1
|
Yip AJW, Lee YZ, Kow ASF, Wong CSA, Lee MT, Tham CL, Tan JW. Current utilization trend of immortalized mast cell lines in allergy research: a systematic review. Immunol Res 2025; 73:41. [PMID: 39838115 PMCID: PMC11750950 DOI: 10.1007/s12026-024-09562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/07/2024] [Indexed: 01/23/2025]
Abstract
Today, in the modern world, allergic diseases, also described as atopic allergies, are classified as a type of multifactorial disorder due to the complex interplay between genetics, environment, and socioeconomic factors that influence the disease's manifestation, severity, and one's predisposition to allergic diseases. It is undeniable that many reported studies have pointed out that the mast cell is one of the leading key players involved in triggering an allergic reaction. To improve our understanding of the molecular and cellular mechanisms underlying allergy, various mast cell lines have been employed in vitro to study the pathogenesis of allergic diseases for the past decades. However, there is no consensus on many fundamental aspects associated with their use, such as the effects of culture media composition and the type of inducer used for cell degranulation. As the standardization of research protocols and disease models is crucial, we present the outcome of a systematic review of scientific articles using three major immortalized in vitro mast cell lines (HMC-1, LAD2, and RBL-2H3) to study allergy. This systematic review described the cell source, culture conditions, inducers used for degranulation, and mediators released for examination. We hope that the present systematic review may help to standardize the use of immortalized in vitro mast cell lines in allergy research and serve as a user's guide to understand the fundamental aspects of allergy as well to develop an effective allergy therapy in the future for the betterment of human good health and wellbeing.
Collapse
Affiliation(s)
- Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Audrey Siew Foong Kow
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Carisa Su-Ann Wong
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Ji L, Shi Q, Chen C, Liu X, Zhu J, Hong X, Wei C, Zhu X, Li W. Biochemical, Histological, and Multi-Omics Analyses Reveal the Molecular and Metabolic Mechanisms of Cold Stress Response in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). BIOLOGY 2025; 14:55. [PMID: 39857286 PMCID: PMC11760877 DOI: 10.3390/biology14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis), a type of warm-water reptile, is frequently chosen as the model animal to understand how organisms respond to environmental stressors. However, the responsive mechanism of P. sinensis to natural cold stress is unclear, especially in terms of metabolic pattern and molecular pathways. Herein, plasma biochemical, hepatic morphological, apoptotic, transcriptomic, and metabolomic detection methods were performed to investigate the response of P. sinensis to acute cold stress. A consistent increase in plasma AST and ALT activities with a decline in ALP activity was found following 14 °C and 7 °C cold stress compared with the control group. Plasma GLU, TG, CHO, and HDL contents, reflecting energy metabolism, were decreased to lower levels from 2 to 16 days post cold stress (dps). Histological and TUNEL detection in the liver demonstrated that the 14 °C and 7 °C cold stress caused severe morphological damage and cell apoptosis in a time-dependent manner. DEGs in the biosynthesis of fatty acids (Acsbg2, Acsl3, Acsl4, Acsl5, Mcat, and Acacb), as well as unsaturated fatty acids (Hsd17b12, Elovl7, Scd, and Baat), starch and sucrose metabolism (Pgm1, Pgm2, and Treh), and apoptosis (Ddit3, Gadd45a, Lmnb1, Tuba1c, Tnf, Tnfsf10, Fos, Itpr1, and Ctso) were discovered in the transcriptome under cold stress. The metabolomic data showed that metabolites, including chenodeoxycholic acid, oleoylethanolamide, uric acid, fructose 1,6-bisphosphate, CMP, and S-(Hydroxymethyl)-glutathione, were remarkably altered in the cold stress groups. Combined transcriptomic and metabolomic data revealed that pyrimidine metabolism, amino acid metabolism, and pyruvate metabolism were the most significant pathways regulated by the low-temperature exposure. Overall, this work suggests that 14 °C and 7 °C cold stress could induce obvious morphological damage and apoptosis in the liver at 4 dps. Moreover, energy metabolism and amino acid metabolism were the main signaling pathways in response to cold stress for P. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (L.J.)
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (L.J.)
| |
Collapse
|
3
|
Lee I, Lupfer CR. Lessons Learned From Clinical Trials of Immunotherapeutics for COVID-19. Immunol Rev 2025; 329:e13422. [PMID: 39548889 DOI: 10.1111/imr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus was arguably one of the worst public health disasters of the last 100 years. As many infectious disease experts were focused on influenza, MERS, ZIKA, or Ebola as potential pandemic-causing agents, SARS-CoV-2 appeared to come from nowhere and spread rapidly. As with any zoonotic agent, the initial pathogen was able to transmit to a new host (humans), but it was poorly adapted to the immune environment of the new host and resulted in a maladapted immune response. As the host-pathogen interaction evolved, subsequent variants of SARS-CoV-2 became less pathogenic and acquired immunity in the host provided protection, at least partial protection, to new variants. As the host-pathogen interaction has changed since the beginning of the pandemic, it is possible the clinical results discussed here may not be applicable today as they were at the start of the pandemic. With this caveat in mind, we present an overview of the immune response of severe COVID-19 from a clinical research perspective and examine clinical trials utilizing immunomodulating agents to further elucidate the importance of hyperinflammation as a factor contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Inyeong Lee
- R&D Department, QoolAbs, Carlsbad, California, USA
| | | |
Collapse
|
4
|
Malla S, Sajeevan KA, Acharya B, Chowdhury R, Saha R. Dissecting metabolic landscape of alveolar macrophage. Sci Rep 2024; 14:30383. [PMID: 39638830 PMCID: PMC11621776 DOI: 10.1038/s41598-024-81253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense against inhaled particulates and pathogens in the lungs. Depending on the signal, AM acquires either the classically activated M1 phenotype or the alternatively activated M2 phenotype. In this study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phases) by reconstructing context specific Genome-Scale Metabolic (GSM) models. Metabolic pathways such as pyruvate metabolism, arachidonic acid metabolism, chondroitin/heparan sulfate biosynthesis, and heparan sulfate degradation are found to be important driving forces in the development of the M1/M2 phenotypes. Additionally, we formulated a bilevel optimization framework named MetaShiftOptimizer to identify minimal modifications that shift one activated state (M1/M2) to the other. The identified reactions involve metabolites such as glycogenin, L-carnitine, 5-hydroperoxy eicosatetraenoic acid, and leukotriene B4, which show potential to be further investigated as significant factors for developing efficient therapy targets for severe respiratory disorders in the future. Overall, our study contributes to the understanding of the metabolic capabilities of the M1 and M2 phenotype of AM and identifies pathways and reactions that can be potential targets for polarization shift and also be used as therapeutic strategies against respiratory diseases.
Collapse
Affiliation(s)
- Sunayana Malla
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Bibek Acharya
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
5
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Zhao Z, Xu Z, Chang J, He L, Zhang Z, Song X, Hou X, Fan F, Jiang Z. Sodium pyruvate exerts protective effects against cigarette smoke extract-induced ferroptosis in alveolar and bronchial epithelial cells through the GPX4/Nrf2 axis. J Inflamm (Lond) 2023; 20:28. [PMID: 37605161 PMCID: PMC10441695 DOI: 10.1186/s12950-023-00347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Ferroptosis in alveolar and bronchial epithelial cells is one of the main mechanisms underlying the development of chronic obstructive pulmonary disease (COPD). Sodium pyruvate (NaPyr) is a natural antioxidant in the body, exhibiting anti-inflammatory and antioxidant activities. NaPyr has been used in a Phase II clinical trial as a novel therapy for COPD; however, the mechanism underlying NaPyr-mediated therapeutic benefits in COPD is not well understood. OBJECTIVE We aimed to assess the protective effects of NaPyr and elucidate its potential mechanism in cigarette smoke extract (CSE)-induced ferroptosis.To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, we expose a human bronchial epithelial cells to CSE. METHODS To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, the A549 (human lung carcinoma epithelial cells) and BEAS-2B (bronchial epithelial cells) cell lines were cultured, followed by treatment with CSE. To measure cellular viability and iron levels, we determined the levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), mitochondrial superoxide (MitoSOX), membrane potential (MMP), and inflammatory factors (tumor necrosis factor [TNF] and interleukin [IL]-8), and examined CSE-induced pulmonary inflammation and ferroptosis. To clarify the molecular mechanisms of NaPyr in COPD therapy, we performed western blotting and real-time PCR (qPCR) to determine the expression of glutathione peroxidase 4 (GPX4), nuclear factor E2-related factor 2 (Nrf2), and cyclooxygenase 2 (COX2). RESULTS We found that NaPyr effectively mitigated CSE-induced apoptosis and improved apoptosis induced by erastin, a ferroptosis inducer. NaPyr significantly decreased iron and MDA levels and increased GSH levels in CSE-induced cells. Furthermore, NaPyr suppressed ferroptosis characteristics, such as decreased levels of ROS, MitoSOX, and MMP. NaPyr significantly increases the expression levels of GPX4 and Nrf2, indicating that activation of the GPX4/Nrf2 axis could inhibit ferroptosis in alveolar and bronchial epithelial cells. More importantly, NaPyr inhibited the secretion of downstream inflammatory factors, including TNF and IL-8, by decreasing COX2 expression levels to suppress CSE-induced inflammation. CONCLUSION Accordingly, NaPyr could mitigate CSE-induced ferroptosis in alveolar and bronchial epithelial cells by activating the GPX4/Nrf2 axis and decreasing COX2 expression levels. In addition, NaPyr reduced the secretion of inflammatory factors (TNF and IL-8), affording a novel therapeutic candidate for COPD.
Collapse
Affiliation(s)
- Ziwen Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu, 0023, China
| | - Zhao Xu
- Jiangsu Changtai Pharmaceutical Co., Ltd, Taizhou, Jiangsu, 225300, China
| | - Jingwen Chang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, 233003, China
| | - Liwei He
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu, 0023, China
| | - Zijin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu, 0023, China
| | - Xiaoyu Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xianbang Hou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, 233003, China.
| | - Zhijun Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu, 0023, China.
- Jiangsu Changtai Pharmaceutical Co., Ltd, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
8
|
Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2023; 45:15-29. [PMID: 35659923 PMCID: PMC10006530 DOI: 10.1016/j.jare.2022.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are the most promising stem cells for the treatment of multiple inflammatory and immune diseases due to their easy acquisition and potent immuno-regulatory capacities. These immune functions mainly depend on the MSC secretion of soluble factors. Recent studies have shown that the metabolism of MSCs plays critical roles in immunomodulation, which not only provides energy and building blocks for macromolecule synthesis but is also involved in the signaling pathway regulation. AIM OF REVIEW A thorough understanding of metabolic regulation in MSC immunomodulatory properties can provide new sights to the enhancement of MSC-based therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC immune regulation can be affected by cellular metabolism (glucose, adenosine triphosphate, lipid and amino acid metabolism), which further mediates MSC therapy efficiency in inflammatory and immune diseases. The enhancement of glycolysis of MSCs, such as signaling molecule activation, inflammatory cytokines priming, or environmental control can promote MSC immune functions and therapeutic potential. Besides glucose metabolism, inflammatory stimuli also alter the lipid molecular profile of MSCs, but the direct link with immunomodulatory properties remains to be further explored. Arginine metabolism, glutamine-glutamate metabolism and tryptophan-kynurenine via indoleamine 2,3-dioxygenase (IDO) metabolism all contribute to the immune regulation of MSCs. In addition to the metabolism dictating the MSC immune functions, MSCs also influence the metabolism of immune cells and thus determine their behaviors. However, more direct evidence of the metabolism in MSC immune abilities as well as the underlying mechanism requires to be uncovered.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
9
|
Ora J, Calzetta L, Frugoni C, Puxeddu E, Rogliani P. Expert guidance on the management and challenges of long-COVID syndrome: a systematic review. Expert Opin Pharmacother 2023; 24:315-330. [PMID: 36542805 DOI: 10.1080/14656566.2022.2161365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Long-COVID is a condition characterized by the permanence of symptoms beyond 4 weeks after an initial infection. It affects 1 out of 5 people and is loosely related to the severity of acute infection and pathological mechanisms, which are yet to be understood. AREAS COVERED This article looks at currently available and under-studied therapies for long-COVID syndrome. It particularly gives focus to ongoing trials and reviews the underlying mechanisms. A comprehensive literature search was performed on PubMed and clincaltrial.gov of clinical trials concerning the management of long-COVID syndrome. EXPERT OPINION 'Long-COVID' syndrome is a new emergency characterized by several symptoms such as fatigue, dyspnea, cognitive and attention disorders, sleep disorders, post-traumatic stress disorder, muscle pain, and concentration problems. Despite the many guidelines available to date, there are no established treatments of long-COVID. Pharmacological research is studying known drugs that act on the reduction or modulation of systemic inflammation, or innovative drugs used in similar pathologies. Rehabilitation now seems to be the safest treatment to offer, whereas we will have to wait for the pharmacological research trials in progress as well as plan new trials based on a better understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Josuel Ora
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Chiara Frugoni
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ermanno Puxeddu
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
10
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Lee M, Kim MS, Jang SH, Kim H, Kim GS, Lee H, Park HM, Yang J. Cera-Glow, ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201, improves skin barrier function in clinical study. J Cosmet Dermatol 2023; 22:1879-1886. [PMID: 36718839 DOI: 10.1111/jocd.15642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ceramides are essential lipids in stratum corneum for skin permeability barrier function in that they retain the skin moisture and protect from the invasion of foreign pathogens. Previously, we demonstrated that ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201 enhanced ceramide production in human epidermal keratinocytes. Furthermore, for comprehensive knowledge of this effect, in vitro experiments and multi-omics analysis were conducted to explore the underlying mechanisms. AIMS This study was designed to identify whether a cosmetic sample (i.e., Cera-Glow) containing the lysates improves the skin barrier function in clinical trials. PATIENTS/METHODS Twenty-four female participants (45.46 ± 9.78 years) had been enrolled in the transepidermal water loss (TEWL) measurement for 5 days and 21 female participants (50.33 ± 5.74 years) had undergone a skin hydration evaluation for 4 weeks. TEWL and skin hydration were evaluated using a Tewameter and the Epsilon Permittivity Imaging System, respectively. After applying the Cera-Glow sample, all participants recorded a satisfaction survey questionnaire (e.g., satisfaction, efficacy, and adverse reactions). RESULTS Application of Cera-Glow significantly improved transepidermal water loss induced by 1% (w/v) sodium lauryl sulfate (p < 0.05-0.01) and increased skin hydration (p < 0.01). Metabolic analysis suggested that Cera-Glow should contain beneficial gradients for skin barrier function. According to the questionnaire, most of participants were satisfied with the skin hydration improvement and efficacy of Cera-Glow. CONCLUSIONS Cera-Glow, ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201, can significantly improve skin barrier function.
Collapse
Affiliation(s)
- Minjee Lee
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Myun Soo Kim
- Future Technology Research Center, ICBIO, Cheonan, Republic of Korea
| | - Sung Hee Jang
- Future Technology Research Center, ICBIO, Cheonan, Republic of Korea
| | - Hayoung Kim
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Gwang Seob Kim
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Hyerin Lee
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Hyun Min Park
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Jungwoo Yang
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| |
Collapse
|
12
|
Mei L, Zhang Z, Li X, Yang Y, Qi R. Metabolomics profiling in prediction of chemo-immunotherapy efficiency in advanced non-small cell lung cancer. Front Oncol 2023; 12:1025046. [PMID: 36733356 PMCID: PMC9887290 DOI: 10.3389/fonc.2022.1025046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background To explore potential metabolomics biomarker in predicting the efficiency of the chemo-immunotherapy in patients with advanced non-small cell lung cancer (NSCLC). Methods A total of 83 eligible patients were assigned to receive chemo-immunotherapy. Serum samples were prospectively collected before the treatment to perform metabolomics profiling analyses under the application of gas chromatography mass spectrometry (GC-MS). The key metabolites were identified using projection to latent structures discriminant analysis (PLS-DA). The key metabolites were used for predicting the chemo-immunotherapy efficiency in advanced NSCLC patients. Results Seven metabolites including pyruvate, threonine, alanine, urea, oxalate, elaidic acid and glutamate were identified as the key metabolites to the chemo-immunotherapy response. The receiver operating characteristic curves (AUC) were 0.79 (95% CI: 0.69-0.90), 0.60 (95% CI: 0.48-0.73), 0.69 (95% CI: 0.57-0.80), 0.63 (95% CI: 0.51-0.75), 0.60 (95% CI: 0.48-0.72), 0.56 (95% CI: 0.43-0.67), and 0.67 (95% CI: 0.55-0.80) for the key metabolites, respectively. A binary logistic regression was used to construct a combined biomarker model to improve the discriminating efficiency. The AUC was 0.86 (95% CI: 0.77-0.94) for the combined biomarker model. Pathway analyses showed that urea cycle, glucose-alanine cycle, glycine and serine metabolism, alanine metabolism, and glutamate metabolism were the key metabolic pathway to the chemo-immunotherapy response in patients with advanced NSCLC. Conclusion Metabolomics analyses of key metabolites and pathways revealed that GC-MS could be used to predict the efficiency of chemo-immunotherapy. Pyruvate, threonine, alanine, urea, oxalate, elaidic acid and glutamate played a central role in the metabolic of PD patients with advanced NSCLC.
Collapse
Affiliation(s)
- Lihong Mei
- Department of Dermatology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Department of Echocardiography, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xushuo Li
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ying Yang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China,*Correspondence: Ruixue Qi,
| |
Collapse
|
13
|
Ceperuelo-Mallafré V, Reverté L, Peraire J, Madeira A, Maymó-Masip E, López-Dupla M, Gutierrez-Valencia A, Ruiz-Mateos E, Buzón MJ, Jorba R, Vendrell J, Auguet T, Olona M, Vidal F, Rull A, Fernández-Veledo S. Circulating pyruvate is a potent prognostic marker for critical COVID-19 outcomes. Front Immunol 2022; 13:912579. [PMID: 36189213 PMCID: PMC9515795 DOI: 10.3389/fimmu.2022.912579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness. Methods We used a semi-targeted serum metabolomics approach in 273 patients with different severity grades of COVID-19 recruited at the acute phase of the infection to determine the relative abundance of tricarboxylic acid (Krebs) cycle-related metabolites with known extracellular signaling properties (pyruvate, lactate, succinate and α-ketoglutarate). Abundance levels of energy-related metabolites were evaluated in a validation cohort (n=398) using quantitative fluorimetric assays. Results Increased levels of four energy-related metabolites (pyruvate, lactate, a-ketoglutarate and succinate) were found in critically ill COVID-19 patients using semi-targeted and targeted approaches (p<0.05). The combined strategy proposed herein enabled us to establish that circulating pyruvate levels (p<0.001) together with body mass index (p=0.025), C-reactive protein (p=0.039), D-Dimer (p<0.001) and creatinine (p=0.043) levels, are independent predictors of critical COVID-19. Furthermore, classification and regression tree (CART) analysis provided a cut-off value of pyruvate in serum (24.54 µM; p<0.001) as an early criterion to accurately classify patients with critical outcomes. Conclusion Our findings support the link between COVID-19 pathogenesis and immunometabolic dysregulation, and show that fluorometric quantification of circulating pyruvate is a cost-effective clinical decision support tool to improve patient stratification and prognosis prediction.
Collapse
Affiliation(s)
- Victòria Ceperuelo-Mallafré
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metaboílicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Reverté
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Peraire
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Ana Madeira
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metaboílicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metaboílicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel López-Dupla
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Alicia Gutierrez-Valencia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Seville, Spain
| | - Maria José Buzón
- Infectious Diseases Department, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, (VHIR) Task Force COVID-19, Barcelona, Spain
| | - Rosa Jorba
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Joan Vendrell
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metaboílicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Teresa Auguet
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Montserrat Olona
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Francesc Vidal
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Anna Rull
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metaboílicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Jansen EB, Orvold SN, Swan CL, Yourkowski A, Thivierge BM, Francis ME, Ge A, Rioux M, Darbellay J, Howland JG, Kelvin AA. After the virus has cleared-Can preclinical models be employed for Long COVID research? PLoS Pathog 2022; 18:e1010741. [PMID: 36070309 PMCID: PMC9451097 DOI: 10.1371/journal.ppat.1010741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.
Collapse
Affiliation(s)
- Ethan B. Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Spencer N. Orvold
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany M. Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Intracellular pyruvate levels positively correlate with cytokine production capacity in tolerant monocytes from patients with pneumonia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166519. [PMID: 35964875 DOI: 10.1016/j.bbadis.2022.166519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1β and IL-10. RESULTS 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1β and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.
Collapse
|
16
|
Mitochondria play a key role in oxidative stress-induced pancreatic islet dysfunction after severe burns. J Trauma Acute Care Surg 2022; 92:1012-1019. [PMID: 34882597 DOI: 10.1097/ta.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe burns are often complicated with hyperglycemia in part caused by pancreatic islet dysfunction. Previous studies have revealed that in diabetes mellitus, the pancreatic islet dysfunction is partly attributed to oxidative stress. However, the role and mechanism of oxidative stress in hyperglycemia after severe burns remain unclear. Therefore, the purpose of this study was to explore the level and mechanism of oxidative stress in pancreatic islets after severe burns and the antioxidant effect of sodium pyruvate. METHODS A 30% total body surface area full-thickness burn model was established using male C57BL/6 mice. Fasting blood glucose and glucose-stimulated insulin secretion (GSIS) 24 hours post severe burns were detected. The levels of reactive oxygen species (ROS) and mitochondrial ROS of islets were detected. The activities of complexes in the mitochondrial respiratory chain of islets were measured. The main antioxidant defense system, glutaredoxin system, and thioredoxin system-related indexes were detected, and the expression of manganese superoxide dismutase (Mn-SOD) was measured. In addition, the antioxidant activity of sodium pyruvate was evaluated post severe burns. RESULTS After severe burns, fasting blood glucose levels increased, while GSIS levels decreased, with significantly elevated ROS levels of pancreatic islets. The activity of complex III decreased and the level of mitochondrial ROS increased significantly post severe burns. For the detoxification of ROS, the expressions of thioredoxin 2, thioredoxin reductase 2, and Mn-SOD located in mitochondria decreased. Sodium pyruvate reduced the level of mitochondrial ROS in islet cells and improved the GSIS of islets after severe burns. CONCLUSION The high level of mitochondrial ROS of islets is caused by reducing the activity of complex III in mitochondrial respiratory chain, inhibiting mitochondrial thioredoxin system, and downregulating Mn-SOD post severe burns. Sodium pyruvate plays an antioxidant role post severe burns in mice islets and improves the islet function.
Collapse
|
17
|
Lee CB, Lee KI, Kim YJ, Jang IT, Gurmessa SK, Choi EH, Kaushik NK, Kim HJ. Non-Thermal Plasma Jet-Treated Medium Induces Selective Cytotoxicity against Mycobacterium tuberculosis-Infected Macrophages. Biomedicines 2022; 10:biomedicines10061243. [PMID: 35740265 PMCID: PMC9219627 DOI: 10.3390/biomedicines10061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma-treated media (PTM) serve as an adjuvant therapy to postoperatively remove residual cancerous lesions. We speculated that PTM could selectively kill cells infected with Mycobacterium tuberculosis (Mtb) and remove postoperative residual tuberculous lesions. We therefore investigated the effects of a medium exposed to a non-thermal plasma jet on the suppression of intracellular Mtb replication, cell death, signaling, and selectivity. We propose that PTM elevates the levels of the detoxifying enzymes, glutathione peroxidase, catalase, and ataxia-telangiectasia mutated serine/threonine kinase and increases intracellular reactive oxygen species production in Mtb-infected cells. The bacterial load was significantly decreased in spleen and lung tissues and single-cell suspensions from mice intraperitoneally injected with PTM compared with saline and untreated medium. Therefore, PTM has the potential as a novel treatment that can eliminate residual Mtb-infected cells after infected tissues are surgically resected.
Collapse
Affiliation(s)
- Chae Bok Lee
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Kang In Lee
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Young Jae Kim
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - In Taek Jang
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Sintayehu Kebede Gurmessa
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (E.H.C.); (N.K.K.)
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (E.H.C.); (N.K.K.)
| | - Hwa-Jung Kim
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
- Correspondence: ; Tel.: +82-42-580-8242
| |
Collapse
|
18
|
Miller HA, Rai SN, Yin X, Zhang X, Chesney JA, van Berkel VH, Frieboes HB. Lung cancer metabolomic data from tumor core biopsies enables risk-score calculation for progression-free and overall survival. Metabolomics 2022; 18:31. [PMID: 35567637 PMCID: PMC9724684 DOI: 10.1007/s11306-022-01891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Metabolomics has emerged as a powerful method to provide insight into cancer progression, including separating patients into low- and high-risk groups for overall (OS) and progression-free survival (PFS). However, survival prediction based mainly on metabolites obtained from biofluids remains elusive. OBJECTIVES This proof-of-concept study evaluates metabolites as biomarkers obtained directly from tumor core biopsies along with covariates age, sex, pathological stage at diagnosis (I/II vs. III/VI), histological subtype, and treatment vs. no treatment to risk stratify lung cancer patients in terms of OS and PFS. METHODS Tumor core biopsy samples obtained during routine lung cancer patient care at the University of Louisville Hospital and Norton Hospital were evaluated with high-resolution 2DLC-MS/MS, and the data were analyzed by Kaplan-Meier survival analysis and Cox proportional hazards regression. A linear equation was developed to stratify patients into low and high risk groups based on log-transformed intensities of key metabolites. Sparse partial least squares discriminant analysis (SPLS-DA) was performed to predict OS and PFS events. RESULTS Univariable Cox proportional hazards regression model coefficients divided by the standard errors were used as weight coefficients multiplied by log-transformed metabolite intensity, then summed to generate a risk score for each patient. Risk scores based on 10 metabolites for OS and 5 metabolites for PFS were significant predictors of survival. Risk scores were validated with SPLS-DA classification model (AUROC 0.868 for OS and AUROC 0.755 for PFS, when combined with covariates). CONCLUSION Metabolomic analysis of lung tumor core biopsies has the potential to differentiate patients into low- and high-risk groups based on OS and PFS events and probability.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
| | - Shesh N Rai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Jason A Chesney
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, USA
| | - Victor H van Berkel
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA.
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, USA.
| |
Collapse
|
19
|
Modeling of Tumor Growth with Input from Patient-Specific Metabolomic Data. Ann Biomed Eng 2022; 50:314-329. [PMID: 35083584 PMCID: PMC9743982 DOI: 10.1007/s10439-022-02904-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Advances in omic technologies have provided insight into cancer progression and treatment response. However, the nonlinear characteristics of cancer growth present a challenge to bridge from the molecular- to the tissue-scale, as tumor behavior cannot be encapsulated by the sum of the individual molecular details gleaned experimentally. Mathematical modeling and computational simulation have been traditionally employed to facilitate analysis of nonlinear systems. In this study, for the first time tumor metabolomic data are linked via mathematical modeling to the tumor tissue-scale behavior, showing the capability to mechanistically simulate cancer progression personalized to omic information obtainable from patient tumor core biopsy analysis. Generally, a higher degree of metabolic dysregulation has been correlated with more aggressive tumor behavior. Accordingly, key parameters influenced by metabolomic data in this model include tumor proliferation, vascularization, aggressiveness, lactic acid production, monocyte infiltration and macrophage polarization, and drug effect. The model enables evaluating interactions of interest between these parameters which drive tumor growth based on the metabolomic data. The results show that the model can group patients consistently with the clinically observed outcomes of response/non-response to chemotherapy. This modeling approach provides a first step towards evaluation of tumor growth based on tumor-specific metabolomic data.
Collapse
|
20
|
Miller HA, Yin X, Smith SA, Hu X, Zhang X, Yan J, Miller DM, van Berkel VH, Frieboes HB. Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer 2021; 156:20-30. [PMID: 33882406 DOI: 10.1016/j.lungcan.2021.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Despite extensive effort, the search for clinically-relevant metabolite biomarkers for early detection, disease monitoring, and outcome prediction in lung cancer remains unfulfilled. Although biofluid evaluation has been explored, the complexity inherent in metabolite data and the dynamic discrepancy between metabolites in biofluids vs. tumor tissue have prevented conclusive results. This proof-of-concept study explored models predictive of staging and chemotherapy response based on metabolomic analysis of fresh, patient-derived non-small cell lung cancer (NSCLC) core biopsies. MATERIALS AND METHODS Samples (n = 36) were evaluated with high-resolution 2DLC-MS/MS and 13C-glucose enrichment, and the data were comprehensively analyzed with machine learning techniques. Patients were categorized as Disease-Control (DC) [encompassing complete-response (CR), partial-response (PR), and stable-disease (SD)] and Progressive-Disease (PD) in terms of first-line chemotherapy. Four major types of learning methods (partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), artificial neural networks, and random forests (RF)) were applied to differentiate between positive (DC and CR/PR) and poor (PD and SD/PD) responses, and between stage I/II/III and stage IV disease. Models were trained with forward feature selection based on variable importance and tested on validation subsets. RESULTS The models predicted patient classifications in the validation subsets with AUC (95 % CI): DC vs. PD (SVM), 0.970(0.961-0.979); CR/PR vs. SD/PD (PLS-DA), 0.880(0.865-0.895); stage I/II/III vs. IV (SVM), 0.902(0.880-0.924). Highest performing model was SVM for DC vs. PD (balanced accuracy = 0.92; kappa = 0.74). CONCLUSION This study illustrates a comprehensive evaluation of patient tumor-specific metabolic profiles, with the potential to identify disease stage and predict response to first-line chemotherapy.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, United States
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, United States
| | - Susan A Smith
- Department of Surgery, University of Louisville, United States
| | - Xiaoling Hu
- James Graham Brown Cancer Center, University of Louisville, United States; Division of Immunotherapy, Department of Surgery, University of Louisville, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, United States
| | - Jun Yan
- Department of Pharmacology and Toxicology, University of Louisville, United States; James Graham Brown Cancer Center, University of Louisville, United States; Division of Immunotherapy, Department of Surgery, University of Louisville, United States; Department of Microbiology and Immunology, University of Louisville, United States
| | - Donald M Miller
- Department of Pharmacology and Toxicology, University of Louisville, United States; James Graham Brown Cancer Center, University of Louisville, United States; Department of Medicine, University of Louisville, United States
| | - Victor H van Berkel
- James Graham Brown Cancer Center, University of Louisville, United States; Department of Cardiovascular and Thoracic Surgery, University of Louisville, United States
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, United States; James Graham Brown Cancer Center, University of Louisville, United States; Department of Bioengineering, University of Louisville, United States; Center for Predictive Medicine, University of Louisville, United States.
| |
Collapse
|
21
|
Abstract
Influenza A virus (IAV) causes seasonal epidemics annually and pandemics every few decades. Most antiviral treatments used for IAV are only effective if administered during the first 48 h of infection and antiviral resistance is possible. Therapies that can be initiated later during IAV infection and that are less likely to elicit resistance will significantly improve treatment options. Pyruvate, a key metabolite, and an end product of glycolysis, has been studied for many uses, including its anti-inflammatory capabilities. Sodium pyruvate was recently shown by us to decrease inflammasome activation during IAV infection. Here, we investigated sodium pyruvate’s effects on IAV in vivo. We found that nebulizing mice with sodium pyruvate decreased morbidity and weight loss during infection. Additionally, treated mice consumed more chow during infection, indicating improved symptoms. There were notable improvements in pro-inflammatory cytokine production (IL-1β) and lower virus titers on day 7 post-infection in mice treated with sodium pyruvate compared to control animals. As pyruvate acts on the host immune response and metabolic pathways and not directly on the virus, our data demonstrate that sodium pyruvate is a promising treatment option that is safe, effective, and unlikely to elicit antiviral resistance.
Collapse
|