1
|
Lee SM, Avalos CL, Miliotis C, Doh HM, Chan E, Kaye KM, Slack FJ. Host microRNA-31-5p represses oncogenic herpesvirus lytic reactivation by restricting the RNA-binding protein KHDRBS3-mediated viral gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634336. [PMID: 39896566 PMCID: PMC11785233 DOI: 10.1101/2025.01.22.634336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma, employs a biphasic life cycle consisting of latency and lytic replication to achieve lifelong infection. Despite its essential role in KSHV persistence and tumorigenicity, much remains unknown about how KSHV lytic reactivation is regulated. Leveraging high-throughput transcriptomics, we identify microRNA-31-5p (miR-31-5p) as a key regulator of KSHV lytic reactivation capable of restricting KSHV entry into the lytic replication cycle. Ectopic expression of miR-31-5p impairs KSHV lytic gene transcription and production of lytic viral proteins, culminating in dramatic reduction of infectious virion production during KSHV reactivation. miR-31-5p overexpression also markedly reduces the expression of critical viral early genes, including the master regulator of the latent-lytic switch, KSHV replication and transcription activator (RTA) protein. Through mechanistic studies, we demonstrate that miR-31-5p represses KSHV lytic reactivation by directly targeting the KH domain protein KHDRBS3, an RNA-binding protein known to regulate RNA processing including alternative splicing. Our study highlights KHDRBS3 as an essential proviral host factor that is key to the successful completion of KSHV lytic replication and suggests its novel function in viral lytic gene transcription during KSHV reactivation. Taken together, these findings reveal a previously unrecognized role for the miR-31-5p/KHDRBS3 axis in regulating the KSHV latency-lytic replication switch and provide insights into gene expression regulation of lytic KSHV, which may be leveraged for lytic cycle-targeted therapeutic strategies against KSHV-associated malignancies.
Collapse
|
2
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
3
|
Lupi L, Bordin A, Sales G, Colaianni D, Vitiello A, Biscontin A, Reale A, Garzino-Demo A, Antonini A, Ottaviano G, Mucignat C, Parolin C, Calistri A, De Pittà C. Persistent and transient olfactory deficits in COVID-19 are associated to inflammation and zinc homeostasis. Front Immunol 2023; 14:1148595. [PMID: 37520523 PMCID: PMC10380959 DOI: 10.3389/fimmu.2023.1148595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorenzo Lupi
- Department of Biology, University of Padova, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bordin
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Padova, Italy
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giancarlo Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
4
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Jayathilaka EHTT, Edirisinghe SL, Oh C, Nikapitiya C, De Zoysa M. Exosomes from bacteria (Streptococcus parauberis) challenged olive flounder (Paralichthys olivaceus): Isolation, molecular characterization, wound healing, and regeneration activities. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108777. [PMID: 37105423 DOI: 10.1016/j.fsi.2023.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Exosomes are a group of extracellular vesicles carrying membrane proteins, lipids, RNAs, and, cytosolic proteins, which play key role in intercellular communication and homeostasis. This study describes the isolation, physicochemical, morphological and molecular characterization, toxicity, wound healing, and regeneration properties of plasma derived exosomes from naive (phosphate-buffered saline [PBS]-injected; PBS-Exo) and Streptococcus parauberis-challenged (Sp-Exo) olive flounder (Paralichthys olivaceus). The average diameters of PBS-Exo and Sp-Exo were 120.5 ± 6.1 and 113.1 ± 9.3 nm, respectively, and they presented unique cup shape morphologies. Both exosomes exhibited classical tetraspanin surface markers (CD81, CD9, and CD63) and were enriched with acetylcholinesterase. High-throughput miRNA profiling revealed differentially expressed miRNAs (log2 fold change ≥1; P < 0.05), including 14 known and 22 novel miRNAs, in Sp-Exo. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the target genes of the miRNAs contribute towards various physiological and immunological functions, including wound healing and fin regeneration. Sp-Exo exhibited a rapid wound healing (cell migration) capacity in human fibroblast cells, and its mRNA and protein expression patterns corroborated its activity. Higher larval fin regeneration was more prevalent in Sp-Exo than in PBS-Exo, which further confirmed its functional significance. Our study provides the first basic physiochemical, morphometric, molecular (miRNA profiling), and wound healing evidences of Sp-Exo in olive flounder and highlights important miRNA cargoes in exosomes that may be potential therapeutic candidates in wound healing.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - S L Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Gujwa-eup, Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Malekshahi A, Alamdary A, Safarzadeh A, Khavandegar A, Nikoo HR, Safavi M, Ajorloo M, Bahavar A, Ajorloo M. Potential roles of core and core+1 proteins during the chronic phase of hepatitis C virus infection. Future Virol 2023. [DOI: 10.2217/fvl-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The HCV Core protein is a multifunctional protein that interacts with many viral and cellular proteins. In addition to the encapsidation of the viral genome, it can disturb various cellular pathways and impede antiviral cellular responses such as interferon (IFN) production. The Core protein can also disrupt the functions of immune cells against HCV. The Core protein helps viral infection persistency by interfering with apoptosis. The Core+1 protein plays a significant role in inducing chronic HCV infection through diverse mechanisms. We review some of the mechanisms by which Core and Core+1 proteins facilitate HCV infection to chronic infection. These proteins could be considered for designing more sufficient treatments and effective vaccines against HCV.
Collapse
Affiliation(s)
- Asra Malekshahi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashkan Alamdary
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Safarzadeh
- Department of Biology, University of Padova, Padova, Italy
| | - Armin Khavandegar
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahshid Safavi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mobina Ajorloo
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Bahavar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Ajorloo
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
8
|
Teo A, Tan HD, Loy T, Chia PY, Chua CLL. Understanding antibody-dependent enhancement in dengue: Are afucosylated IgG1s a concern? PLoS Pathog 2023; 19:e1011223. [PMID: 36996026 PMCID: PMC10062565 DOI: 10.1371/journal.ppat.1011223] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Hao Dong Tan
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Thomas Loy
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Liu D, Tang Z, Bajinka O, Dai P, Wu G, Qin L, Tan Y. miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. BIOLOGY 2023; 12:biology12020317. [PMID: 36829591 PMCID: PMC9953223 DOI: 10.3390/biology12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Background: RSV is closely correlated with post-infection airway hyperresponsive diseases (AHD), but the mechanism remains unclear. Objective: Due to the pivotal role of miRNAs in AHD, we analyzed the differentially expressed miRNAs (DEmiRs) in RSV-infected patients, asthma patients, and COPD patients from public datasets and explored the mechanisms of association between RSV and AHD. Methods: We obtained miRNA and mRNA databases of patients with RSV infection, as well as miRNA databases of asthma and COPD patients from the GEO database. Through integrated analysis, we screened DEmiRs and DEGs. Further analysis was carried out to obtain the hub genes through the analysis of biological pathways and enrichment pathways of DEGs targeted by DEmiRs and the construction of a protein-protein interaction (PPI) network. Results: The five differential molecules (miR-34b/c-5p, Cd14, Cxcl10, and Rhoh) were verified through in vivo experiments that had the same expression trend in the acute and chronic phases of RSV infection. Following infection of BEAS-2B cells with RSV, we confirmed that RSV infection down-regulated miR-34b/c-5p, and up-regulated the expression levels of CXCL10 and CD14. Furthermore, the results of the dual-luciferase reporter assay showed that CXCL10 was the target of hsa-miR-34c-5p. Conclusions: miR-34b/c-5p/CXCL10 axis mediates a mechanism of AHD.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Ousman Bajinka
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Pei Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| |
Collapse
|
10
|
Conflitti AC, Cicolani G, Buonacquisto A, Pallotti F, Faja F, Bianchini S, Blaconà G, Bruno SM, Linari A, Lucarelli M, Montanino D, Muzii L, Lenzi A, Lombardo F, Paoli D. Sperm DNA Fragmentation and Sperm-Borne miRNAs: Molecular Biomarkers of Embryo Development? Int J Mol Sci 2023; 24:ijms24021007. [PMID: 36674527 PMCID: PMC9864861 DOI: 10.3390/ijms24021007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of morpho-functional sperm characteristics alone is not enough to explain infertility or to predict the outcome of Assisted Reproductive Technologies (ART): more sensitive diagnostic tools are needed in clinical practice. The aim of the present study was to analyze Sperm DNA Fragmentation (SDF) and sperm-borne miR-34c-5p and miR-449b-5p levels in men of couples undergoing ART, in order to investigate any correlations with fertilization rate, embryo quality and development. Male partners (n = 106) were recruited. Semen analysis, SDF evaluation and molecular profiling analysis of miR-34c-5p and miR-449b-5p (in 38 subjects) were performed. Sperm DNA Fragmentation evaluation- a positive correlation between SDF post sperm selection and the percentage of low-quality embryos and a negative correlation with viable embryo were found. SDF > 2.9% increased the risk of obtaining a non-viable embryo by almost 4-fold. Sperm miRNAs profile—we found an association with both miRNAs and sperm concentration, while miR-449b-5p is positively associated with SDF. Moreover, the two miRNAs are positively correlated. Higher levels of miR-34c-5p compared to miR-449b-5p increases by 14-fold the probability of obtaining viable embryos. This study shows that SDF, sperm miR-34c-5p, and miR-449b-5p have a promising role as biomarkers of semen quality and ART outcome.
Collapse
Affiliation(s)
- Anna Chiara Conflitti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Gaia Cicolani
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandra Buonacquisto
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Pallotti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Fabiana Faja
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Antonella Linari
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, 00161 Rome, Italy
| | - Diletta Montanino
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Ludovico Muzii
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Lombardo
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Liang Z, Yang Y, Sun X, Du J, Wang Q, Zhang G, Zhang J, Yin X, Singh D, Su P, Zhang X. Integrated Analysis of MicroRNA and mRNA Expression Profiles in the Fat Bodies of MbMNPV-Infected Helicoverpa armigera. Viruses 2022; 15:19. [PMID: 36680059 PMCID: PMC9861407 DOI: 10.3390/v15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), are a novel class of gene expression regulators, that have been found to participate in regulating host-virus interactions. However, the function of insect-derived miRNAs in response to virus infection is poorly understood. We analyzed miRNA expression profiles in the fat bodies of Helicoverpa armigera (H. armigera) infected with Mamestra brassicae multiple nucleopolyhedroviruses (MbMNPV). A total of 52 differentially expressed miRNAs (DEmiRNAs) were filtered out through RNA-seq analysis. The targets of 52 DEmiRNAs were predicted and 100 miRNA-mRNA interaction pairs were obtained. The predicted targets of DEmiRNAs were mainly enriched in the Wnt signaling pathway, phagosome, and mTOR signaling pathway, which are related to the virus infection. Real-time PCR was used to verify the RNA sequencing results. ame-miR-317-3p, mse-miR-34, novel1-star, and sfr-miR-6094-5p were shown to be involved in the host response to MbMNPV infection. Results suggest that sfr-miR-6094-5p can negatively regulate the expression of four host genes eIF3-S7, CG7583, CG16901, and btf314, and inhibited MbMNPV infection significantly. Further studies showed that RNAi-mediated knockdown of eIF3-S7 inhibited the MbMNPV infection. These findings suggest that sfr-miR-6094-5p inhibits MbMNPV infection by negatively regulating the expression of eIF3-S7. This study provides new insights into MbMNPV and H. armigera interaction mechanisms.
Collapse
Affiliation(s)
- Zhenpu Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanqing Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyan Sun
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Junyang Du
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuyun Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiran Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Deepali Singh
- School of Biotechnology, Gautam, Buddha University, Greater Noida 201312, India
| | - Ping Su
- Institute of Agricultural Sciences of the 14th Division of Xinjiang Production and Construction Corps, Kunyu 848116, China
| | - Xiaoxia Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Bai X, Zhang H, Li Z, Chen O, He H, Jia X, Zou L. Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway. Nutr Metab Cardiovasc Dis 2022; 32:2424-2438. [PMID: 36096977 DOI: 10.1016/j.numecd.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model. CONCLUSION Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xuetao Bai
- Department of Anaesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Hao Zhang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Zhiguo Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Ou Chen
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Hengpeng He
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Xiukun Jia
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Lijuan Zou
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China.
| |
Collapse
|
13
|
Domingo‐Rodriguez L, Cabana‐Domínguez J, Fernàndez‐Castillo N, Cormand B, Martín‐García E, Maldonado R. Differential expression of miR-1249-3p and miR-34b-5p between vulnerable and resilient phenotypes of cocaine addiction. Addict Biol 2022; 27:e13201. [PMID: 36001423 PMCID: PMC9286869 DOI: 10.1111/adb.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Cocaine addiction is a complex brain disorder involving long-term alterations that lead to loss of control over drug seeking. The transition from recreational use to pathological consumption is different in each individual, depending on the interaction between environmental and genetic factors. Epigenetic mechanisms are ideal candidates to study psychiatric disorders triggered by these interactions, maintaining persistent malfunctions in specific brain regions. Here we aim to study brain-region-specific epigenetic signatures following exposure to cocaine in a mouse model of addiction to this drug. Extreme subpopulations of vulnerable and resilient phenotypes were selected to identify miRNA signatures for differential vulnerability to cocaine addiction. We used an operant model of intravenous cocaine self-administration to evaluate addictive-like behaviour in rodents based on the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition criteria to diagnose substance use disorders. After cocaine self-administration, we performed miRNA profiling to compare two extreme subpopulations of mice classified as resilient and vulnerable to cocaine addiction. We found that mmu-miR-34b-5p was downregulated in the nucleus accumbens of vulnerable mice with high motivation for cocaine. On the other hand, mmu-miR-1249-3p was downregulated on vulnerable mice with high levels of motor disinhibition. The elucidation of the epigenetic profile related to vulnerability to cocaine addiction is expected to help find novel biomarkers that could facilitate the interventions to battle this devastating disorder.
Collapse
Affiliation(s)
- Laura Domingo‐Rodriguez
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Judit Cabana‐Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Noèlia Fernàndez‐Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Elena Martín‐García
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
14
|
S-Adenosylmethionine Inhibits Colorectal Cancer Cell Migration through Mirna-Mediated Targeting of Notch Signaling Pathway. Int J Mol Sci 2022; 23:ijms23147673. [PMID: 35887021 PMCID: PMC9320859 DOI: 10.3390/ijms23147673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.
Collapse
|
15
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
16
|
GWAS identifies candidate susceptibility loci and microRNA biomarkers for acute encephalopathy with biphasic seizures and late reduced diffusion. Sci Rep 2022; 12:1332. [PMID: 35079012 PMCID: PMC8789807 DOI: 10.1038/s41598-021-04576-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a severe encephalopathy preceded by viral infections with high fever. AESD is a multifactorial disease, however, few disease susceptibility genes have previously been identified. Here, we conducted a genome-wide association study (GWAS) and assessed functional variants in non-coding regions to study genetic susceptibility in AESD using 254 Japanese children with AESD and 799 adult healthy controls. We also performed a microRNA enrichment analysis using GWAS statistics to search for candidate biomarkers in AESD. The variant with the lowest p-value, rs1850440, was located in the intron of serine/threonine kinase 39 gene (STK39) on chromosome 2q24.3 (p = 2.44 × 10-7, odds ratio = 1.71). The minor allele T of rs1850440 correlated with the stronger expression of STK39 in peripheral blood. This variant possessed enhancer histone modification marks in STK39, the encoded protein of which activates the p38 mitogen-activated protein kinase (MAPK) pathway. In the replication study, the odds ratios of three SNPs, including rs1850440, showed the same direction of association with that in the discovery stage GWAS. One of the candidate microRNAs identified by the microRNA enrichment analysis was associated with inflammatory responses regulated by the MAPK pathway. This study identified STK39 as a novel susceptibility locus of AESD, found microRNAs as potential biomarkers, and implicated immune responses and the MAPK cascade in its pathogenesis.
Collapse
|
17
|
Silveira MLC, Tamashiro E, Santos ARD, Martins RB, Faria FM, Silva LECM, Torrieri R, de C Ruy P, Silva WA, Arruda E, Anselmo-Lima WT, Valera FCP. miRNA-205-5p can be related to T2-polarity in Chronic Rhinosinusitis with Nasal Polyps. Rhinology 2021; 59:567-576. [PMID: 34608897 DOI: 10.4193/rhin21.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND microRNAs (miRNAs) are directly associated with inflammatory response, but their direct role in CRSwNP (chronic rhinosinusitis with nasal polyps) remains evasive. This study aimed to compare the expression of several miRNAs in tissue samples obtained from patients with CRSwNP and controls and to evaluate if miRNAs correlate to a specific inflammatory pattern (T1, T2, T17, and Treg) or intensity of symptoms in CRSwNP. METHODS nasal polyps (from patients with CRSwNP - n=36) and middle turbinate mucosa (from control patients - n=41) were collected. Microarray determined human mature miRNA expression, and the results obtained were validated by qPCR. miRNAs that were differentially expressed were then correlated to cytokine proteins (by Luminex), tissue eosinophilia, and SNOT-22. RESULTS After microarray and qPCR analyses, six microRNAs were up-regulated in CRSwNP samples when compared with controls: miR-205-5p, miR-221-3p, miR-222-3p, miR-378a-3p, miR-449a and miR-449b-5p. All these miRNAs are directly implicated with cell cycle regulation and apoptosis, and to a minor extent, with inflammation. Importantly, miR-205-5p showed a significantly positive correlation with IL-5 concentration and eosinophil count at the tissue and with the worst SNOT-22 score. CONCLUSIONS miRNA 205-5p was increased in CRSwNP compared to controls, and it was especially expressed in CRSwNP patients with higher T2 inflammation (measured by both IL-5 levels and local eosinophilia) and worst clinical presentation. This miRNA may be an interesting target to be explored in patients with CRSwNP.
Collapse
Affiliation(s)
- M L C Silveira
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - E Tamashiro
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - A R D Santos
- Genomics Medical Center, Clinics Hospital at Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - R B Martins
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - F M Faria
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - L E C M Silva
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - R Torrieri
- Genomics Medical Center, Clinics Hospital at Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - P de C Ruy
- Genomics Medical Center, Clinics Hospital at Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - W A Silva
- Genomics Medical Center, Clinics Hospital at Ribeirao Preto Medical School, University of Sao Paulo, Brazil.,Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - E Arruda
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - W T Anselmo-Lima
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - F C P Valera
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| |
Collapse
|
18
|
Ma X, Yin B, Guo S, Umar T, Liu J, Wu Z, Zhou Q, Zahoor A, Deng G. Enhanced Expression of miR-34a Enhances Escherichia coli Lipopolysaccharide-Mediated Endometritis by Targeting LGR4 to Activate the NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1744754. [PMID: 34504639 PMCID: PMC8422159 DOI: 10.1155/2021/1744754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Persistent endometritis caused by bacterial infections has lethal effects on the reproductive performance of dairy cattle, which compromises animal welfare and delays or prevents pregnancy. The microRNA (miRNA) miR-34 family plays a pivotal role in the inflammatory process; however, the precise mechanism of miR-34a in endometritis has not been thoroughly elucidated to date. METHODS In this study, the endometrium of cows diagnosed with endometritis was harvested for bacterial culture and Gram staining to evaluate bacterial contamination of the uterus. Based on this, a bovine endometrial epithelial cell (BEND) inflammation model and a mouse model stimulated with lipopolysaccharide (LPS) in vitro and in vivo were constructed. Cell viability was assessed by CCK-8, trypan blue staining, and flow cytometry. H&E was applied to histopathological analysis. Immunohistochemical, immunofluorescence, qRT-PCR, and western blot assays were performed to measure the mRNA and protein expression of relevant genes. Online databases, plasmid construction, and dual-luciferase reporter gene assays were used to predict and validate the interaction between miR-34a and its target gene LGR4. Finally, mice were injected vaginally with a local antagomir to validate the role of miR-34a in murine uterine inflammation. RESULTS In this study, we observed that Gram-negative bacteria, represented by Escherichia coli, are the predominant pathogenic agents responsible for the recurrent occurrence of endometritis in dairy cows. Further, miR-34a was found to repress the expression of LGR4 by targeting the 3' untranslated region (3'UTR) of LGR4. miR-34a was upregulated in bovine uterine tissues and bovine endometrial epithelial cells stimulated with LPS. miR-34a induced the release of the proinflammatory cytokines IL-1β, IL-6, and TNF-α by activating the phosphorylation of NF-κB p65. Furthermore, IL-1β upregulated miR-34a transcription and downregulated LGR4 expression in an IL-1β-dependent manner. CONCLUSIONS Taken together, our study confirmed that miR-34a is regulated by IL-1β and suppresses the level of the LGR4 3'UTR, which in turn exacerbates the inflammatory response. Thus, the knockdown of miR-34a might be a new direction for the treatment of endometritis.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science, Tarim University, Alar, Xinjiang, China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Sciences, The University of Agriculture Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Ji G, Zhou W, Li X, Du J, Li X, Hao H. Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the microRNA-34a/449a cluster. Mol Med Rep 2021; 23:187. [PMID: 33398374 PMCID: PMC7809902 DOI: 10.3892/mmr.2021.11826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) has a significant burden on healthcare systems worldwide, and is associated with high morbidity and mortality rates in patients. In 2020, the estimated new cases of colon cancer in the United States are 78,300 in men and 69,650 in women. Thus, developing effective and novel alternative agents and adjuvants with reduced side effects is important to reduce the lethality of the disease and improve the quality of life of patients. Melatonin, a pineal hormone that possesses numerous physiological functions, including anti-inflammatory and antitumor activities, can be found in various tissues, including the gastrointestinal tract. Melatonin exerts anticarcinogenic effects via various mechanisms; however, the identified underlying molecular mechanisms do not explain the full breadth of anti-CRC effects mediated by melatonin. MicroRNAs (miRs) serve critical roles in tumorigenesis, however, whether melatonin can inhibit CRC by regulating miRs is not completely understood. In the present study, the roles and mechanism underlying melatonin in CRC were investigated. The proliferation of human CRC cells was tested by CCK8, EDU and colony formation assay. The apoptosis of cancer cells was detected by flow cytometry and western blotting. A xenograft mouse model was constructed and the proliferation and apoptosis of tumor tissue was detected by Ki-67 and TUNEL staining assay respectively. Reverse transcription-quantitative PCR and western blotting were performed to measure the regulation of miRs on mRNA, and the dual-luciferase report analysis experiment was used to verify the direct target genes of miRs. Compared with the control group, melatonin inhibited viability and proliferation, and induced apoptosis in CRC cells. Additionally, the effect of melatonin in a xenograft mouse model was assessed. Compared with the control group, melatonin significantly enhanced the expression levels of the miR-34a/449a cluster, reduced CRC cell proliferation and viability, and increased CRC cell apoptosis. Finally, the dual-luciferase reporter assay indicated that Bcl-2 and Notch1 were the target mRNAs of the miR-34a/449a cluster. To the best of our knowledge, the present study was the first to suggest that melatonin inhibited proliferation and viability, and promoted apoptosis in CRC cells via upregulating the expression of the miR-34a/449a cluster in vitro and in vivo. Therefore, melatonin may serve as a potential therapeutic for CRC.
Collapse
Affiliation(s)
- Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xian Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinyue Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongbo Hao
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Wu T, Xie D, Zhao X, Xu M, Luo L, Deng D, Chen M. Enhanced Expression of miR-34c in Peripheral Plasma Associated with Diabetic Foot Ulcer in Type 2 Diabetes Patients. Diabetes Metab Syndr Obes 2021; 14:4263-4273. [PMID: 34703259 PMCID: PMC8526515 DOI: 10.2147/dmso.s326066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 04/20/2023] Open
Abstract
OBJECTIVE To explore the correlation between the expression of miR-34c in peripheral blood of patients with type 2 diabetes mellitus (T2DM) and the onset of diabetic foot ulcer (DFU) and diabetic foot osteomyelitis (DFO). METHODS Sixty newly diagnosed patients with T2DM without DFU (T2DM group), 112 T2DM patients with DFU (DFU group) and 60 controls with normal glucose tolerance (NC group). The DFU group patients were subdivided into DFO (n=64) and NDFO (n=48) groups. Quantitative real-time PCR (qRT-PCR) method was used to determine miR-34c expression levels in the peripheral blood of subjects to analyze the clinical characteristics of DFU and DFO risk factors. RESULTS MiR-34c expression level in the T2DM group was marked higher than the NC group [2.99 (1.45-6.22) vs 1.01 (0.89-1.52)] (P < 0.05). However, the expression level of miR-34c in the DFU group was significantly higher than the T2DM group [9.65 (6.15-18.63) vs 2.99 (1.45-6.22)] (P < 0.01). Compared with the NDFO group, the expression level of miR-34c in the DFO group was also obviously increased [13.46 (8.89-19.11) vs 6.02 (5.93-14.72)] (P < 0.01). The expression level of miR-34c in DFU patients was positively correlated with the amputation rate of foot ulcers (P=0.030) and was negatively correlated with the healing rate of foot ulcers after eight weeks (P=0.025). Multifactorial logistic regression analysis showed that increased expression of miR-34c was an independent risk factor for DFU and DFO (ORDFU=3.47, ORDFO=4.25, P < 0.01). Meanwhile, the ROC curve analysis indicated that the AUC of miR-34c for the diagnosis of DFU and DFO was 0.803 and 0.904, the optimum sensitivity being was 100% and 98.7%, the optimum specificity was 98.4% and 98.4%, respectively. CONCLUSION The increased expression of miR-34c in peripheral blood of T2DM patients is closely related to the occurrence, development and prognosis of DFU and DFO.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Dandan Xie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- Correspondence: Mingwei Chen Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230032, People’s Republic of China Email
| |
Collapse
|
22
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
23
|
Fu M, Tao J, Wang D, Zhang Z, Wang X, Ji Y, Li Z. Downregulation of MicroRNA-34c-5p facilitated neuroinflammation in drug-resistant epilepsy. Brain Res 2020; 1749:147130. [DOI: 10.1016/j.brainres.2020.147130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
|
24
|
Du X, Yang Y, Xiao G, Yang M, Yuan L, Qin L, He R, Wang L, Wu M, Wu S, Feng J, Xiang Y, Qu X, Liu H, Qin X, Liu C. Respiratory syncytial virus infection-induced mucus secretion by down-regulation of miR-34b/c-5p expression in airway epithelial cells. J Cell Mol Med 2020; 24:12694-12705. [PMID: 32939938 PMCID: PMC7687004 DOI: 10.1111/jcmm.15845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Severe RSV infection is the main cause of hospitalization to children under the age of five. The regulation of miRNAs on the severity of RSV infection is unclear. The aim of the study was to identify the critical differential expression miRNAs (DE miRNAs) that can regulate the pathological response in RSV‐infected airway epithelial cells. In this study, miRNA and mRNA chips of RSV‐infected airway epithelia from Gene Expression Omnibus (GEO) were screened and analysed, separately. DE miRNAs‐targeted genes were performed for further pathway and process enrichment analysis. DE miRNA‐targeted gene functional network was constructed on the basis of miRNA‐mRNA interaction. The screened critical miRNA was also investigated by bioinformatics analysis. Then, RSV‐infected human bronchial epithelial cells (HBECs) were constructed to verify the expression of the DE miRNAs. Finally, specific synthetic DE miRNAs mimics were used to confirm the effect of DE miRNAs on the RSV‐infected HBECs. 45 DE miRNAs were identified from GEO62306 dataset. Our results showed that hsa‐mir‐34b‐5p and hsa‐mir‐34c‐5p decreased significantly in HBECs after RSV infection. Consistent with the biometric analysis, hsa‐mir‐34b/c‐5p is involved in the regulation of mucin expression gene MUC5AC. In RSV‐infected HBECs, the inducement of MUC5AC production by decreased hsa‐mir‐34b/c‐5p was partly mediated through activation of c‐Jun. These findings provide new insights into the mechanism of mucus obstruction after RSV infection and represent valuable targets for RSV infection and airway obstruction treatment.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yu Yang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia.,School of Basic Medical Sciences & Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Ruoxi He
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Mengping Wu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYan Wu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yang Xiang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
25
|
Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer 2020; 11:1801-1816. [PMID: 32374522 PMCID: PMC7327697 DOI: 10.1111/1759-7714.13450] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the leading cause of cancer-related death in women worldwide. Pre- and postoperative radiotherapy play a pivotal role in BRCA treatment but its efficacy remains limited and plagued by the emergence of radiation resistance, which aggravates patient prognosis. The long noncoding RNA (lncRNA)-implicated mechanisms underlying radiation resistance are rarely reported. The aim of this study was to determine whether lncRNA HOX transcript antisense RNA (HOTAIR) modulated the radiosensitivity of breast cancer through HSPA1A. METHODS A Gammacell 40 Exactor was used for irradiation treatment. Bioinformatic tools and luciferase reporter assay were adopted to explore gene expression profile and demonstrate the interactions between lncRNA, miRNA and target mRNA 3'-untranslated region (3'-UTR). The expression levels of certain genes were determined by real-time PCR and western-blot analyses. in vitro and in vivo functional assays were conducted by cell viability and tumorigenicity assays. RESULTS The levels of oncogenic lncRNA HOTAIR were positively correlated with the malignancy of BRCA but reversely correlated with the radiosensitivity of breast cancer cells. Moreover, the expression levels of HOTAIR were positively associated with those of heat shock protein family A (Hsp70) member 1A (HSPA1A) in clinical BRCA tissues and HOTAIR upregulated HSPA1A at the mRNA and protein levels in irradiated BRCA cells. Mechanistically, miR-449b-5p restrained HSPA1A expression through targeting the 3'-UTR of HSPA1A mRNA, whereas HOTAIR acted as a competing sponge to sequester miR-449b-5p and thereby relieved the miR-449b-5p-mediated HSPA1A repression. Functionally, HOTAIR conferred decreased radiosensitivity on BRCA cells, while miR-449b-5p overexpression or HSPA1A knockdown abrogated the HOTAIR-enhanced BRCA growth under the irradiation exposure both in vitro and in vivo. CONCLUSIONS LncRNA HOTAIR facilitates the expression of HSPA1A by sequestering miR-449b-5p post-transcriptionally and thereby endows BRCA with radiation resistance. KEY POINTS Therapeutically, HOTAIR and HSPA1A may be employed as potential targets for BRCA radiotherapy. Our findings shed new light into the mechanism by which lncRNAs modulate the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
26
|
Bissey PA, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu FF. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer 2020; 20:597. [PMID: 32586280 PMCID: PMC7318489 DOI: 10.1186/s12885-020-07081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of this signature, miR-34c, revealed its role in chemotherapy resistance. Methods Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well as the NPC cell line C666–1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured using the ATPlite assay. Results MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c over-expression sensitized NPC cells to cisplatin. TGFβ1 decreased miR-34c and increased SOX4 expression in vitro. The TGFβ receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC patients. Conclusion miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression, which leads to cisplatin resistance, while TGFβ1 was found to repress miR-34c expression. Taken together, our study demonstrates that inhibition of the TGFβ1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Valentin Petit
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Sai W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Shang R, Baek SC, Kim K, Kim B, Kim VN, Lai EC. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci. Mol Cell 2020; 78:303-316.e4. [PMID: 32302542 PMCID: PMC7546447 DOI: 10.1016/j.molcel.2020.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/26/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Nuclear processing of most miRNAs is mediated by Microprocessor, comprised of RNase III enzyme Drosha and its cofactor DGCR8. Here, we uncover a hidden layer of Microprocessor regulation via studies of Dicer-independent mir-451, which is clustered with canonical mir-144. Although mir-451 is fully dependent on Drosha/DGCR8, its short stem and small terminal loop render it an intrinsically weak Microprocessor substrate. Thus, it must reside within a cluster for normal biogenesis, although the identity and orientation of its neighbor are flexible. We use DGCR8 tethering assays and operon structure-function assays to demonstrate that local recruitment and transfer of Microprocessor enhances suboptimal substrate processing. This principle applies more broadly since genomic analysis indicates suboptimal canonical miRNAs are enriched in operons, and we validate several of these experimentally. Proximity-based enhancement of suboptimal hairpin processing provides a rationale for genomic retention of certain miRNA operons and may explain preferential evolutionary emergence of miRNA operons.
Collapse
Affiliation(s)
- Renfu Shang
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| | - S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Boseon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
29
|
Zhu Y, Qian X, Li J, Lin X, Luo J, Huang J, Jin Z. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4172-4181. [PMID: 31713440 DOI: 10.1080/21691401.2019.1687492] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is an important cardiac disorder in patients with diabetes. High glucose (HG) levels lead to inflammation of cardiomyocytes, oxidative stress, and long-term activation of autophagy, resulting in myocardial fibrosis and remodelling. Astragaloside-IV (AS-IV) has a wide range of pharmacological effects. This study aimed to investigate the effects of AS-IV on injury induced by HG in rat cardiomyocytes (H9C2(2-1)) and the involvement of the miR-34a-mediated autophagy pathway. An AS-IV concentration of 100 μM was selected based on H9C2(2-1) cell viability using the cell counting kit-8 (CCK-8). We found that 33 mM HG induced a morphologic change in cells and caused excessive oxidative stress, whereas AS-IV inhibited lipid peroxidation and increased superoxide dismutase activity. In terms of mRNA expression, HG increased miR-34a and inhibited Bcl2 and Sirt1, whereas AS-IV and miR-34a-inhibitor reversed the above effects. Further, LC3-GFP adenovirus infection and western blotting showed that HG increased autophagy, which was reversed synergistically by AS-IV and miR-34a-inhibitor. Bcl2 and pAKT/AKT protein expressions in the HG group was significantly lower than that in controls, but AS-IV and miR-34a-inhibitor antagonized the process. Thus, AS-IV inhibits HG-induced oxidative stress and autophagy and protects cardiomyocytes from injury via the miR-34a/Bcl2/(LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways.
Collapse
Affiliation(s)
- Yaobin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Xin Qian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jingjing Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Xing Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jiewei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Jianbin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Zhao Jin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
30
|
Zhang S, Yin H, Shen M, Huang H, Hou Q, Zhang Z, Zhao W, Guo X, Wu P. Analysis of lncRNA-mediated gene regulatory network of Bombyx mori in response to BmNPV infection. J Invertebr Pathol 2020; 170:107323. [DOI: 10.1016/j.jip.2020.107323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
|
31
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
32
|
|
33
|
Kamity R, Sharma S, Hanna N. MicroRNA-Mediated Control of Inflammation and Tolerance in Pregnancy. Front Immunol 2019; 10:718. [PMID: 31024550 PMCID: PMC6460512 DOI: 10.3389/fimmu.2019.00718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
Gestational age-dependent immune intolerance at the maternal-fetal interface might be a contributing factor to placental pathology and adverse pregnancy outcomes. Although the intrauterine setting is highly choreographed and considered to be a protective environment for the fetus, unscheduled inflammation might overwhelm the intrauterine milieu to cause a cascade of events leading to adverse pregnancy outcomes. The old paradigm of a sterile intrauterine microenvironment has been challenged, and altered microflora has been detected in gestational tissues and amniotic fluid in the absence of induction of significant inflammation. Is there a role for endotoxin tolerance at the maternal-fetal interface? Endotoxin tolerance is a phenomenon in which tissues or cells exposed to the bacterial product, particularly lipopolysaccharide, become less responsive to subsequent exposures accompanied by decreased expression of pro-inflammatory mediators. This could also be related to trained or experienced immunity that leads to the successful outcome of subsequent pregnancies. Adaptation to endotoxin tolerance or trained immunity might be critical in preventing rejection of the fetus by the maternal immune system and protecting the fetus from excessive maternal inflammatory responses to infectious agents; however, to date, the exact mechanisms contributing to the establishment and maintenance of tolerance at the maternal-fetal interface remain incompletely understood. There is now extensive evidence suggesting that microRNAs (miRNAs) play important roles in the maintenance of a healthy pregnancy. miRNAs not only circulate freely in extracellular fluids but are also packaged within extracellular vesicles (EVs) produced by various cells and tissues. The placenta is a known, abundant, and transient source of EVs; therefore, our proposed model suggests that repeated exposure to infectious agents induces a tolerant phenotype at the maternal-fetal interface mediated by specific miRNAs mostly contained within placental EVs. We hypothesize that impaired endotoxin tolerance or failed trained immunity at the maternal-fetal interface will result in a pathological inflammatory response contributing to early or late pregnancy maladies.
Collapse
Affiliation(s)
- Ranjith Kamity
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Nazeeh Hanna
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| |
Collapse
|