1
|
Fan Y, Zhong Y, Pan L, Wang X, Ding M, Liu S. A shift of vector specificity acquired by a begomovirus through natural homologous recombination. MOLECULAR PLANT PATHOLOGY 2023; 24:882-895. [PMID: 37191666 PMCID: PMC10346445 DOI: 10.1111/mpp.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.
Collapse
Affiliation(s)
- Yun‐Yun Fan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yu‐Wei Zhong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Li‐Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Xiao‐Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ming Ding
- Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
| | - Shu‐Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Liang Y, Wang Z, Wang Q, Zhou X, Qian Y. The RING-Finger Protein NbRFP1 Contributes to Regulating the Host Hypersensitive Response Induced by Oat Dwarf Virus RepA. Int J Mol Sci 2023; 24:ijms24097697. [PMID: 37175403 PMCID: PMC10178201 DOI: 10.3390/ijms24097697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Our previous study identified that the RepA protein encoded by the oat dwarf virus (ODV) was responsible for inducing a strong hypersensitive response (HR) during the virus infection in non-host tobacco plants. However, little was known about the molecular mechanism of the RepA-elicited HR. Here, a RING-finger protein, which is described as NbRFP1 and is mainly located in the cytoplasm and nucleus in Nicotiana benthamiana cells, was confirmed to interact with RepA. In addition, the accumulation level of NbRFP1 in N. benthamiana leaves was enhanced by either ODV infection or by only RepA expression. The knockdown of NbRFP1 by a TRV-mediated virus-induced gene silencing markedly delayed the ODV or RepA-elicited HR. By contrast, the overexpression of NbRFP1 in N. benthamiana conferred enhanced resistance to ODV infection and promoted RepA-induced HR. Further mutation analysis showed that a RING-finger domain located in NbRFP1 plays important roles in modulating RepA-induced HR, as well as in mediating the interaction between NbRFP1 and RepA.
Collapse
Affiliation(s)
- Yanqing Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qian Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang J, Ma M, Liu Y, Ismayil A. Plant Defense and Viral Counter-Defense during Plant-Geminivirus Interactions. Viruses 2023; 15:v15020510. [PMID: 36851725 PMCID: PMC9964946 DOI: 10.3390/v15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Geminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections. In this review, we discuss recent findings about plant defense and viral counter-defense during plant-geminivirus interactions.
Collapse
Affiliation(s)
- Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengyuan Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence:
| |
Collapse
|
4
|
Wang X, Wang B, Zhu X, Zhao Y, Jin B, Wei X. Exogenous Nitric Oxide Alleviates the Damage Caused by Tomato Yellow Leaf Curl Virus in Tomato through Regulation of Peptidase Inhibitor Genes. Int J Mol Sci 2022; 23:ijms232012542. [PMID: 36293408 PMCID: PMC9604136 DOI: 10.3390/ijms232012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tomato yellow leaf curl virus (TYLCV) is the causal agent of one of the most severe diseases affecting tomato growth; however, nitric oxide (NO) can mediate plant resistance. This study investigated the molecular mechanism of exogenous NO donor-mediated disease resistance in tomato seedlings. Tomato seedlings were treated with sodium nitroprusside and TYLCV and subjected to phenotypic, transcriptomic, and physiological analyses. The results show that exogenous NO significantly reduced disease index, MDA content, and virus content (71.4%), significantly increased stem length and fresh weight of diseased plants (p < 0.05), and improved photosynthesis with an induction effect of up to 44.0%. In this study, it was found that the reduction in virus content caused by the increased expression of peptidase inhibitor genes was the main reason for the increased resistance in tomatoes. The peptidase inhibitor inhibited protease activity and restrained virus synthesis, while the significant reduction in virus content inevitably caused a partial weakening or shutdown of the disease response process in the diseased plant. In addition, exogenous NO also induces superoxide dismutase, peroxidase activity, fatty acid elongation, resistance protein, lignin, and monoterpene synthesis to improve resistance. In summary, exogenous NO enhances resistance in tomatoes mainly by regulating peptidase inhibitor genes.
Collapse
Affiliation(s)
- Xian Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Ying Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoxia Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9331-7951
| |
Collapse
|
5
|
Gupta N, Reddy K, Gnanasekaran P, Zhai Y, Chakraborty S, Pappu HR. Functional characterization of a new ORF βV1 encoded by radish leaf curl betasatellite. FRONTIERS IN PLANT SCIENCE 2022; 13:972386. [PMID: 36212370 PMCID: PMC9546537 DOI: 10.3389/fpls.2022.972386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 05/26/2023]
Abstract
Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel βV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. βV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by βV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that βV1 protein localizes to the cellular periphery. βV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that βV1 functions as a protein elicitor and a pathogenicity determinant.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Gupta K, Rishishwar R, Dasgupta I. The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes 2022; 58:1-14. [PMID: 35034268 DOI: 10.1007/s11262-021-01881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Viruses belonging to the family Geminiviridae infect plants and are responsible for a number of diseases of crops in the tropical and sub-tropical regions of the World. The innate immune response of the plant assists in its defense against such viral pathogens by the recognition of pathogen/microbe-associated molecular patterns through pattern-recognition receptors. Phytohormone signalling pathways play a vital role in plant defense responses against these devastating viruses. Geminiviruses, however, have developed counter-defense strategies that prevail over the above defense pathways. The proteins encoded by geminiviruses act as suppressors of plant immunity by interacting with the signalling components of several hormones. In this review we focus on the molecular interplay of phytohormone pathways and geminiviral infection and try to find interesting parallels with similar mechanisms known in other plant-infecting viruses and strengthen the argument that this interplay is necessary for disease development.
Collapse
Affiliation(s)
- Kanika Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India
| | - Rashmi Rishishwar
- Department of Botany, Bhagat Singh Government P.G. College, Jaora, Ratlam, Madhya Pradesh, 457226, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India.
| |
Collapse
|
8
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
9
|
Tabein S, Miozzi L, Matić S, Accotto GP, Noris E. No Evidence for Seed Transmission of Tomato Yellow Leaf Curl Sardinia Virus in Tomato. Cells 2021; 10:cells10071673. [PMID: 34359841 PMCID: PMC8306144 DOI: 10.3390/cells10071673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.
Collapse
Affiliation(s)
- Saeid Tabein
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61349, Iran
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Correspondence: (L.M.); (E.N.); Tel.: +39-011-3977-942 (L.M.); +39-011-3977-916 (E.N.)
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy; (S.T.); (S.M.); (G.P.A.)
- Correspondence: (L.M.); (E.N.); Tel.: +39-011-3977-942 (L.M.); +39-011-3977-916 (E.N.)
| |
Collapse
|
10
|
Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2903-2917. [PMID: 33577676 DOI: 10.1093/jxb/erab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/06/2021] [Indexed: 05/14/2023]
Abstract
Geminiviruses can infect a wide range of plant hosts worldwide and have hence become an emerging global agroeconomic threat. The association of these viruses with satellite molecules and highly efficient insect vectors such as whiteflies further prime their devastating impacts. Plants elicit a strong antiviral immune response to restrict the invasion of these destructive pathogens. Phytohormones help plants to mount this response and occupy a key position in combating these biotrophs. These defense hormones not only inhibit geminiviral propagation but also hamper viral transmission by compromising the performance of their insect vectors. Nonetheless, geminiviruses have co-evolved to have a few multitasking virulence factors that readily remodel host cellular machineries to circumvent the phytohormone-mediated manifestation of the immune response. Furthermore, these obligate parasites exploit plant growth hormones to produce a cellular environment permissive for virus replication. In this review, we outline the current understanding of the roles and regulation of phytohormones in geminiviral pathogenesis.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Pei S, Dong R, Bao Y, He RL, Yau SST. Classification of genomic components and prediction of genes of Begomovirus based on subsequence natural vector and support vector machine. PeerJ 2020; 8:e9625. [PMID: 32832270 PMCID: PMC7409808 DOI: 10.7717/peerj.9625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background Begomoviruses are widely distributed and causing devastating diseases in many crops. According to the number of genomic components, a begomovirus is known as either monopartite or bipartite begomovirus. Both the monopartite and bipartite begomoviruses have the DNA-A component which encodes all essential proteins for virus functions, while the bipartite begomoviruses still contain the DNA-B component. The satellite molecules, known as betasatellites, alphasatellites or deltasatellites, sometimes exist in the begomoviruses. So, the genomic components of begomoviruses are complex and varied. Different genomic components have different gene structures and functions. Classifying the components of begomoviruses is important for studying the virus origin and pathogenic mechanism. Methods We propose a model combining Subsequence Natural Vector (SNV) method with Support Vector Machine (SVM) algorithm, to classify the genomic components of begomoviruses and predict the genes of begomoviruses. First, the genome sequence is represented as a vector numerically by the SNV method. Then SVM is applied on the datasets to build the classification model. At last, recursive feature elimination (RFE) is used to select essential features of the subsequence natural vectors based on the importance of features. Results In the investigation, DNA-A, DNA-B, and different satellite DNAs are selected to build the model. To evaluate our model, the homology-based method BLAST and two machine learning algorithms Random Forest and Naive Bayes method are used to compare with our model. According to the results, our classification model can classify DNA-A, DNA-B, and different satellites with high accuracy. Especially, we can distinguish whether a DNA-A component is from a monopartite or a bipartite begomovirus. Then, based on the results of classification, we can also predict the genes of different genomic components. According to the selected features, we find that the content of four nucleotides in the second and tenth segments (approximately 150-350 bp and 1,450–1,650 bp) are the most different between DNA-A components of monopartite and bipartite begomoviruses, which may be related to the pre-coat protein (AV2) and the transcriptional activator protein (AC2) genes. Our results advance the understanding of the unique structures of the genomic components of begomoviruses.
Collapse
Affiliation(s)
- Shaojun Pei
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Rui Dong
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, United States of America
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Li H, Li F, Zhang M, Gong P, Zhou X. Dynamic Subcellular Localization, Accumulation, and Interactions of Proteins From Tomato Yellow Leaf Curl China Virus and Its Associated Betasatellite. FRONTIERS IN PLANT SCIENCE 2020; 11:840. [PMID: 32612626 PMCID: PMC7308551 DOI: 10.3389/fpls.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses contain the largest number of species of plant viruses, and cause devastating crop diseases worldwide. The development of resistance to these viruses will require a clear understanding of viral protein function and interactions. Tomato yellow leaf curl China virus (TYLCCNV) is a typical monopartite geminivirus, which is associated with a tomato yellow leaf curl China betasatellite (TYLCCNB) in the field; the complex infection of TYLCCNV/TYLCCNB leads to serious economic losses in solanaceous plants. The functions of each protein encoded by the TYLCCNV/TYLCCNB complex have not yet been examined in a targeted manner. Here, we show the dynamic subcellular localization and accumulation of six viral proteins encoded by TYLCCNV and the βC1 protein encoded by TYLCCNB in plants over time, and analyzed the effect of TYLCCNV or TYLCCNV/TYLCCNB infection on these parameters. The interaction among the seven viral proteins was also tested in this study: C2 acts as a central player in the viral protein interaction network, since it interacts with C3, C4, V2, and βC1. Self-interactions were also found for C1, C2, and V2. Together, the data presented here provide a template for investigating the function of viral proteins with or without viral infection over time, and points at C2 as a pivotal protein potentially playing a central role in the coordination of the viral life cycle.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Guerrero J, Regedanz E, Lu L, Ruan J, Bisaro DM, Sunter G. Manipulation of the Plant Host by the Geminivirus AC2/C2 Protein, a Central Player in the Infection Cycle. FRONTIERS IN PLANT SCIENCE 2020; 11:591. [PMID: 32508858 PMCID: PMC7248346 DOI: 10.3389/fpls.2020.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/20/2020] [Indexed: 05/22/2023]
Abstract
Geminiviruses are a significant group of emergent plant DNA viruses causing devastating diseases in food crops worldwide, including the Southern United States, Central America and the Caribbean. Crop failure due to geminivirus-related disease can be as high as 100%. Improved global transportation has enhanced the spread of geminiviruses and their vectors, supporting the emergence of new, more virulent recombinant strains. With limited coding capacity, geminiviruses encode multifunctional proteins, including the AC2/C2 gene that plays a central role in the viral replication-cycle through suppression of host defenses and transcriptional regulation of the late viral genes. The AC2/C2 proteins encoded by mono- and bipartite geminiviruses and the curtovirus C2 can be considered virulence factors, and are known to interact with both basal and inducible systems. This review highlights the role of AC2/C2 in affecting the jasmonic acid and salicylic acid (JA and SA) pathways, the ubiquitin/proteasome system (UPS), and RNA silencing pathways. In addition to suppressing host defenses, AC2/C2 play a critical role in regulating expression of the coat protein during the viral life cycle. It is important that the timing of CP expression is regulated to ensure that ssDNA is converted to dsDNA early during an infection and is sequestered late in the infection. How AC2 interacts with host transcription factors to regulate CP expression is discussed along with how computational approaches can help identify critical host networks targeted by geminivirus AC2 proteins. Thus, the role of AC2/C2 in the viral life-cycle is to prevent the host from mounting an efficient defense response to geminivirus infection and to ensure maximal amplification and encapsidation of the viral genome.
Collapse
Affiliation(s)
- Jennifer Guerrero
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Liu Lu
- Department of Computer Science, North Dakota State University, Fargo, ND, United States
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, United States
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Garry Sunter
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Garry Sunter,
| |
Collapse
|
14
|
Saeed F, Sattar MN, Hameed U, Ilyas M, Haider MS, Hamza M, Mansoor S, Amin I. Infectivity of okra enation leaf curl virus and the role of its V2 protein in pathogenicity. Virus Res 2018; 255:90-94. [PMID: 30009848 DOI: 10.1016/j.virusres.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/16/2022]
Abstract
Cotton crop has been severely affected by multiple begomoviruses in Pakistan and India. In our previous study, we found okra enation leaf curl virus (OELCuV), cotton leaf curl Multan betasatellite (CLCuMuB) and cotton leaf curl Multan alphasatellite (CLCuMuA) infecting cotton in Pakistan. The current study was designed to investigate the infectivity of OELCuV and its ability to trans-replicate non-cognate CLCuMuB. Agro-infectious clones containing the partial tandem repeats of OELCuV and CLCuMuB were constructed and the infectivity assays were carried out through Agrobacterium mediated transformation in the model host species Nicotiana benthamiana under controlled conditions. The results showed that in the inoculated plants OELCuV alone can cause downward curling and yellowing of leaves with thickened veins. However, when co-inoculated with the non-cognate CLCuMuB it could functionally trans-replicate CLCuMuB resulting in a more severe phenotype. The expression of Pre-coat/V2 protein in the N. benthamiana plants through the potato virus X (PVX) system caused localized cell death after severe leaf curling in the infiltrated leaves. The tissue tropism of the virus was associated with the systemic development of a hypersensitive response (HR), which ultimately lead to the plant death. The results indicated the involvement of V2 protein in the pathogenicity of OELCuV and its ability to trigger the host defense machinery. This study also demonstrated the ability of OELCuV to trans-replicate CLCuMuB resulting in typical leaf curl disease symptoms in N. benthamiana.
Collapse
Affiliation(s)
- Farah Saeed
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | | | - Usman Hameed
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ilyas
- School of Plant Sciences, Box 85721, University of Arizona, Tucson, USA
| | - Muhammad Saleem Haider
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan.
| |
Collapse
|
15
|
Roshan P, Kulshreshtha A, Kumar S, Purohit R, Hallan V. AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Sci Rep 2018; 8:1273. [PMID: 29352245 PMCID: PMC5775426 DOI: 10.1038/s41598-018-19292-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Tomato leaf curl Palampur virus (ToLCPalV) is a whitefly-transmitted, bipartite begomovirus. Here, we demonstrated that ectopic expression of AV2 from a Potato virus X (PVX)-based vector accelerated systemic necrosis and reactive oxygen species (ROS) accumulation in Nicotiana benthamiana. Furthermore, 10 amino acids from N-terminal region of AV2 were found to be associated with the systemic necrosis symptom/phenotype. Mutational studies of ToLCPalV infectious clones lacking the AV2 revealed that AV2 is essential for the systemic movement of DNA-A, symptom severity and viral DNA accumulation. In a yeast two-hybrid assay, Catalase2 (Cat2) was found to associate with AV2 protein. Further, silencing of Cat2 resulted in appearance of necrotic lesions on N. benthamiana and these plants were highly susceptible to ToLCPalV infection in comparison to control plants. Infection ToLCPalV on Solanum lycopersicum resulted in downregulation of Cat2 transcripts, followed by accumulation of ROS and stress marker transcripts. The AV2 protein also suppressed virus-induced gene silencing (VIGS) of the Phytoene desaturase (PDS) gene. Our results show that AV2 is essential for the pathogenicity, systemic movement and suppression of gene silencing in the host. Altogether, our findings suggest that interactions between AV2 and Cat2 might play a crucial role in the establishment of ToLCPalV infection.
Collapse
Affiliation(s)
- Poonam Roshan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Aditya Kulshreshtha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Surender Kumar
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vipin Hallan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India.
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India.
| |
Collapse
|
16
|
Iqbal Z, Shafiq M, Ali I, Mansoor S, Briddon RW. Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus-Analysis by Mutation. FRONTIERS IN PLANT SCIENCE 2017; 8:2208. [PMID: 29312431 PMCID: PMC5744040 DOI: 10.3389/fpls.2017.02208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses of the genus Begomovirus (family Geminiviridae) are economically important phytopathogens that are transmitted plant-to-plant by the whitefly Bemisia tabaci. Most Old World (OW) begomoviruses are monopartite and many of these interact with symptoms and host range determining betasatellites. Tomato leaf curl New Delhi virus (ToLCNDV) is one of only a few OW begomoviruses with a bipartite genome (components known as DNA A and DNA B). Four genes [AV2, coat protein (CP), transcriptional-activator protein (TrAP), and AC4] of ToLCNDV were mutated and the effects of the mutations on infectivity, symptoms and the ability to maintain Cotton leaf curl Multan betasatellite (CLCuMuB) were investigated. Infectivity and virus/betasatellite DNA titer were assessed by Southern blot hybridization, PCR, and quantitative PCR. The results showed TrAP of ToLCNDV to be essential for maintenance of CLCuMuB and AV2 to be important only in the presence of the DNA B. AC4 was found to be important for the maintenance of CLCuMuB in the presence of, but indispensable in the absence of, the DNA B. Rather than being required for maintenance, the CP was shown to possibly interfere with maintenance of the betasatellite. The findings show that the interaction between a bipartite begomovirus and a betasatellite is more complex than just trans-replication. Clearly, multiple levels of interactions are present and such associations can cause additional significant losses to crops although the interaction may not be stable.
Collapse
Affiliation(s)
- Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Irfan Ali
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
17
|
Tu YC, Tsai WS, Wei JY, Chang KY, Tien CC, Hsiao HY, Fu SF. The C2 protein of tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes encoding chromomethylases. PHYSIOLOGIA PLANTARUM 2017; 161:515-531. [PMID: 28786123 DOI: 10.1111/ppl.12615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus-encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro-Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2-green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2-GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)-C2 displayed chlorotic lesions and stunted growth. PVX-C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host-defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3-2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3-2 gene and pNbCMT3-2::GUS (β-glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.
Collapse
Affiliation(s)
- Yu-Ching Tu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Kai-Ya Chang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Chang-Ching Tien
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Hui-Yu Hsiao
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
18
|
Torchetti EM, Pegoraro M, Navarro B, Catoni M, Di Serio F, Noris E. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci Rep 2016; 6:35101. [PMID: 27739453 PMCID: PMC5064398 DOI: 10.1038/srep35101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
DNA methylation and post-transcriptional gene silencing play critical roles in controlling infection of single-stranded (ss) DNA geminiviruses and ssRNA viroids, respectively, but both pathogens can counteract these host defense mechanisms and promote their infectivity. Moreover, a specific role of DNA methylation in viroid-host interactions is not yet confirmed. Here, using an experimental system where two nuclear-replicating agents, the geminivirus tomato yellow leaf curl Sardinia virus (TYLCSV) and potato spindle tuber viroid (PSTVd), co-infect their common host tomato, we observed that PSTVd severely interferes with TYLCSV infectivity and accumulation, most likely as a consequence of strong activation of host DNA methylation pathways. In fact, PSTVd alone or in co-infection with TYLCSV significantly upregulates the expression of key genes governing DNA methylation in plants. Using methylation-sensitive restriction and bisulfite conversion assays, we further showed that PSTVd infection promotes a strong hypermethylation of TYLCSV DNA, thus supporting a mechanistic link with the antagonism of the viroid on the virus in co-infected tomato plants. These results describe the interaction between two nuclear-replicating pathogens and show that they differentially interfere with DNA methylation pathways.
Collapse
Affiliation(s)
- Enza Maria Torchetti
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, 10135, Italy
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, 70126, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, 10135, Italy
| |
Collapse
|
19
|
Kim N, Kim J, Bang B, Kim I, Lee HH, Park J, Seo YS. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues. THE PLANT PATHOLOGY JOURNAL 2016; 32:377-387. [PMID: 27721687 PMCID: PMC5051556 DOI: 10.5423/ppj.ft.08.2016.0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 05/03/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Su Seo
- Corresponding author. Phone) +82-51-510-2267, FAX) +82-51-514-1778 E-mail)
| |
Collapse
|