI: 10.1007/s13238-017-0471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhenyu Kang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjun Xing
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dan Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Kuan Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
15
|
Schneider-Futschik EK, Hoyer D, Khromykh AA, Baell JB, Marsh GA, Baker MA, Li J, Velkov T. Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infect Dis 2019; 5:35-48. [PMID: 30516045 DOI: 10.1021/acsinfecdis.8b00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ebola virus has a grave potential to destabilize civil society as we know it. The past few deadly Ebola outbreaks were unprecedented in size: The 2014-15 Ebola West Africa outbreak saw the virus spread from the epicenter through to Guinea, Sierra Leone, Nigeria, Congo, and Liberia. The 2014-15 Ebola West Africa outbreak was associated with almost 30,000 suspected or confirmed cases and over 11,000 documented deaths. The more recent 2018 outbreak in the Democratic Republic of Congo has so far resulted in 216 suspected or confirmed cases and 139 deaths. There is a general acceptance within the World Health Organization (WHO) and the Ebola outbreak response community that future outbreaks will become increasingly more frequent and more likely to involve intercontinental transmission. The magnitude of the recent outbreaks demonstrated in dramatic fashion the shortcomings of our mass casualty disease response capabilities and lack of therapeutic modalities for supporting Ebola outbreak prevention and control. Currently, there are no approved drugs although vaccines for human Ebola virus infection are in the trial phases and some potential treatments have been field tested most recently in the Congo Ebola outbreak. Treatment is limited to pain management and supportive care to counter dehydration and lack of oxygen. This underscores the critical need for effective antiviral drugs that specifically target this deadly disease. This review examines the current approaches for the discovery of anti-Ebola small molecule or biological therapeutics, their viral targets, mode of action, and contemporary platforms, which collectively form the backbone of the anti-Ebola drug discovery pipeline.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alexander A. Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, Jiangsu 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Glenn A. Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Gross L, Lhomme E, Pasin C, Richert L, Thiebaut R. Ebola vaccine development: Systematic review of pre-clinical and clinical studies, and meta-analysis of determinants of antibody response variability after vaccination. Int J Infect Dis 2018; 74:83-96. [PMID: 29981944 DOI: 10.1016/j.ijid.2018.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES For Ebola vaccine development, antibody response is a major endpoint although its determinants are not well known. We aimed to review Ebola vaccine studies and to assess factors associated with antibody response variability in humans. METHODS We searched PubMed and Scopus for preventive Ebola vaccine studies in humans or non-human primates (NHP), published up to February 2018. For each vaccination group with Ebola Zaire antibody titre measurements after vaccination, data about antibody response and its potential determinants were extracted. A random-effects meta-regression was conducted including human groups with at least 8 individuals. RESULTS We reviewed 49 studies (202 vaccination groups including 74 human groups) with various vaccine platforms and antigen inserts. Mean antibody titre was slightly higher in NHP (3.10, 95% confidence interval [293; 327]) than in humans (2.75 [257; 293]). Vaccine platform (p<0·001) and viral strain used for antibody detection (p<0·001) were associated with antibody response in humans, but adjusted heterogeneity remained at 95%. CONCLUSIONS Various platforms have been evaluated in humans, including Ad26, Ad5, ChimpAd3, DNA, MVA, and VSV. In addition to platforms, viral strain used for antibody detection influences antibody response. However, variability remained mostly unexplained. Therefore, comparison of vaccine immunogenicity needs randomised controlled trials.
Collapse
Affiliation(s)
- Lise Gross
- SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Edouard Lhomme
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Chloé Pasin
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Laura Richert
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Rodolphe Thiebaut
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France.
| |
Collapse
|
18
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Post-Exposure Protection in Mice against Sudan Virus by a Two Antibody Cocktail. Viruses 2018; 10:v10060286. [PMID: 29861435 PMCID: PMC6024315 DOI: 10.3390/v10060286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.
Collapse
|
20
|
Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. J Virol 2018. [PMID: 29514907 DOI: 10.1128/jvi.00363-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.
Collapse
|
21
|
Keshtkar-Jahromi M, Martins KAO, Cardile AP, Reisler RB, Christopher GW, Bavari S. Treatment-focused Ebola trials, supportive care and future of filovirus care. Expert Rev Anti Infect Ther 2017; 16:67-76. [PMID: 29210303 DOI: 10.1080/14787210.2018.1413937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION During the 2014-2016 Ebolavirus (EBOV) outbreak, several candidate therapeutics were used in EBOV-infected patients in clinical trials and under expanded access for emergency use. This review will focus briefly on medications used during the outbreak. We will discuss current therapeutic candidates and their status and will then turn to a related and essential topic: supportive care and the standard of care for filovirus infected patients. Potential benefits and pitfalls of combination therapies for filoviruses will be discussed. Areas covered: Clinical trials of therapeutics targeting EBOV; clinical usage of therapeutics during recent EBOV outbreak; potential need for combination therapy; role of supportive care in treatment of Ebola virus disease (EVD). Expert commentary: In the absence of another large scale EBOV outbreak, the path to therapeutic product licensure in the United States of America (USA) would need to be via the FDA Animal Rule. However, human data may be needed to supplement animal data. The future of filovirus therapeutics may therefore benefit by establishing the ability to implement clinical trials in an outbreak setting in a timely fashion. Supportive care guidelines for filovirus infection should be defined and established as standard of care for treatment of EVD.
Collapse
Affiliation(s)
- Maryam Keshtkar-Jahromi
- a Division of Infectious Diseases, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Karen A O Martins
- b Division of Medicine , United States Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - Anthony P Cardile
- b Division of Medicine , United States Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - Ronald B Reisler
- b Division of Medicine , United States Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - George W Christopher
- c Project Management Office, Medical Countermeasure systems , Fort Belvoir , VA , USA
| | - Sina Bavari
- b Division of Medicine , United States Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| |
Collapse
|
22
|
Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Comput Biol Chem 2017; 72:170-180. [PMID: 29361403 DOI: 10.1016/j.compbiolchem.2017.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/11/2017] [Accepted: 11/19/2017] [Indexed: 01/12/2023]
Abstract
Ebola virus (EBOV) causes zoonotic viral infection with a potential risk of global spread and a highly fatal effect on humans. Till date, no drug has gotten market approval for the treatment of Ebola virus disease (EVD), and this perhaps allows the use of both experimental and computational approaches in the antiviral drug discovery process. The main target of potential vaccines that are recently undergoing clinical trials is trimeric glycoprotein (GP) of the EBOV and its exact crystal structure was used in this structure based virtual screening study, with the aid of consensus scoring to select three possible hit compounds from about 36 million compounds in MCULE's database. Amongst these three compounds, (5R)-5-[[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]methyl]-N-[(4-methoxyphenyl)methyl]-4,5-dihydroisoxazole-3-carboxamide (SC-2, C21H19ClN4O4) showed good features with respect to drug likeness, ligand efficiency metrics, solubility, absorption and distribution properties and non-carcinogenicity to emerge as the most promising compound that can be optimized to lead compound against the GP EBOV. The binding mode showed that SC-2 is well embedded within the trimeric chains of the GP EBOV with molecular interactions with some amino acids. The SC-2 hit compound, upon its optimization to lead, might be a good potential candidate with efficacy against the EBOV pathogen and subsequently receive necessary approval to be used as antiviral drug for the treatment of EVD.
Collapse
|
23
|
Lai CY, Strange DP, Wong TAS, Lehrer AT, Verma S. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4. Front Microbiol 2017; 8:1571. [PMID: 28861075 PMCID: PMC5562721 DOI: 10.3389/fmicb.2017.01571] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 01/16/2023] Open
Abstract
Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Daniel P Strange
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| |
Collapse
|
24
|
Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. J Virol 2017; 91:JVI.00479-17. [PMID: 28615211 DOI: 10.1128/jvi.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.
Collapse
|
25
|
Chen T, Li D, Song Y, Yang X, Liu Q, Jin X, Zhou D, Huang Z. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice. Antiviral Res 2017; 145:54-59. [PMID: 28733113 DOI: 10.1016/j.antiviral.2017.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022]
Abstract
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development.
Collapse
Affiliation(s)
- Tan Chen
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dapeng Li
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufeng Song
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Yang
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingwei Liu
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongming Zhou
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhong Huang
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
26
|
Dowall SD, Jacquot F, Landon J, Rayner E, Hall G, Carbonnelle C, Raoul H, Pannetier D, Cameron I, Coxon R, Al Abdulla I, Hewson R, Carroll MW. Post-exposure treatment of non-human primates lethally infected with Ebola virus with EBOTAb, a purified ovine IgG product. Sci Rep 2017. [PMID: 28642489 PMCID: PMC5481440 DOI: 10.1038/s41598-017-03910-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.
Collapse
Affiliation(s)
- Stuart D Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Frédéric Jacquot
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - John Landon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Emma Rayner
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | | | - Hervé Raoul
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Delphine Pannetier
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Ian Cameron
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Ruth Coxon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
27
|
Li CX, Zhang X. Whole body MRI of the non-human primate using a clinical 3T scanner: initial experiences. Quant Imaging Med Surg 2017; 7:267-275. [PMID: 28516052 PMCID: PMC5418147 DOI: 10.21037/qims.2017.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
With the advent of parallel imaging MRI techniques, whole-body MRI is being increasingly used in clinical diagnosis. However, its application in preclinical research using large animals remains very limited. In the present study, the whole-body MRI techniques for adult macaque monkeys were explored using a conventional clinic 3T scanner. The T1, T2 anatomical images, and MR angiography of adult macaque whole bodies were illustrated. The preliminary results suggest whole-body MRI can be a robust tool to examine multiple organs of non-human primate (NHP) models from head to toe non-invasively and simultaneously using a conventional clinical setting. As NHPs are intensely used in biomedical research such as HIV/AIDS and vaccine discovery, whole body MRI techniques can have a wide range of applications in translational research using NHPs.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
28
|
Cardile AP, Warren TK, Martins KA, Reisler RB, Bavari S. Will There Be a Cure for Ebola? Annu Rev Pharmacol Toxicol 2016; 57:329-348. [PMID: 27959624 DOI: 10.1146/annurev-pharmtox-010716-105055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the unprecedented Ebola virus outbreak response in West Africa, no Ebola medical countermeasures have been approved by the US Food and Drug Administration. However, multiple valuable lessons have been learned about the conduct of clinical research in a resource-poor, high risk-pathogen setting. Numerous therapeutics were explored or developed during the outbreak, including repurposed drugs, nucleoside and nucleotide analogues (BCX4430, brincidofovir, favipiravir, and GS-5734), nucleic acid-based drugs (TKM-Ebola and AVI-7537), and immunotherapeutics (convalescent plasma and ZMapp). We review Ebola therapeutics progress in the aftermath of the West Africa Ebola virus outbreak and attempt to offer a glimpse of a path forward.
Collapse
Affiliation(s)
- Anthony P Cardile
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Travis K Warren
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Karen A Martins
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Ronald B Reisler
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| |
Collapse
|
29
|
Wang Y, Li J, Hu Y, Liang Q, Wei M, Zhu F. Ebola vaccines in clinical trial: The promising candidates. Hum Vaccin Immunother 2016; 13:153-168. [PMID: 27764560 DOI: 10.1080/21645515.2016.1225637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- a School of Public Health; Southeast University , Nanjing , PR China
| | - Jingxin Li
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Yuemei Hu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Qi Liang
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Mingwei Wei
- c School of Public Health, Nanjing Medical University , Nanjing , PR China
| | - Fengcai Zhu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| |
Collapse
|
30
|
Watle SV, Norheim G, Røttingen JA. Ebola vaccines - Where are we? Hum Vaccin Immunother 2016; 12:2700-2703. [PMID: 27548643 PMCID: PMC5084983 DOI: 10.1080/21645515.2016.1217372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
The 2014-16 Ebola outbreak in West Africa has by far been the largest and most devastating Ebola outbreak so far. At the start of the epidemic only 2 Ebola DNA vaccine candidates had been tested in clinical trials and the correlate of protection in humans was unknown. International stakeholders coordinated by the World Health Organization agreed to fast-track the development of 2 Ebola vaccine candidates, based on adenovirus and vesicular stomatitis virus (VSV) vectors. Phase I and II clinical trials were initiated in the autumn of 2014 and found both vaccines to be acceptable for proceeding to phase III trials. Despite the epidemic waning in the spring of 2015, by July 2015 preliminary results from a phase III trial in Guinea proved the Ebola VSV vaccine to be effective.
Collapse
Affiliation(s)
- Sara Viksmoen Watle
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunnstein Norheim
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John-Arne Røttingen
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
31
|
[Overview of the Ebola vaccines in pre-clinical and clinical development]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2016; 109:256-261. [PMID: 27646961 DOI: 10.1007/s13149-016-0521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
The Ebola epidemic that occurred in West Africa between 2013-2016 significantly accelerated the research and development of Ebola vaccines. Few dozens of clinical trials have been recently conducted leading to opportunities to test several new vaccine candidates. Other vaccines are still in early development phases (table 1). This paper provides an overview of the new developments in that area.
Collapse
|
32
|
Banadyga L, Dolan MA, Ebihara H. Rodent-Adapted Filoviruses and the Molecular Basis of Pathogenesis. J Mol Biol 2016; 428:3449-66. [PMID: 27189922 PMCID: PMC5010511 DOI: 10.1016/j.jmb.2016.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Ebola, Marburg, and Ravn viruses, all filoviruses, are the causative agents of severe hemorrhagic fever. Much of what we understand about the pathogenesis of filovirus disease is derived from work with animal models, including nonhuman primates, which are considered the "gold standard" filovirus model since they faithfully recapitulate the clinical hallmarks of filovirus disease. However, rodent models, including the mouse, guinea pig, and hamster, also exist for Ebola, Marburg, and Ravn viruses, and although they may not reproduce all the clinical signs of filovirus disease, thanks to their relative ease of use and low cost, they are often the first choice for initial descriptions of virus pathogenesis and evaluation of antiviral prophylactics and therapeutics. Since filoviruses do not cause significant disease in adult, immunocompetent rodents, these models rely on "rodent-adapted" viruses that have been passaged several times through their host until virulence and lethality are achieved. In the process of adaptation, the viruses acquire numerous nucleotide/amino acid mutations that contribute to virulence in their rodent host. Interestingly, virus protein 24 (VP24) and nucleoprotein (NP) appear to be major virulence factors for ebolaviruses in rodents, whereas VP40 appears to be the major virulence factor for marburgviruses. By characterizing these mutations and understanding the molecular mechanisms that lead to the acquisition of virulence, we can gain better insight into the pathogenic processes that underlie filovirus disease in humans. These processes, and the viral and/or cellular proteins that contribute to them, will make attractive targets for the development of novel therapeutics and counter-measures.
Collapse
Affiliation(s)
- Logan Banadyga
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
33
|
Human Survivors of Disease Outbreaks Caused by Ebola or Marburg Virus Exhibit Cross-Reactive and Long-Lived Antibody Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:717-24. [PMID: 27335383 DOI: 10.1128/cvi.00107-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/11/2016] [Indexed: 11/20/2022]
Abstract
A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak. NP was the most cross-reactive antigen, while GP was the most specific. Antibodies from survivors of infections by Marburg marburgvirus (MARV) species were least cross-reactive, while those from survivors of infections by Sudan virus (SUDV) species exhibited the highest cross-reactivity. Based on results revealed by the protein microarray, persistent levels of antibodies to GP, NP, and VP40 were maintained for up to 14 years after infection, and survival of infection caused by one species imparted cross-reactive antibody responses to other filoviruses.
Collapse
|
34
|
Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016; 12:2075-2089. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS).
Collapse
Affiliation(s)
- Xueting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ning Wang
- b School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Ning Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yuanyuan Zhen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
35
|
Arsuaga M, de la Calle-Prieto F, Negredo Antón A, Vázquez González A. [Emerging viral infections and hepatotropic virus]. Enferm Infecc Microbiol Clin 2016; 34:508-15. [PMID: 27156244 DOI: 10.1016/j.eimc.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
Abstract
Environmental degradation, population movements and urban agglomerations have broken down the borders for infectious diseases. The expansion of microorganisms has entered an increasing area of transmission vectors. The lack of immunity of the population leads to an increased risk of spreading infectious diseases. Furthermore, the decline in vaccination rates in developed countries and socio-economic difficulties in large regions has meant that diseases in the process of eradication have re-emerged. That is why health care workers must be trained to avoid delaying in diagnosis and to accelerate the implementation of public health measures. A great deal of education and health prevention should fall under the responsibilities of travellers who move around different regions.
Collapse
Affiliation(s)
- Marta Arsuaga
- Unidad de Medicina Tropical y Consulta del Viajero. Centro de Referencia Nacional de Enfermedades Tropicales. Servicio de Medicina Interna. Hospital La Paz-Carlos III, Madrid, España.
| | - Fernando de la Calle-Prieto
- Unidad de Medicina Tropical y Consulta del Viajero. Centro de Referencia Nacional de Enfermedades Tropicales. Servicio de Medicina Interna. Hospital La Paz-Carlos III, Madrid, España
| | - Ana Negredo Antón
- Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, España
| | - Ana Vázquez González
- Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, España
| |
Collapse
|
36
|
Beesu M, Caruso G, Salyer ACD, Shukla NM, Khetani KK, Smith LJ, Fox LM, Tanji H, Ohto U, Shimizu T, David SA. Identification of a Human Toll-Like Receptor (TLR) 8-Specific Agonist and a Functional Pan-TLR Inhibitor in 2-Aminoimidazoles. J Med Chem 2016; 59:3311-30. [PMID: 26966993 DOI: 10.1021/acs.jmedchem.6b00023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of human toll-like receptor-8 (TLR8), expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells, evokes a distinct cytokine profile which favors the development of Type 1 helper T cells. Part-structures of the 2-aminobenzimidazole scaffold were examined with a view to identifying structural requisites corresponding to the smallest possible fragment of the benzimidazole core that would allow for retention of TLR8-agonistic activity. TLR8-specific agonistic activity was retained in 1-pentyl-4-phenyl-1H-imidazol-2-amine. The crystal structure of this compound bound to the TLR8 ectodomain displayed binding interactions that are common to other TLR8 agonists. This compound showed markedly attenuated proinflammatory properties in ex vivo human blood models. SAR studies revealed that 4-(2-(benzyloxy)phenyl)-1-pentyl-1H-imidazol-2-amine inhibited TLR signaling in a variety of TLR reporter cell lines, as well as in pharmacologically relevant human blood model systems. A kinase screen of this compound showed relative specificity for calmodulin kinases.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nijunj M Shukla
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karishma K Khetani
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Luke J Smith
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Lauren M Fox
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Sunil A David
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|