1
|
Duarte-Benvenuto A, Sánchez-Sarmiento AM, Ewbank AC, Zamana-Ramblas R, Costa-Silva S, Silvestre N, Faita T, Keid LB, Soares RM, Pessi CF, Sabbadini JR, Borges MF, Ferioli RB, Marcon M, Barbosa CB, Fernandes NCCA, Ibáñez-Porras P, Navas-Suárez PE, Catão-Dias JL, Sacristán C. Bacterial septicemia and herpesvirus infection in Antarctic fur seals (Arctocephalus gazella) stranded in the São Paulo coast, Brazil. Vet Res Commun 2024; 48:2819-2826. [PMID: 38822954 PMCID: PMC11315713 DOI: 10.1007/s11259-024-10408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
In August 2021, two juvenile male Antarctic fur seals (Arctocephalus gazella) stranded in the southeastern Brazilian coast and were referred to rehabilitation centers. The animals presented increased body temperature, prostration, respiratory distress and despite treatment died. A necropsy following a standardized protocol was performed, and formalin-fixed tissues were processed for microscopic examination. Samples were screened for morbillivirus, herpesvirus, and Brucella spp. by molecular analyses (PCR, RT-PCR). Bacteriological culture was performed in samples collected from the lungs, trachea, and lymph nodes of both cases. The main histopathologic findings were of infectious nature, including multifocal necrotizing and fibrinous mixed interstitial pneumonia, bronchiolitis, and bronchitis, with intralesional myriad bacteria associated with vascular fibrinoid necrosis. Pseudomonas aeruginosa was isolated from tracheal and lung swabs of Case 1, and Klebsiella oxytoca was found in nostril swabs, tracheobronchial lymph nodes, and lung of Case 2. Gammaherpesvirus infection was detected in both cases, and the sequences retrieved were classified into the genus Percavirus. All tested samples were PCR-negative for Brucella spp. and morbillivirus. We hypothesize that the deficient immunological status in association with starvation predisposed the reactivation of herpesvirus and secondary bacterial co-infections. To the authors' knowledge, this is the first molecular detection of herpesvirus in an Antarctic pinniped. These findings reinforce that Otariid gammaherpesvirus circulating in the Southern Hemisphere are likely endemic in the Arctocephalus genus. This report contributes to the current knowledge of health aspects affecting wild pinnipeds, especially in the poorly studied Antarctic species.
Collapse
Affiliation(s)
- Aricia Duarte-Benvenuto
- Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - A C Ewbank
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Madrid, Valdeolmos, Spain
| | - R Zamana-Ramblas
- Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - N Silvestre
- Universidade de São Paulo, Pirassununga, SP, Brazil
| | - T Faita
- Universidade de São Paulo, Pirassununga, SP, Brazil
| | - L B Keid
- Universidade de São Paulo, Pirassununga, SP, Brazil
| | - R M Soares
- Universidade de São Paulo, Pirassununga, SP, Brazil
| | - C F Pessi
- Instituto de Pesquisas Cananéia, Cananéia, SP, Brazil
| | - J R Sabbadini
- Instituto de Pesquisas Cananéia, Cananéia, SP, Brazil
| | - M F Borges
- Instituto de Pesquisas Cananéia, Cananéia, SP, Brazil
| | - R B Ferioli
- Instituto Argonauta para a Conservação Costeira e Marinha, Ubatuba, SP, Brazil
| | - M Marcon
- Instituto Argonauta para a Conservação Costeira e Marinha, Ubatuba, SP, Brazil
| | - C B Barbosa
- Instituto Argonauta para a Conservação Costeira e Marinha, Ubatuba, SP, Brazil
| | | | - P Ibáñez-Porras
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Madrid, Valdeolmos, Spain
| | - P E Navas-Suárez
- Curso de Medicina Veterinária, Centro Universitário - FAM, São Paulo, SP, Brazil
| | - J L Catão-Dias
- Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Madrid, Valdeolmos, Spain.
| |
Collapse
|
2
|
Grimwood RM, Waller SJ, Wierenga JR, Lim L, Dubrulle J, Holmes EC, Geoghegan JL. Viromes of Antarctic fish resemble the diversity found at lower latitudes. Virus Evol 2024; 10:veae050. [PMID: 39071139 PMCID: PMC11282168 DOI: 10.1093/ve/veae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Antarctica harbours some of the most isolated and extreme environments on Earth, concealing a largely unexplored and unique component of the global animal virosphere. To understand the diversity and evolutionary histories of viruses in these polar species, we determined the viromes of gill metatranscriptomes from 11 Antarctic fish species with 248 samples collected from the Ross Sea region spanning the Perciformes, Gadiformes, and Scorpaeniformes orders. The continent's shift southward and cooling temperatures >20 million years ago led to a reduction in biodiversity and subsequent radiation of some marine fauna, such as the notothenioid fishes. Despite decreased host species richness in polar regions, we revealed a surprisingly complex virome diversity in Ross Sea fish, with the types and numbers of viruses per host species and individuals sampled comparable to that of fish in warmer marine environments with higher host community diversity. We also observed a higher number of closely related viruses likely representing instances of recent and historic host-switching events among the Perciformes (all notothenioids) than in the Gadiformes, suggesting that rapid speciation events within this order generated closely related host species with few genetic barriers to cross-species transmission. Additionally, we identified novel genomic variation in an arenavirus with a split nucleoprotein sequence containing a stable helical structure, indicating potential adaptation of viral proteins to extreme temperatures. These findings enhance our understanding of virus evolution and virus-host interactions in response to environmental shifts, especially in less diverse ecosystems that are more vulnerable to the impacts of anthropogenic and climate changes.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Janelle R Wierenga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Lauren Lim
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington 5018, New Zealand
| |
Collapse
|
3
|
Brandão M, Marques L, Villela RV, Trilles L, Vivoni A, Siqueira M, Ogrzewalska M, Gomes HM, Moreira L, Magalhães MGP, Prado T, Parente TE, Duarte GF, Cruz M, Miagostovich M, Chame M, Soares SP, Degrave W. Fiocruz in Antarctica - health and environmental surveillance facing the challenges of the 21st century. AN ACAD BRAS CIENC 2024; 96:e20230742. [PMID: 38896600 DOI: 10.1590/0001-3765202420230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/23/2023] [Indexed: 06/21/2024] Open
Abstract
FioAntar, FIOCRUZ's research project in Antarctica, is based on the One Health approach. FioAntar aims to generate relevant information that will help reduce the risk of future pandemics and improve the search for chemical compounds and new biological molecules. After four expeditions to Antarctica under the scope of PROANTAR, Fiocruz has identified Influenza H11N2 virus in environmental fecal samples, as well as Histoplasma capsulatum and Bacillus cereus in soil samples. In addition, in a prospective virome analysis from different lakes in the South Shetland Islands, six viral orders were described, supporting future research related to the biodiversity and viral ecology in this extreme ecosystem. Our findings of environmental pathogens of public health importance are a warning about the urgency of establishing a surveillance agenda on zoonoses in Antarctica due to the imminent risks that ongoing environmental and climate changes impose on human health across the planet. FioAntar strives to establish a comprehensive surveillance program across Antarctica, monitoring circulation of pathogens with the potential to transcend continent boundaries, thereby mitigating potential spread. For Fiocruz, Antarctica signifies a new frontier, teeming with opportunities to explore novel techniques, refine established methodologies, and cultivate invaluable knowledge.
Collapse
Affiliation(s)
- Martha Brandão
- Oswaldo Cruz Foundation, Vice-Presidency of Production and Innovation in Health, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Lúcia Marques
- Oswaldo Cruz Foundation, Global Health Center, Presidency, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Roberto V Villela
- Oswaldo Cruz Institute, Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Luciana Trilles
- Oswaldo Cruz Foundation, Laboratory of Mycology, Evandro Chagas National Institute of Infectology, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Adriana Vivoni
- Instituto Oswaldo Cruz, Laboratory of Bacteriology Applied to Single Health and Antimicrobial Resistance, Center for Research, Innovation and Surveillance in Covid-19 and Health Emergencies, Bl 2, sl 2-102, Av Brasil, 4036, Manguinhos, 21040-361 Rio de Janeiro, RJ, Brazil
| | - Marilda Siqueira
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Respiratory, Exanthematic, Enteric viruses and Viral Emergencies, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Maria Ogrzewalska
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Respiratory, Exanthematic, Enteric viruses and Viral Emergencies, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Harrisson M Gomes
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Molecular Biology applied to Mycobacteria, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Lucas Moreira
- Oswaldo Cruz Foundation, Laboratory of Mycology, Evandro Chagas National Institute of Infectology, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Maithe G P Magalhães
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Applied Genomics and Bioinnovation - LAGABI, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Tatiana Prado
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Respiratory, Exanthematic, Enteric viruses and Viral Emergencies, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Thiago E Parente
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Applied Genomics and Bioinnovation - LAGABI, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Gabriela F Duarte
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Applied Genomics and Bioinnovation - LAGABI, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Av. Pedro Calmon, 550, Cidade Universitária, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Matheus Cruz
- Oswaldo Cruz Foundation, Social Communication Coordination, Presidency, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Marize Miagostovich
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Comparative and Environmental Virology, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Marcia Chame
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Information Center on Wilderness Health and the Institutional Platform Biodiversity and Wilderness Health - Pibss/Fiocruz, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Sandra P Soares
- Oswaldo Cruz Foundation, Vice-Presidency of Production and Innovation in Health, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Wim Degrave
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Applied Genomics and Bioinnovation - LAGABI, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Regney M, Kraberger S, Custer JM, Crane AE, Shero MR, Beltran RS, Kirkham AL, Van Doorslaer K, Stone AC, Goebel ME, Burns JM, Varsani A. Diverse papillomaviruses identified from Antarctic fur seals, leopard seals and Weddell seals from the Antarctic. Virology 2024; 594:110064. [PMID: 38522135 DOI: 10.1016/j.virol.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.
Collapse
Affiliation(s)
- Melanie Regney
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Adele E Crane
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02543, United States
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, United States
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E. Tudor Road, Anchorage, AK, 99503, United States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, UA Cancer Center, The BIO5 Institute, University of Arizona, Tucson, AZ, 85724, United States
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, United States
| | - Michael E Goebel
- Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, United States
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
5
|
Olmastroni S, Simonetti S, Fattorini N, D'Amico V, Cusset F, Bustamante P, Cherel Y, Corsi I. Living in a challenging environment: Monitoring stress ecology by non-destructive methods in an Antarctic seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171249. [PMID: 38431169 DOI: 10.1016/j.scitotenv.2024.171249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
How Antarctic species are facing historical and new stressors remains under-surveyed and risks to wildlife are still largely unknown. Adélie penguins Pygoscelis adeliae are well-known bioindicators and sentinels of Antarctic ecosystem changes, a true canary in the coal mine. Immuno-haematological parameters have been proved to detect stress in wild animals, given their rapid physiological response that allows them tracking environmental changes and thus inferring habitat quality. Here, we investigated variation in Erythrocyte Nuclear Abnormalities (ENAs) and White Blood Cells (WBCs) in penguins from three clustered colonies in the Ross Sea, evaluating immuno-haematological parameters according to geography, breeding stage, and individual penguin characteristics such as sex, body condition and nest quality. Concentrations of mercury (Hg) and stable isotopes of carbon and nitrogen (as proxies of the penguin's trophic ecology) were analysed in feathers to investigate the association between stress biomarkers and Hg contamination in Adélie penguins. Colony and breeding stage were not supported as predictors of immuno-haematological parameters. ENAs and WBCs were respectively ∼30 % and ∼20 % higher in male than in female penguins. Body condition influenced WBCs, with penguins in the best condition having a ∼22 % higher level of WBCs than those in the worst condition. Nest position affected the proportion of micronuclei (MNs), with inner-nesting penguins having more than three times the proportion of MNs than penguins nesting in peripheral positions. Heterophils:Lymphocytes (H:L) ratio was not affected by any of the above predictors. Multiple factors acting as stressors are expected to increase prominently in Antarctic wildlife in the near future, therefore extensive monitoring aimed to assess the health status of penguin populations is mandatory.
Collapse
Affiliation(s)
- Silvia Olmastroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Niccolò Fattorini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; National Biodiversity Future Center, Palermo, Italy
| | - Verónica D'Amico
- Centro para el Estudio de Sistemas Marinos (CESIMAR), (CCT Centro Nacional Patagónico -CONICET), Brown 2915, U9120ACF, Puerto Madryn, Chubut, Argentina
| | - Fanny Cusset
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 du CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 du CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Yves Cherel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
6
|
Gomes F, Prado T, Degrave W, Moreira L, Magalhães M, Magdinier H, Vilela R, Siqueira M, Brandão M, Ogrzewalska M. Active surveillance for influenza virus and coronavirus infection in Antarctic birds and mammals in environmental fecal samples, South Shetland Islands. AN ACAD BRAS CIENC 2023; 95:e20230741. [PMID: 38126386 DOI: 10.1590/0001-3765202320230741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous Antarctic species are recognized as reservoirs for various pathogens, and their migratory behavior allows them to reach the Brazilian coast, potentially contributing to the emergence and circulation of new infectious diseases. To address the potential zoonotic risks, we conducted surveillance of influenza A virus (IAV) and coronaviruses (CoVs) in the Antarctic Peninsula, specifically focusing on different bird and mammal species in the region. During the summer of 2021/2022, as part of the Brazilian Antarctic Expedition, we collected and examined a total of 315 fecal samples to target these respiratory viruses. Although we did not detect the viruses of interest during this particular expedition, previous research conducted by our team has shown the presence of the H11N2 subtype of influenza A virus in penguin fecal samples from the same region. Given the continuous emergence of new viral strains worldwide, it is crucial to maintain active surveillance in the area, contributing to strengthening integrated One Health surveillance efforts.
Collapse
Affiliation(s)
- Fernanda Gomes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Tatiana Prado
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wim Degrave
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lucas Moreira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Laboratório de Micologia, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maithê Magalhães
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Harrison Magdinier
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Roberto Vilela
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marilda Siqueira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Martha Brandão
- Vice-Presidência de Produção e Inovação em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Ogrzewalska
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Roberts LC, Molini U, Coetzee LM, Khaiseb S, Roux JP, Kemper J, Roberts DG, Ludynia K, Doherr M, Abernethy D, Franzo G. Is Penguin Circovirus Circulating Only in the Antarctic Circle? Lack of Viral Detection in Namibia. Animals (Basel) 2023; 13:ani13091449. [PMID: 37174486 PMCID: PMC10177519 DOI: 10.3390/ani13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The known host range of circoviruses is continuously expanding because of more intensive diagnostic activities and advanced sequencing tools. Recently, a new circovirus (penguin circovirus (PenCV)) was identified in the guano and cloacal samples collected from Adélie penguins (Pygoscelis adeliae) and chinstrap penguins (Pygoscelis antarcticus) in Antarctica. Although the virus was detected in several asymptomatic subjects, a potential association with feather disease was speculated. To investigate the occurrence and implications of PenCV in other penguin species located outside of Antarctica, a broad survey was undertaken in African penguins (Spheniscus demersus) on two islands off the southern Namibian coast. For this purpose, specific molecular biology assays were developed and validated. None of the 151 blood samples tested positive for PenCV. Several reasons could explain the lack of PenCV positive samples. African penguins and Pygoscelis species are separated by approximately 6000 km, so there is almost no opportunity for transmission. Similarly, host susceptibility to PenCV might be penguin genus-specific. Overall, the present study found no evidence of PenCV in African penguin colonies in Namibia. Further dedicated studies are required to assess the relevance of PenCV among different penguin species.
Collapse
Affiliation(s)
- Laura C Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, Neudamm Campus, University of Namibia, Private Bag, Windhoek 13301, Namibia
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag, Windhoek 18137, Namibia
| | - Lauren M Coetzee
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag, Windhoek 18137, Namibia
| | - Siegfried Khaiseb
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag, Windhoek 18137, Namibia
| | - Jean-Paul Roux
- African Penguin Conservation Project, Lüderitz 23016, Namibia
| | - Jessica Kemper
- African Penguin Conservation Project, Lüderitz 23016, Namibia
| | - David G Roberts
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa
| | - Katrin Ludynia
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa
- Department of Biodiversity & Conservation Biology, University of the Western Cape, Bellville 7535, South Africa
| | - Marcus Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, University of Freie, Königsweg 67, 14163 Berlin, Germany
| | - Darrell Abernethy
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Aberystwyth School of Veterinary Science, Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, 35020 Padova, Italy
| |
Collapse
|
9
|
Gold Z, Shelton AO, Casendino HR, Duprey J, Gallego R, Van Cise A, Fisher M, Jensen AJ, D'Agnese E, Andruszkiewicz Allan E, Ramón-Laca A, Garber-Yonts M, Labare M, Parsons KM, Kelly RP. Signal and noise in metabarcoding data. PLoS One 2023; 18:e0285674. [PMID: 37167310 PMCID: PMC10174484 DOI: 10.1371/journal.pone.0285674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Metabarcoding is a powerful molecular tool for simultaneously surveying hundreds to thousands of species from a single sample, underpinning microbiome and environmental DNA (eDNA) methods. Deriving quantitative estimates of underlying biological communities from metabarcoding is critical for enhancing the utility of such approaches for health and conservation. Recent work has demonstrated that correcting for amplification biases in genetic metabarcoding data can yield quantitative estimates of template DNA concentrations. However, a major source of uncertainty in metabarcoding data stems from non-detections across technical PCR replicates where one replicate fails to detect a species observed in other replicates. Such non-detections are a special case of variability among technical replicates in metabarcoding data. While many sampling and amplification processes underlie observed variation in metabarcoding data, understanding the causes of non-detections is an important step in distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and empirical data to 1) suggest how non-detections may arise in metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify the conditions under which amplicon sequence data can reliably detect underlying biological signals. We show with both simulations and empirical data that, for a given species, the rate of non-detections among technical replicates is a function of both the template DNA concentration and species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic sampling of amplicons during sequencing-both of which we can model-but also by (3) stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative metabarcoding. Our results highlight the importance of estimating species-specific amplification efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better distinguish environmental signal from the noise inherent in molecular detections of rare targets.
Collapse
Affiliation(s)
- Zachary Gold
- Cooperative Institute for Climate, Ocean, & Ecosystem Studies, UW, Seattle, Washington, United States of America
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Andrew Olaf Shelton
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Helen R Casendino
- School of Marine and Environmental Affairs, UW, Seattle, Washington, United States of America
| | - Joe Duprey
- School of Marine and Environmental Affairs, UW, Seattle, Washington, United States of America
| | - Ramón Gallego
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Amy Van Cise
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Mary Fisher
- School of Aquatic Fisheries Science, UW, Seattle, Washington, United States of America
| | - Alexander J Jensen
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Erin D'Agnese
- School of Marine and Environmental Affairs, UW, Seattle, Washington, United States of America
| | | | - Ana Ramón-Laca
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Maya Garber-Yonts
- School of Marine and Environmental Affairs, UW, Seattle, Washington, United States of America
| | - Michaela Labare
- Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| | - Kim M Parsons
- Northwest Fisheries Science Center, NMFS/NOAA, Seattle, Washington, United States of America
| | - Ryan P Kelly
- School of Marine and Environmental Affairs, UW, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Wang J, Xiao J, Zhu Z, Wang S, Zhang L, Fan Z, Deng Y, Hu Z, Peng F, Shen S, Deng F. Diverse viromes in polar regions: A retrospective study of metagenomic data from Antarctic animal feces and Arctic frozen soil in 2012-2014. Virol Sin 2022; 37:883-893. [PMID: 36028202 PMCID: PMC9797369 DOI: 10.1016/j.virs.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012-2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Xiao
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zheng Zhu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Siyuan Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lei Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaojun Fan
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yali Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China,Corresponding authors.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| |
Collapse
|
11
|
Wardeh M, Blagrove MSC, Sharkey KJ, Baylis M. Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations. Nat Commun 2021; 12:3954. [PMID: 34172731 PMCID: PMC8233343 DOI: 10.1038/s41467-021-24085-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Our knowledge of viral host ranges remains limited. Completing this picture by identifying unknown hosts of known viruses is an important research aim that can help identify and mitigate zoonotic and animal-disease risks, such as spill-over from animal reservoirs into human populations. To address this knowledge-gap we apply a divide-and-conquer approach which separates viral, mammalian and network features into three unique perspectives, each predicting associations independently to enhance predictive power. Our approach predicts over 20,000 unknown associations between known viruses and susceptible mammalian species, suggesting that current knowledge underestimates the number of associations in wild and semi-domesticated mammals by a factor of 4.3, and the average potential mammalian host-range of viruses by a factor of 3.2. In particular, our results highlight a significant knowledge gap in the wild reservoirs of important zoonotic and domesticated mammals' viruses: specifically, lyssaviruses, bornaviruses and rotaviruses.
Collapse
Affiliation(s)
- Maya Wardeh
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK.
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kieran J Sharkey
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Matthew Baylis
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Caccavo JA, Christiansen H, Constable AJ, Ghigliotti L, Trebilco R, Brooks CM, Cotte C, Desvignes T, Dornan T, Jones CD, Koubbi P, Saunders RA, Strobel A, Vacchi M, van de Putte AP, Walters A, Waluda CM, Woods BL, Xavier JC. Productivity and Change in Fish and Squid in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
Collapse
|
13
|
Hayer J, Wille M, Font A, González-Aravena M, Norder H, Malmberg M. Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile. Virology 2021; 560:116-123. [PMID: 34058706 DOI: 10.1016/j.virol.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.
Collapse
Affiliation(s)
- Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Alejandro Font
- nstituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
14
|
Barbosa A, Varsani A, Morandini V, Grimaldi W, Vanstreels RET, Diaz JI, Boulinier T, Dewar M, González-Acuña D, Gray R, McMahon CR, Miller G, Power M, Gamble A, Wille M. Risk assessment of SARS-CoV-2 in Antarctic wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143352. [PMID: 33162142 PMCID: PMC7598351 DOI: 10.1016/j.scitotenv.2020.143352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 04/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.
Collapse
Affiliation(s)
- Andrés Barbosa
- Evolutionary Ecology Dpt. Museo Nacional de Ciencias Naturales, CSIC, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Oregon, USA
| | | | - Ralph E T Vanstreels
- Institute of Research and Rehabilitation of Marine Animals (IPRAM), Rodovia, Cariacica, Brazil
| | - Julia I Diaz
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, EPHE, Université Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Meagan Dewar
- School of Science, Psychology and Sport, Federation University Australia, Australia
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - Clive R McMahon
- IMOS Animal Satellite Tagging, Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Gary Miller
- Discipline of Microbiology and Immunology, University of Western Australia, Crawley, WA 6009, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Amandine Gamble
- Department of Ecology and Evolution, University of California Los Angeles, CA, USA
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
16
|
Identification of Circovirus Genome in a Chinstrap Penguin ( Pygoscelis antarcticus) and Adélie Penguin ( Pygoscelis adeliae) on the Antarctic Peninsula. Viruses 2020; 12:v12080858. [PMID: 32781620 PMCID: PMC7472332 DOI: 10.3390/v12080858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Circoviruses infect a variety of animal species and have small (~1.8–2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015−2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.
Collapse
|
17
|
Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME JOURNAL 2020; 14:1768-1782. [PMID: 32286545 PMCID: PMC7305176 DOI: 10.1038/s41396-020-0643-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin, experiences low pathogen pressure, accounting for their disease susceptibility in foreign environments. There is, however, a limited understanding of virome diversity in Antarctic species, the extent of in situ virus evolution, or how it relates to that in other geographic regions. To assess whether penguins have limited microbial diversity we determined the RNA viromes of three species of penguins and their ticks sampled on the Antarctic peninsula. Using total RNA sequencing we identified 107 viral species, comprising likely penguin associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82), and tick viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of virome diversity revealed in penguins is comparable to that seen in Australian waterbirds, including many of the same viral families. These data run counter to the idea that penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals may act as key virus reservoirs.
Collapse
|
18
|
Karl JP, Barbato RA, Doherty LA, Gautam A, Glaven SM, Kokoska RJ, Leary D, Mickol RL, Perisin MA, Hoisington AJ, Van Opstal EJ, Varaljay V, Kelley-Loughnane N, Mauzy CA, Goodson MS, Soares JW. Meeting report of the third annual Tri-Service Microbiome Consortium symposium. ENVIRONMENTAL MICROBIOME 2020; 15:12. [PMID: 32835172 PMCID: PMC7356122 DOI: 10.1186/s40793-020-00359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/05/2023]
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22-24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Robyn A. Barbato
- United States Army Cold Regions Research and Engineering Laboratory, Hanover, NH USA
| | - Laurel A. Doherty
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC USA
| | - Robert J. Kokoska
- Physical Sciences Directorate, United States Army Research Laboratory – United States Army Research Office, Research Triangle Park, Durham, NC USA
| | - Dagmar Leary
- Center for Biomolecular Science & Engineering, United States Naval Research Laboratory, Washington, DC USA
| | | | - Matthew A. Perisin
- Biotechnology Branch, United States Army Combat Capabilities Development Command-Army Research Laboratory, Adelphi, MD USA
| | - Andrew J. Hoisington
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH USA
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward J. Van Opstal
- Human Systems Directorate, Office of the Underscretary of Defense for Research & Engineering, Washington, DC USA
| | - Vanessa Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Camilla A. Mauzy
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Michael S. Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Jason W. Soares
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| |
Collapse
|
19
|
de Souza WM, Fumagalli MJ, Martin MC, de Araujo J, Orsi MA, Sanfilippo LF, Modha S, Durigon EL, Proença-Módena JL, Arns CW, Murcia PR, Figueiredo LTM. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol 2019; 5:vez047. [PMID: 31850147 PMCID: PMC6908804 DOI: 10.1093/ve/vez047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Picornaviridae family comprises single-stranded, positive-sense RNA viruses distributed into forty-seven genera. Picornaviruses have a broad host range and geographic distribution in all continents. In this study, we applied a high-throughput sequencing approach to examine the presence of picornaviruses in penguins from King George Island, Antarctica. We discovered and characterized a novel picornavirus from cloacal swab samples of gentoo penguins (Pygoscelis papua), which we tentatively named Pingu virus. Also, using RT-PCR we detected this virus in 12.9 per cent of cloacal swabs derived from P. papua, but not in samples from adélie penguins (Pygoscelis adeliae) or chinstrap penguins (Pygoscelis antarcticus). Attempts to isolate the virus in a chicken cell line and in embryonated chicken eggs were unsuccessful. Our results expand the viral diversity, host range, and geographical distribution of the Picornaviridae.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Matheus Cavalheiro Martin
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Maria Angela Orsi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Luiz Francisco Sanfilippo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - José Luiz Proença-Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| |
Collapse
|
20
|
Morandini V, Dugger KM, Ballard G, Elrod M, Schmidt A, Ruoppolo V, Lescroël A, Jongsomjit D, Massaro M, Pennycook J, Kooyman GL, Schmidlin K, Kraberger S, Ainley DG, Varsani A. Identification of a Novel Adélie Penguin Circovirus at Cape Crozier (Ross Island, Antarctica). Viruses 2019; 11:v11121088. [PMID: 31766719 PMCID: PMC6950389 DOI: 10.3390/v11121088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Understanding the causes of disease in Antarctic wildlife is crucial, as many of these species are already threatened by environmental changes brought about by climate change. In recent years, Antarctic penguins have been showing signs of an unknown pathology: a feather disorder characterised by missing feathers, resulting in exposed skin. During the 2018-2019 austral summer breeding season at Cape Crozier colony on Ross Island, Antarctica, we observed for the first time an Adélie penguin chick missing down over most of its body. A guano sample was collected from the nest of the featherless chick, and using high-throughput sequencing, we identified a novel circovirus. Using abutting primers, we amplified the full genome, which we cloned and Sanger-sequenced to determine the complete genome of the circovirus. The Adélie penguin guano-associated circovirus genome shares <67% genome-wide nucleotide identity with other circoviruses, representing a new species of circovirus; therefore, we named it penguin circovirus (PenCV). Using the same primer pair, we screened 25 previously collected cloacal swabs taken at Cape Crozier from known-age adult Adélie penguins during the 2014-2015 season, displaying no clinical signs of feather-loss disorder. Three of the 25 samples (12%) were positive for a PenCV, whose genome shared >99% pairwise identity with the one identified in 2018-2019. This is the first report of a circovirus associated with a penguin species. This circovirus could be an etiological agent of the feather-loss disorder in Antarctic penguins.
Collapse
Affiliation(s)
- Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA
- Correspondence: (V.M.); (A.V.)
| | - Katie M. Dugger
- US Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA;
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA; (G.B.); (M.E.); (A.S.); (A.L.); (D.J.)
| | - Megan Elrod
- Point Blue Conservation Science, Petaluma, CA 94954, USA; (G.B.); (M.E.); (A.S.); (A.L.); (D.J.)
| | - Annie Schmidt
- Point Blue Conservation Science, Petaluma, CA 94954, USA; (G.B.); (M.E.); (A.S.); (A.L.); (D.J.)
| | - Valeria Ruoppolo
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-060, Brazil;
| | - Amélie Lescroël
- Point Blue Conservation Science, Petaluma, CA 94954, USA; (G.B.); (M.E.); (A.S.); (A.L.); (D.J.)
| | - Dennis Jongsomjit
- Point Blue Conservation Science, Petaluma, CA 94954, USA; (G.B.); (M.E.); (A.S.); (A.L.); (D.J.)
| | - Melanie Massaro
- School of Environmental Sciences, Institute for Land, Water and Society, Charles Sturt University, Albury 2678, Australia;
| | - Jean Pennycook
- HT Harvey and Associates, Los Gatos, CA 95032, USA; (J.P.); (D.G.A.)
| | - Gerald L. Kooyman
- Scholander Hall, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0204, USA;
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (K.S.); (S.K.)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (K.S.); (S.K.)
| | - David G. Ainley
- HT Harvey and Associates, Los Gatos, CA 95032, USA; (J.P.); (D.G.A.)
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (K.S.); (S.K.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa
- Correspondence: (V.M.); (A.V.)
| |
Collapse
|
21
|
Sommers P, Fontenele RS, Kringen T, Kraberger S, Porazinska DL, Darcy JL, Schmidt SK, Varsani A. Single-Stranded DNA Viruses in Antarctic Cryoconite Holes. Viruses 2019; 11:E1022. [PMID: 31689942 PMCID: PMC6893807 DOI: 10.3390/v11111022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics. Half of the assembled metagenomes cluster with those in the viral family Microviridae (n = 7), and the rest with unclassified circular replication associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses (n = 7). An additional 18 virus-like circular molecules encoding either a Rep, a capsid protein gene, or other unidentified but viral-like open reading frames were identified. The samples from which the genomes were identified show a strong gradient in microbial diversity and abundances, and the number of viral genomes detected in each sample mirror that gradient. Additionally, one of the CRESS genomes assembled here shares ~90% genome-wide pairwise identity with a virus identified from a freshwater pond on the McMurdo Ice Shelf (Antarctica). Otherwise, the similarity of these viruses to those previously identified is relatively low. Together, these patterns are consistent with the presence of a unique regional virome present in fresh water host populations of the McMurdo Dry Valley region.
Collapse
Affiliation(s)
- Pacifica Sommers
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Tayele Kringen
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Dorota L Porazinska
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
| | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Steven K Schmidt
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa.
| |
Collapse
|
22
|
Kennedy JM, Earle JP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019; 11:E944. [PMID: 31615092 PMCID: PMC6833027 DOI: 10.3390/v11100944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.
Collapse
Affiliation(s)
- Judith M. Kennedy
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - J.A. Philip Earle
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Shadia Omar
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Hani’ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada;
| | | | - S. Louise Cosby
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
23
|
Antarctic Penguins as Reservoirs of Diversity for Avian Avulaviruses. J Virol 2019; 93:JVI.00271-19. [PMID: 30894472 PMCID: PMC6532105 DOI: 10.1128/jvi.00271-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Approximately 99% of all viruses are still to be described, and in our changing world, any one of these unknown viruses could potentially expand their host range and cause epidemic disease in wildlife, agricultural animals, or humans. Avian avulavirus 1 causes outbreaks in wild birds and poultry and is thus well described. However, for many avulavirus species, only a single specimen has been described, and their viral ecology and epidemiology are unknown. Through the detection of avian avulaviruses in penguins from Antarctica, we have been able to expand upon our understanding of three avian avulavirus species (avian avulaviruses 17 to 19) and report a potentially novel avulavirus species. Importantly, we show that penguins appear to play a key role in the epidemiology of avian avulaviruses, and we encourage additional sampling of this avian group. Wild birds harbor a huge diversity of avian avulaviruses (formerly avian paramyxoviruses). Antarctic penguin species have been screened for avian avulaviruses since the 1980s and, as such, are known hosts of these viruses. In this study, we screened three penguin species from the South Shetland Islands and the Antarctic Peninsula for avian avulaviruses. We show that Adelie penguins (Pygoscelis adeliae) are hosts for four different avian avulavirus species, the recently described avian avulaviruses 17 to 19 and avian avulavirus 10-like, never before isolated in Antarctica. A total of 24 viruses were isolated and sequenced; avian avulavirus 17 was the most common, and phylogenetic analysis demonstrated patterns of occurrence, with different genetic clusters corresponding to penguin age and location. Following infection in specific-pathogen-free (SPF) chickens, all four avian avulavirus species were shed from the oral cavity for up to 7 days postinfection. There was limited shedding from the cloaca in a proportion of infected chickens, and all but one bird seroconverted by day 21. No clinical signs were observed. Taken together, we propose that penguin species, including Antarctic penguins, may be the central reservoir for a diversity of avian avulavirus species and that these viruses have the potential to infect other avian hosts. IMPORTANCE Approximately 99% of all viruses are still to be described, and in our changing world, any one of these unknown viruses could potentially expand their host range and cause epidemic disease in wildlife, agricultural animals, or humans. Avian avulavirus 1 causes outbreaks in wild birds and poultry and is thus well described. However, for many avulavirus species, only a single specimen has been described, and their viral ecology and epidemiology are unknown. Through the detection of avian avulaviruses in penguins from Antarctica, we have been able to expand upon our understanding of three avian avulavirus species (avian avulaviruses 17 to 19) and report a potentially novel avulavirus species. Importantly, we show that penguins appear to play a key role in the epidemiology of avian avulaviruses, and we encourage additional sampling of this avian group.
Collapse
|
24
|
Crane A, Goebel ME, Kraberger S, Stone AC, Varsani A. Novel anelloviruses identified in buccal swabs of Antarctic fur seals. Virus Genes 2018; 54:719-723. [DOI: 10.1007/s11262-018-1585-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 11/27/2022]
|
25
|
Van Doorslaer K, Kraberger S, Austin C, Farkas K, Bergeman M, Paunil E, Davison W, Varsani A. Fish polyomaviruses belong to two distinct evolutionary lineages. J Gen Virol 2018. [PMID: 29517483 PMCID: PMC5982132 DOI: 10.1099/jgv.0.001041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, Bio5 Institute, and the University of Arizona Cancer Center University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,School of Environment, Natural Resources and Geography Bangor University Bangor, LL57 2UW, UK
| | - Melissa Bergeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Emma Paunil
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
26
|
Smeele ZE, Burns JM, Van Doorsaler K, Fontenele RS, Waits K, Stainton D, Shero MR, Beltran RS, Kirkham AL, Berngartt R, Kraberger S, Varsani A. Diverse papillomaviruses identified in Weddell seals. J Gen Virol 2018; 99:549-557. [PMID: 29469687 DOI: 10.1099/jgv.0.001028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.
Collapse
Affiliation(s)
- Zoe E Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Koenraad Van Doorsaler
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and Bio5, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne S Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd Juneau, Alaska 99801, USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
27
|
|