1
|
Ahluwalia K, Du Z, Martinez-Camarillo JC, Naik A, Thomas BB, Pollalis D, Lee SY, Dave P, Zhou E, Li Z, Chester C, Humayun MS, Louie SG. Unveiling Drivers of Retinal Degeneration in RCS Rats: Functional, Morphological, and Molecular Insights. Int J Mol Sci 2024; 25:3749. [PMID: 38612560 PMCID: PMC11011632 DOI: 10.3390/ijms25073749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zhaodong Du
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| | - Juan Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| |
Collapse
|
2
|
Di Pierdomenico J, Gallego‐Ortega A, Martínez‐Vacas A, García‐Bernal D, Vidal‐Sanz M, Villegas‐Pérez MP, García‐Ayuso D. Intravitreal and subretinal syngeneic bone marrow mononuclear stem cell transplantation improves photoreceptor survival but does not ameliorate retinal function in two rat models of retinal degeneration. Acta Ophthalmol 2022; 100:e1313-e1331. [PMID: 35514078 DOI: 10.1111/aos.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To study and compare effects of syngeneic bone marrow mononuclear stem cells (BM-MNCs) transplants on inherited retinal degeneration in two animal models with different etiologies: the RCS and the P23H-1 rats. To compare the safety and efficacy of two methods of intraocular delivery: subretinal and/or intravitreal. METHODS A suspension of BM-MNCs was injected subretinally or intravitreally in the left eyes of P23H-1 and RCS rats at post-natal day (P) 21. At different survival intervals after the injection: 7, 15, 30 or 60 days, the retinas were cross-sectioned, and photoreceptor survival and glial cell responses were investigated using immunodetection of cones (anti-cone arrestin), synaptic connections (anti-bassoon), microglia (anti-Iba-1), astrocytes and Müller cells (anti-GFAP). Electroretinographic function was also assessed longitudinally. RESULTS Intravitreal injections (IVIs) or subretinal injections (SRIs) of BM-MNCs did not produce adverse effects. The transplanted cells survived for up to 15 days but did not penetrate the retina. Both IVIs and SRIs increased photoreceptor survival, decreased synaptic degeneration and glial fibrillary acidic protein (GFAP) expression in Müller cells but did not modify microglial cell activation and migration or the electroretinographic responses. CONCLUSIONS Intravitreal and subretinal syngeneic BM-MNCs transplantation decreases photoreceptor degeneration and shows anti-gliotic effects on Müller cells but does not ameliorate retinal function. Moreover, syngeneic BM-MNCs transplants are more effective than the xenotransplants of these cells. BM-MNC transplantation has potential therapeutic effects that merit further investigation.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Alejandro Gallego‐Ortega
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Ana Martínez‐Vacas
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - David García‐Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina Universidad de Murcia Murcia Spain
| | - Manuel Vidal‐Sanz
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - María P. Villegas‐Pérez
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Diego García‐Ayuso
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| |
Collapse
|
3
|
Perdices L, Fuentes-Broto L, Segura F, Cavero A, Orduna-Hospital E, Insa-Sánchez G, Sánchez-Cano AI, Fernández-Sánchez L, Cuenca N, Pinilla I. Systemic epigallocatechin gallate protects against retinal degeneration and hepatic oxidative stress in the P23H-1 rat. Neural Regen Res 2022; 17:625-631. [PMID: 34380903 PMCID: PMC8504391 DOI: 10.4103/1673-5374.320990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/08/2020] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders that lead to photoreceptor loss. RP has been reported to be related to oxidative stress, autophagy, and inflammation. (-)-Epigallocatechin gallate (EGCG), the most abundant catechin-based flavonoid in green tea leaves, has significant antioxidant, anti-carcinogenic, antimicrobial, and neuroprotective properties. EGCG, given its low molecular weight and hydrophilic properties, can cross the blood-retinal barrier and is able to reach different ocular tissues such as the lens, cornea, and retina. EGCG has been shown to provide retinal protection against ischemia; sodium nitroprusside-, N-methyl-D-aspartate-, lipopolysaccharide-, light-, sodium iodate-, or H2O2-induced damage and diabetic retinopathy. This suggests that systemic EGCG administration has the potential to protect against retinal degenerative or neurodegenerative diseases such as RP. The aim of this work was to investigate whether EGCG can protect against RP progression in the animal P23H line 1, the model of RP. Albino P23H rats were crossed with pigmented Long Evans rats to produce offspring exhibiting the clinical features of RP. Pigmented P23H rats were treated via intraperitoneal injection with saline or EGCG at a dose of 25 mg/kg every week from P100 to P160 and then compared to wild-type Long Evans rats. Rats treated with EGCG showed better visual and retinal electrical function with increased contrast sensitivity and b-wave values compared with those observed in P23H rats treated with vehicle. EGCG reduced lipid peroxidation and increased total antioxidant capacity and catalase and superoxide dismutase activities. No differences were observed in visual acuity, nitrate levels, nitrite levels or glutathione S-transferase activity. In conclusion, EGCG not only reduced the loss of visual function in P23H rats but also improved the levels of antioxidant enzymes and reduced oxidative damage. This study was approved by the Institutional Animal Care and Use Committee (CEICA) from the University of Zaragoza under project license PI12/14 on July 11, 2014.
Collapse
Affiliation(s)
- Lorena Perdices
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Lorena Fuentes-Broto
- Pharmacology, Physiology & Legal and Forensic Medicine, University of Zaragoza, Zaragoza, Spain
| | - Francisco Segura
- Department of Applied Physics, University of Zaragoza, Zaragoza, Spain
| | - Ana Cavero
- Health Sciences Faculty, San Jorge University, Villanueva de Gállego, Spain
| | | | - Gema Insa-Sánchez
- Pharmacology, Physiology & Legal and Forensic Medicine, University of Zaragoza, Zaragoza, Spain
| | | | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Surgery, Gynecology and Obstetrics, University of Zaragoza, Zaragoza, Spain; Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
| |
Collapse
|
4
|
Effects of Daily Melatonin Supplementation on Visual Loss, Circadian Rhythms, and Hepatic Oxidative Damage in a Rodent Model of Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10111853. [PMID: 34829724 PMCID: PMC8614953 DOI: 10.3390/antiox10111853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by a progressive loss of visual function that primarily affect photoreceptors, resulting in the complete disorganization and remodeling of the retina. Progression of the disease is enhanced by increased oxidative stress in the retina, aqueous humor, plasma, and liver of RP animal models and patients. Melatonin has beneficial effects against age-related macular degeneration, glaucoma, and diabetic retinopathy, in which oxidative stress plays a key role. In the present study, we used the P23HxLE rat as an animal model of RP. Melatonin treatment (10 mg/kg b.w. daily in drinking water for 6 months) improved the parameters of visual function and decreased the rate of desynchronization of the circadian rhythm, both in P23HxLE and wild-type rats. Melatonin reduced oxidative stress and increased antioxidant defenses in P23HxLE animals. In wild-type animals, melatonin did not modify any of the oxidative stress markers analyzed and reduced the levels of total antioxidant defenses. Treatment with melatonin improved visual function, circadian synchronization, and hepatic oxidative stress in P23HxLE rats, an RP model, and had beneficial effects against age-related visual damage in wild-type rats.
Collapse
|
5
|
Perdices L, Fuentes-Broto L, Segura F, Cuenca N, Orduna-Hospital E, Pinilla I. Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats. Antioxidants (Basel) 2020; 9:antiox9080718. [PMID: 32784376 PMCID: PMC7465727 DOI: 10.3390/antiox9080718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Retinitis pigmentosa (RP) includes a group of genetic disorders that involve the loss of visual function due to mutations mainly in photoreceptors but also in other retinal cells. Apoptosis, retinal disorganization, and inflammation are common in the progression of the disease. Epigallocatechin gallate (EGCG) has been proved as beneficial in different eye diseases. Pigmented heterozygous P23H rat was used as an animal model of RP. Visual function was assessed by optomotor and electroretinogram (ERG) and circadian rhythms were evaluated by telemetry. Hepatic oxidative damage and antioxidant defenses were assessed using biochemical tests. The visual function of the EGCG P23H group was preserved, with a deterioration in the activity period and lower values in the interdaily stability parameter. Control rats treated with EGCG were less active than the sham group. EGCG increased antioxidant levels in P23H rats but reduced total hepatic antioxidant capacity by almost 42% in control rats compared to the sham group. We conclude that treatment with EGCG improves visual function and antioxidant status in P23H rats but diminishes antioxidant defenses in wild-type control animals, and slightly worsens activity circadian rhythms. Further studies are necessary to clarify the beneficial effects in disease conditions and in healthy organisms.
Collapse
Affiliation(s)
- Lorena Perdices
- Aragon Institute for Health Research (IIS Aragón), 50009 Zaragoza, Spain; (L.P.); (I.P.)
| | - Lorena Fuentes-Broto
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761-706
| | - Francisco Segura
- Department of Applied Physics, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | | | - Isabel Pinilla
- Aragon Institute for Health Research (IIS Aragón), 50009 Zaragoza, Spain; (L.P.); (I.P.)
- Department of Ophthalmology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
The migraine eye: distinct rod-driven retinal pathways' response to dim light challenges the visual cortex hyperexcitability theory. Pain 2019; 160:569-578. [PMID: 30376534 DOI: 10.1097/j.pain.0000000000001434] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine-type photophobia, most commonly described as exacerbation of headache by light, affects nearly 90% of the patients. It is the most bothersome symptom accompanying an attack. Using subjective psychophysical assessments, we showed that migraine patients are more sensitive to all colors of light during ictal than during interictal phase and that control subjects do not experience pain when exposed to different colors of light. Based on these findings, we suggested that color preference is unique to migraineurs (as it was not found in control subjects) rather than migraine phase (as it was found in both phases). To identify the origin of this photophobia in migraineurs, we compared the electrical waveforms that were generated in the retina and visual cortex of 46 interictal migraineurs to those generated in 42 healthy controls using color-based electroretinography and visual-evoked potential paradigms. Unexpectedly, it was the amplitude of the retinal rod-driven b wave, which was consistently larger (by 14%-19% in the light-adapted and 18%-34% in the dark-adapted flash ERG) in the migraineurs than in the controls, rather than the retinal cone-driven a wave or the visual-evoked potentials that differs most strikingly between the 2 groups. Mechanistically, these findings suggest that the inherent hypersensitivity to light among migraine patients may originate in the retinal rods rather than retinal cones or the visual cortex. Clinically, the findings may explain why migraineurs complain that the light is too bright even when it is dim to the extent that nonmigraineurs feel as if they are in a cave.
Collapse
|
7
|
Liu W, Liu M, Liu Y, Li S, Weng C, Fu Y, He J, Gong Y, Liu W, Zhao C, Yin ZQ. Validation and Safety of Visual Restoration by Ectopic Expression of Human Melanopsin in Retinal Ganglion Cells. Hum Gene Ther 2019; 30:714-726. [PMID: 30582371 DOI: 10.1089/hum.2018.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To study whether ectopic human melanopsin (hMel) in retinal ganglion cells (RGCs) could restore the visual function in end-stage retinal degeneration, AAV2/8-CMV-hMel/FYP was injected into the intravitreal space of Royal College of Surgeons (RCS) rats. It was observed that ectopic hMel/yellow fluorescent protein (YFP) was dominantly expressed in the RGCs of the RCS rat retinae. At 30-45 days after administration of AAV2/8-CMV-hMel/FYP in RCS rats, the flash visual evoked potentials and behavioral results demonstrated that visual function was significantly improved compared to that in the control group, while no improvement in flash electroretinography was observed at this time point. To translate this potential therapeutic approach to the clinic, the safety of viral vectors in the retinae of normal macaques was then studied, and the expression profile of exogenous hMel with/without internal limiting membrane peeling was compared before viral vector administration. The data revealed that there was no significant difference in the number of RGCs containing exogenous hMel/YFP between the two groups. Whole-cell patch-clamp recordings demonstrated that the hMel/YFP-positive RGCs of the macaque retinae reacted to the intense light stimulation, generating inward currents and action potentials. This result confirms that the ectopic hMel expressed in RGCs is functional. Moreover, the introduction of AAV2/8-CMV-hMel/FYP does not cause detectable pathological effects. Thus, this study suggests that AAV2/8-CMV-hMel/FYP administration without internal limiting membrane peeling is safe and feasible for efficient transduction and provides therapeutic benefits to restore the visual function of patients suffering photoreceptor loss.
Collapse
Affiliation(s)
- Wenyi Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Mingming Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yong Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - ShiYing Li
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Chuanhuang Weng
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yan Fu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Juncai He
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yu Gong
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Weiping Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - CongJian Zhao
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Zheng Qin Yin
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| |
Collapse
|
8
|
Perdices L, Fuentes-Broto L, Segura F, Ben Gdara N, Sánchez-Cano AI, Insa G, Orduna E, Pinilla I. Hepatic oxidative stress in pigmented P23H rhodopsin transgenic rats with progressive retinal degeneration. Free Radic Biol Med 2018; 124:550-557. [PMID: 30006118 DOI: 10.1016/j.freeradbiomed.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 12/14/2022]
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal degenerative conditions characterized by primary degeneration of the rod photoreceptors. Increased oxidative damage is observed in the retina, aqueous humor, and plasma of RP animal models and patients. The hepatic oxidative status may also be affected in RP due to oxidative damage influencing soluble macromolecules exiting the retina or to alterations in the melanopsin system resulting in chronic circadian desynchronization that negatively alters the oxidative stress defense system. P23H rats were crossed with pigmented Long Evans rats to produce offspring exhibiting the clinical conditions of RP. We measured hepatic malondialdehyde and 4-hydroxyalkenal concentrations as oxidative stress markers; nitrite level as a total nitrosative damage marker; total antioxidant capacity; and the activities of catalase, superoxide dismutase (SOD), and glutathione S-transferase. Retinal visual function was assessed based on optomotor and electroretinogram responses. P23H transgenic rats exhibited diminished visual acuity, contrast sensitivity, and electroretinographic responses according to the level of retinal degeneration. P23H rats at 30 days of age already demonstrated only 47% of the hepatic total antioxidant capacity of wild-type animals. Hepatic catalase and SOD activities were also reduced in P23H rats after 120 days, but we detected no difference in glutathione S-transferase activity. P23H rats had increased hepatic oxidative and nitrosative damage markers. GSH/GSSG ratio showed a significant diminution in P23H rats at P120 compared to WT. We conclude that the liver is under increased oxidative stress in P23H rats. Further studies are required, however, to clarify the contribution of systemic oxidative damage to the pathogenesis of RP.
Collapse
Affiliation(s)
- Lorena Perdices
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain.
| | - Lorena Fuentes-Broto
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Pharmacology and Physiology, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - Francisco Segura
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Surgery, Gynecology and Obstetrics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - Neyla Ben Gdara
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University campus El Manar, 2092 Tunis, Tunisia.
| | - Ana Isabel Sánchez-Cano
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Surgery, Gynecology and Obstetrics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Department of Applied Physics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - Gema Insa
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Surgery, Gynecology and Obstetrics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Department of Applied Physics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - Elvira Orduna
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Surgery, Gynecology and Obstetrics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Department of Applied Physics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain; Department of Surgery, Gynecology and Obstetrics, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Department of Ophthalmology, Lozano Blesa Clinical University Hospital, Avenida San Juan Bosco 15, E-50009 Zaragoza, Spain.
| |
Collapse
|
9
|
Ye H, Yu M, Lu L, Jin C, Luo G. Electroretinogram evaluation for the treatment of proliferative diabetic retinopathy by short-pulse pattern scanning laser panretinal photocoagulation. Lasers Med Sci 2018. [PMID: 29542045 DOI: 10.1007/s10103-018-2474-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Panretinal photocoagulation (PRP) is a standard method for proliferative diabetic retinopathy (PDR) treatment. However, conventional PRP usually significantly damages the retinal structure and vision. Retinal pattern scanning laser (PASCAL) photocoagulation has emerged as a new technique with fewer complications for the treatment of retinal disorders. This study compares the therapeutic effects of short-pulse PASCAL to conventional single-spot PRP for PDR. Fifty-two PDR patients (104 eyes) were randomly assigned into a short-pulse PASCAL-PRP treatment (SP) group and a conventional PRP treatment (TP) group. The best corrected visual acuity (BCVA) and full-field flash electroretinogram (ERG) data were evaluated before and after the two treatments. The BCVA data between before and after the PRP treatments did not show any significant difference. After the PRP treatment, the b-wave amplitude (b-A) in the dark-adapted 3.0 ERG (p = 0.0005) and the amplitude in the light-adapted 3.0 flicker ERG (p = 0.009) were significantly higher in the SP group compared with that of the TP group. In addition, after the PRP treatment, the a-wave implicit time (a-T) of light-adapted 3.0 ERG prolonged significantly in the TP group compared to the SP group. Compared with the parameters before the treatments, the a-A and b-A under dark-adapted 3.0 ERG and the b-A under the light-adapted 3.0 ERG in both TP and SP groups after the treatments decreased significantly (p < 0.05). Short-pulse PASCAL-PRP significantly attenuated partial vision damage compared to conventional PRP, although it still caused limited retinal injury and mild reduction in retinal function. These findings suggest that short-pulse PASCAL-PRP is a promising technique for PDR treatment.
Collapse
Affiliation(s)
- Haiyun Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China.,Department of Ophthalmology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200060, China
| | - Minzhong Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China.,Department of Ophthalmology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, United States
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China.
| | - Guangwei Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
10
|
Waldner DM, Giraldo Sierra NC, Bonfield S, Nguyen L, Dimopoulos IS, Sauvé Y, Stell WK, Bech-Hansen NT. Cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels (Austin) 2018; 12:17-33. [PMID: 29179637 PMCID: PMC5972796 DOI: 10.1080/19336950.2017.1401688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/22/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023] Open
Abstract
Congenital stationary night blindness 2A (CSNB2A) is an X-linked retinal disorder, characterized by phenotypically variable signs and symptoms of impaired vision. CSNB2A is due to mutations in CACNA1F, which codes for the pore-forming α1F subunit of a L-type voltage-gated calcium channel, Cav1.4. Mouse models of CSNB2A, used for characterizing the effects of various Cacna1f mutations, have revealed greater severity of defects than in human CSNB2A. Specifically, Cacna1f-knockout mice show an apparent lack of visual function, gradual retinal degeneration, and disruption of photoreceptor synaptic terminals. Several reports have also noted cone-specific disruptions, including axonal abnormalities, dystrophy, and cell death. We have explored further the involvement of cones in our 'G305X' mouse model of CSNB2A, which has a premature truncation, loss-of-function mutation in Cacna1f. We show that the expression of genes for several phototransduction-related cone markers is down-regulated, while that of several cellular stress- and damage-related markers is up-regulated; and that cone photoreceptor structure and photopic visual function - measured by immunohistochemistry, optokinetic response and electroretinography - deteriorate progressively with age. We also find that dystrophic cone axons establish synapse-like contacts with rod bipolar cell dendrites, which they normally do not contact in wild-type retinas - ectopically, among rod cell bodies in the outer nuclear layer. These data support a role for Cav1.4 in cone synaptic development, cell viability, and synaptic transmission of cone-dependent visual signals. Although our novel finding of cone-to-rod-bipolar cell contacts in this mouse model of a retinal channelopathy may challenge current views of the role of Cav1.4 in photopic vision, it also suggests a potential new target for restorative therapy.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - N. C. Giraldo Sierra
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Bonfield
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L. Nguyen
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - I. S. Dimopoulos
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Y. Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics, and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Kole C, Klipfel L, Yang Y, Ferracane V, Blond F, Reichman S, Millet-Puel G, Clérin E, Aït-Ali N, Pagan D, Camara H, Delyfer MN, Nandrot EF, Sahel JA, Goureau O, Léveillard T. Otx2-Genetically Modified Retinal Pigment Epithelial Cells Rescue Photoreceptors after Transplantation. Mol Ther 2017; 26:219-237. [PMID: 28988713 PMCID: PMC5762984 DOI: 10.1016/j.ymthe.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal degenerations are blinding diseases characterized by the loss of photoreceptors. Their extreme genetic heterogeneity complicates treatment by gene therapy. This has motivated broader strategies for transplantation of healthy retinal pigmented epithelium to protect photoreceptors independently of the gene causing the disease. The limited clinical benefit for visual function reported up to now is mainly due to dedifferentiation of the transplanted cells that undergo an epithelial-mesenchymal transition. We have studied this mechanism in vitro and revealed the role of the homeogene OTX2 in preventing dedifferentiation through the regulation of target genes. We have overexpressed OTX2 in retinal pigmented epithelial cells before their transplantation in the eye of a model of retinitis pigmentosa carrying a mutation in Mertk, a gene specifically expressed by retinal pigmented epithelial cells. OTX2 increases significantly the protection of photoreceptors as seen by histological and functional analyses. We observed that the beneficial effect of OTX2 is non-cell autonomous, and it is at least partly mediated by unidentified trophic factors. Transplantation of OTX2-genetically modified cells may be medically effective for other retinal diseases involving the retinal pigmented epithelium as age-related macular degeneration.
Collapse
Affiliation(s)
- Christo Kole
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Laurence Klipfel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Ying Yang
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Vanessa Ferracane
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Frederic Blond
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Sacha Reichman
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Géraldine Millet-Puel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Emmanuelle Clérin
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Najate Aït-Ali
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Delphine Pagan
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Hawa Camara
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Marie-Noëlle Delyfer
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France; Unité Rétine, Uvéite et Neuro-Ophtalmologie, Département d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Emeline F Nandrot
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Jose-Alain Sahel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Olivier Goureau
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Thierry Léveillard
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France.
| |
Collapse
|
12
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
13
|
Gurdita A, Tan B, Joos KM, Bizheva K, Choh V. Pigmented and albino rats differ in their responses to moderate, acute and reversible intraocular pressure elevation. Doc Ophthalmol 2017; 134:205-219. [PMID: 28389912 DOI: 10.1007/s10633-017-9586-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE To compare the electrophysiological and morphological responses to acute, moderately elevated intraocular pressure (IOP) in Sprague-Dawley (SD), Long-Evans (LE) and Brown Norway (BN) rat eyes. METHODS Eleven-week-old SD (n = 5), LE (n = 5) and BN (n = 5) rats were used. Scotopic threshold responses (STRs), Maxwellian flash electroretinograms (ERGs) or ultrahigh-resolution optical coherence tomography (UHR-OCT) images of the rat retinas were collected from both eyes before, during and after IOP elevation of one eye. IOP was raised to ~35 mmHg for 1 h using a vascular loop, while the other eye served as a control. STRs, ERGs and UHR-OCT images were acquired on 3 days separated by 1 day of no experimental manipulation. RESULTS There were no significant differences between species in baseline electroretinography. However, during IOP elevation, peak positive STR amplitudes in LE (mean ± standard deviation 259 ± 124 µV) and BN (228 ± 96 µV) rats were about fourfold higher than those in SD rats (56 ± 46 µV) rats (p = 0.0002 for both). Similarly, during elevated IOP, ERG b-wave amplitudes were twofold higher in LE and BN rats compared to those of SD rats (947 ± 129 µV and 892 ± 184 µV, vs 427 ± 138 µV; p = 0.0002 for both). UHR-OCT images showed backward bowing in all groups during IOP elevation, with a return to typical form about 30 min after IOP elevation. CONCLUSION Differences in the loop-induced responses between the strains are likely due to different inherent retinal morphology and physiology.
Collapse
Affiliation(s)
- Akshay Gurdita
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bingyao Tan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Karen M Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kostadinka Bizheva
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Vivian Choh
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Cooper AE, Cho JH, Menges S, Masood S, Xie J, Yang J, Klassen H. Immunosuppressive Treatment Can Alter Visual Performance in the Royal College of Surgeons Rat. J Ocul Pharmacol Ther 2016; 32:296-303. [PMID: 27008099 PMCID: PMC6453503 DOI: 10.1089/jop.2015.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/21/2016] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Immunosuppression is frequently employed to enhance survival of xenografted human cells as part of translational proof-of-concept studies. However, the potential effects of this treatment are easily overlooked. METHODS As part of baseline testing in the dark-eyed variant of the dystrophic Royal College of Surgeons (RCS) rat, we documented the time course of retinal degenerative changes versus Long Evans controls using bright field retinal imaging, fluorescein angiography, and histology and examined the impact of immunosuppression on visual function. Rats received either no treatment or systemic immunosuppression with oral cyclosporine A and injectable dexamethasone and subsequently underwent functional evaluation by optomotor response testing and electroretinography (ERG) at multiple intervals from P45 to P180. RESULTS Immunosuppressed RCS animals demonstrated poorer performance on functional tests than age-matched untreated rats during the earlier stages of degeneration, including significantly lower spatial acuities on optomotor threshold testing and significantly lower b-wave amplitudes on scotopic and photopic ERGs. Retinal imaging documented the progression of degenerative changes in the RCS fundus and histologic evaluation of the RCS retina confirmed progressive thinning of the outer nuclear layer. CONCLUSIONS A standard regimen of cyclosporine A plus dexamethasone, administered to RCS rats, results in demonstrable systemic side effects and depressed scores on behavioral and electrophysiological testing at time points before P90. The source of the functional impairment was not identified. This finding has implications for the interpretation of data generated using this commonly used translational model.
Collapse
Affiliation(s)
- Ann E. Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Jang-Hyeon Cho
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Steven Menges
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Sahar Masood
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Jun Xie
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Jing Yang
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| |
Collapse
|
15
|
Liu MM, Dai JM, Liu WY, Zhao CJ, Lin B, Yin ZQ. Human melanopsin-AAV2/8 transfection to retina transiently restores visual function in rd1 mice. Int J Ophthalmol 2016; 9:655-61. [PMID: 27275417 DOI: 10.18240/ijo.2016.05.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore whether ectopic expression of human melanopsin can effectively and safely restore visual function in rd1 mice. METHODS Hematoxylin-eosin staining of retinal sections from rd1 mice was used to detect the thickness of the outer nuclear layer to determine the timing of surgery. We constructed a human melanopsin-AAV2/8 viral vector and injected it into the subretinal space of rd1 mice. The Phoenix Micron IV system was used to exclude the aborted injections, and immunohistochemistry was used to validate the ectopic expression of human melanopsin. Furthermore, visual electrophysiology and behavioral tests were used to detect visual function 30 and 45d after the injection. The structure of the retina was compared between the human melanopsin-injected group and phosphate buffer saline (PBS)-injected group. RESULTS Retinas of rd1 mice lost almost all of their photoreceptors on postnatal day 28 (P28). We therefore injected the human melanopsin-adeno-associated virus (AAV) 2/8 viral vector into P30 rd1 mice. After excluding aborted injections, we used immunohistochemistry of the whole mount retina to confirm the ectopic expression of human melanopsin by co-expression of human melanopsin and YFP that was carried by a viral vector. At 30d post-injection, visual electrophysiology and the behavioral test significantly improved. However, restoration of vision disappeared 45d after human melanopsin injection. Notably, human melanopsin-injected mice did not show any structural differences in their retinas compared with PBS-injected mice. CONCLUSION Ectopic expression of human melanopsin effectively and safely restores visual function in rd1 mice.
Collapse
Affiliation(s)
- Ming-Ming Liu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Jia-Man Dai
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Wen-Yi Liu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Bin Lin
- Departments of Anatomy and Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong 200131, China
| | - Zheng-Qin Yin
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
16
|
Liu M, Dai J, Liu W, Zhao C, Yin ZQ. Overexpression of melanopsin in the retina restores visual function in Royal College of Surgeons rats. Mol Med Rep 2015; 13:321-6. [PMID: 26572076 DOI: 10.3892/mmr.2015.4549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/01/2015] [Indexed: 11/05/2022] Open
Abstract
Retinitis pigmentosa (RP) is a pathological condition leading to progressive visual decline resulting from continual loss of photoreceptor cells and outer nuclear layers of the retina. The aim of the present study was to explore whether melanopsin was able to restore retinal function and inhibit its degeneration by acting in a similar manner to channel rhodopsins. Royal College of Surgeons rats, which were used as an animal model of inherited retinal degeneration, were subjected to sub-retinal injection with melanopsin overexpression vector (AV‑OPN4‑GFP). Immunohistochemical and western blot analyses were used to detect the distribution and protein expression of melanopsin in the retina, revealing that melanopsin was gradually reduced with increasing age of the rats, which was due to loss of dendritic axons of intrinsically photosensitive retinal ganglion cells. Animals injected into both eyes were subjected to a behavioral open-field test, revealing that melanopsin overexpression reduced the loss of light sensitivity of the rats. In a flash electroretinography experiment, the b‑wave and response to light flash stimuli at three and five weeks following injection with AV‑OPN4‑GFP were higher compared to those in eyes injected with AV‑GFP (P<0.05). In conclusion, the present study showed that during retinal degeneration, the expression of melanopsin was significantly decreased, while vector-mediated overexpression of melanopsin delayed the loss of visual function in rats.
Collapse
Affiliation(s)
- Mingming Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiaman Dai
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenyi Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chongjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
17
|
Qu Z, Guan Y, Cui L, Song J, Gu J, Zhao H, Xu L, Lu L, Jin Y, Xu GT. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration. Stem Cell Res Ther 2015; 6:219. [PMID: 26553210 PMCID: PMC4640237 DOI: 10.1186/s13287-015-0207-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. METHODS The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. RESULTS We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. CONCLUSIONS We have successfully differentiated rESCs to glia enriched RPCs and retinal neuron enriched RPCs in vitro. The retinal neuron enriched rESC-RPC2 protected the structure and function of retina in rats with genetic retinal degeneration and could be a candidate cell source for treating some degenerative retinal diseases in human trials.
Collapse
Affiliation(s)
- Zepeng Qu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yuan Guan
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Lu Cui
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jian Song
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Lei Xu
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
18
|
Zhou PY, Peng GH, Xu H, Yin ZQ. c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J Cell Sci 2015; 128:2169-78. [PMID: 25918122 DOI: 10.1242/jcs.169086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Definitive surface markers for retinal progenitor cells (RPCs) are still lacking. Therefore, we sorted c-Kit+ and stage-specific embryonic antigen-4− (SSEA4−) retinal cells for further biological characterization. RPCs were isolated from human fetal retinas (gestational age of 12–14 weeks). c-Kit+/SSEA4− RPCs were sorted by fluorescence-activated cell sorting, and their proliferation and differentiation capabilities were evaluated by using immunocytochemistry and flow cytometry. The effectiveness and safety were assessed following injection of c-Kit+/SSEA4− cells into the subretina of Royal College of Surgeons (RCS) rats. c-Kit+ cells were found in the inner part of the fetal retina. Sorted c-Kit+/SSEA4− cells expressed retinal stem cell markers. Our results clearly demonstrate the proliferative potential of these cells. Moreover, c-Kit+/SSEA4− cells differentiated into retinal cells that expressed markers of photoreceptor cells, ganglion cells and glial cells. These cells survived for at least 3 months after transplantation into the host subretinal space. Teratomas were not observed in the c-Kit+/SSEA4−-cell group. Thus, c-Kit can be used as a surface marker for RPCs, and c-Kit+/SSEA4− RPCs exhibit the ability to self-renew and differentiate into retinal cells.
Collapse
Affiliation(s)
- Peng-Yi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
| | - Guang-Hua Peng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| |
Collapse
|
19
|
Cuenca N, Fernández-Sánchez L, Sauvé Y, Segura FJ, Martínez-Navarrete G, Tamarit JM, Fuentes-Broto L, Sanchez-Cano A, Pinilla I. Correlation between SD-OCT, immunocytochemistry and functional findings in an animal model of retinal degeneration. Front Neuroanat 2014; 8:151. [PMID: 25565976 PMCID: PMC4273614 DOI: 10.3389/fnana.2014.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023] Open
Abstract
Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | | | - Yves Sauvé
- Departments of Ophthalmology and Physiology, University of Alberta Edmonton, AB, Canada
| | - Francisco J Segura
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Surgery, School of Medicine, University of Zaragoza Zaragoza, Aragon, Spain
| | | | - José Manuel Tamarit
- Bloss Group Company, Spain and Heidelberg Engineering Gmbh Heidelberg, Germany
| | - Lorena Fuentes-Broto
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Physiology, University of Zaragoza Zaragoza, Aragon, Spain
| | - Ana Sanchez-Cano
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Applied Physics, University of Zaragoza Zaragoza, Aragon, Spain
| | - Isabel Pinilla
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Surgery, School of Medicine, University of Zaragoza Zaragoza, Aragon, Spain ; Department of Ophthalmology, Lozano Blesa University Hospital Zaragoza, Aragon, Spain
| |
Collapse
|
20
|
Wong LL, Hirst SM, Pye QN, Reilly CM, Seal S, McGinnis JF. Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One 2013; 8:e58431. [PMID: 23536794 PMCID: PMC3594235 DOI: 10.1371/journal.pone.0058431] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
Cerium oxide nanoparticles (nanoceria) possess catalytic and regenerative radical scavenging activities. The ability of nanoceria to maintain cellular redox balance makes them ideal candidates for treatment of retinal diseases whose development is tightly associated with oxidative damage. We have demonstrated that our stable water-dispersed nanoceria delay photoreceptor cell degeneration in rodent models and prevent pathological retinal neovascularization in vldlr mutant mice. The objectives of the current study were to determine the temporal and spatial distributions of nanoceria after a single intravitreal injection, and to determine if nanoceria had any toxic effects in healthy rat retinas. Using inductively-coupled plasma mass spectrometry (ICP-MS), we discovered that nanoceria were rapidly taken up by the retina and were preferentially retained in this tissue even after 120 days. We also did not observe any acute or long-term negative effects of nanoceria on retinal function or cytoarchitecture even after this long-term exposure. Because nanoceria are effective at low dosages, nontoxic and are retained in the retina for extended periods, we conclude that nanoceria are promising ophthalmic therapeutics for treating retinal diseases known to involve oxidative stress in their pathogeneses.
Collapse
Affiliation(s)
- Lily L. Wong
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- * E-mail: (LLW); (JFM)
| | - Suzanne M. Hirst
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, and Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Quentin N. Pye
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Christopher M. Reilly
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, and Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Sudipta Seal
- Advanced Materials Processing Analysis Center, Mechanical Materials Aerospace Engineering, Nanoscience and Technology Center, University of Central Florida, Orlando, Florida, United States of America
| | - James F. McGinnis
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Graduate College, Oklahoma City, Oklahoma, United States of America
- * E-mail: (LLW); (JFM)
| |
Collapse
|
21
|
McGill TJ, Prusky GT, Douglas RM, Yasumura D, Matthes MT, Lowe RJ, Duncan JL, Yang H, Ahern K, Daniello KM, Silver B, LaVail MM. Discordant anatomical, electrophysiological, and visual behavioral profiles of retinal degeneration in rat models of retinal degenerative disease. Invest Ophthalmol Vis Sci 2012; 53:6232-44. [PMID: 22899760 DOI: 10.1167/iovs.12-9569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To assess structural, functional, and visual behavioral relationships in mutant rhodopsin transgenic (Tg) rats and to determine whether early optokinetic tracking (OKT) visual experience, known to permanently elevate visual thresholds in normal rats, can enhance vision in rats with photoreceptor degeneration. METHODS Eight lines of pigmented Tg rats and RCS rats were used in this study. OKT thresholds were tested at single ages (1, 2, 3, 4, and 6 months) in naïve groups of rats, or daily in groups that began at eye-opening (P15) or 10 days later (P25). Electroretinogram (ERG) response amplitudes were recorded after OKT testing, and outer nuclear layer (ONL) thickness measurements were then obtained. RESULTS OKT thresholds, when measured at a single time point in naïve Tg lines beginning at P30, did not decline until months after significant photoreceptor loss. Daily testing of Tg lines resulted mostly with OKT thresholds inversely related to photoreceptor degeneration, with rapid degenerations resulting in sustained OKT thresholds for long periods despite the rapid photoreceptor loss. Slower degenerations resulted in rapid decline of thresholds, long before the loss of most photoreceptors, which was even more pronounced when daily testing began at eye opening. This amplified loss of function was not a result of testing-induced damage to the rod or cone photoreceptors, as ERG amplitudes and ONL thicknesses were the same as untested controls. CONCLUSIONS The unexpected lack of correlation of OKT testing with photoreceptor degeneration in the Tg rats emphasizes the need in behavioral therapeutic studies for careful analysis of visual thresholds of experimental animals prior to therapeutic intervention.
Collapse
Affiliation(s)
- Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cell-type specific roles for PTEN in establishing a functional retinal architecture. PLoS One 2012; 7:e32795. [PMID: 22403711 PMCID: PMC3293905 DOI: 10.1371/journal.pone.0032795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022] Open
Abstract
Background The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. Methodology/Principal Findings In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. Conclusions/Significance We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.
Collapse
|
23
|
Stanniocalcin-1 rescued photoreceptor degeneration in two rat models of inherited retinal degeneration. Mol Ther 2012; 20:788-97. [PMID: 22294148 DOI: 10.1038/mt.2011.308] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD).
Collapse
|
24
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mocko JA, Kim M, Faulkner AE, Cao Y, Ciavatta VT, Pardue MT. Effects of subretinal electrical stimulation in mer-KO mice. Invest Ophthalmol Vis Sci 2011; 52:4223-30. [PMID: 21467171 DOI: 10.1167/iovs.10-6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether mer(kd) mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. METHODS Mer(kd) mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between mer(kd) mice and RCS rats from P28 to P42. RESULTS SES-treated mer(kd) mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated mer(kd) retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in mer(kd) mice than in RCS rats. CONCLUSIONS Although SES upregulated Fgf2 in mer(kd) retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from mer(kd) mice and RCS rats across different ages showed inner retinal dysfunction in mer(kd) mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in mer(kd) mice may produce a retinal environment that is not responsive to neuroprotection from SES.
Collapse
Affiliation(s)
- Julie A Mocko
- Rehabilitation Research and Development Service, Atlanta Department of Veterans Affairs, Decatur, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
26
|
Luong C, Rey-Perra J, Vadivel A, Gilmour G, Sauve Y, Koonen D, Walker D, Todd KG, Gressens P, Kassiri Z, Nadeem K, Morgan B, Eaton F, Dyck JR, Archer SL, Thébaud B. Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 2011; 123:2120-31. [PMID: 21537000 DOI: 10.1161/circulationaha.108.845909] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lung hypoplasia and persistent pulmonary hypertension of the newborn limit survival in congenital diaphragmatic hernia (CDH). Unlike other diseases resulting in persistent pulmonary hypertension of the newborn, infants with CDH are refractory to inhaled nitric oxide (NO). Nitric oxide mediates pulmonary vasodilatation at birth in part via cyclic GMP production. Phosphodiesterase type 5 (PDE5) limits the effects of NO by inactivation of cyclic GMP. Because of the limited success in postnatal management of CDH, we hypothesized that antenatal PDE5 inhibition would attenuate pulmonary artery remodeling in experimental nitrofen-induced CDH. METHODS AND RESULTS Nitrofen administered at embryonic day 9.5 to pregnant rats resulted in a 60% incidence of CDH in the offspring and recapitulated features seen in human CDH, including structural abnormalities (lung hypoplasia, decreased pulmonary vascular density, pulmonary artery remodeling, right ventricular hypertrophy), and functional abnormalities (decreased pulmonary artery relaxation in response to the NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide). Antenatal sildenafil administered to the pregnant rat from embryonic day 11.5 to embryonic day 20.5 crossed the placenta, increased fetal lung cyclic GMP and decreased active PDE5 expression. Antenatal sildenafil improved lung structure, increased pulmonary vessel density, reduced right ventricular hypertrophy, and improved postnatal NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide-induced pulmonary artery relaxation. This was associated with increased lung endothelial NO synthase and vascular endothelial growth factor protein expression. Antenatal sildenafil had no adverse effect on retinal structure/function and brain development. CONCLUSIONS Antenatal sildenafil improves pathological features of persistent pulmonary hypertension of the newborn in experimental CDH and does not alter the development of other PDE5-expressing organs. Given the high mortality/morbidity of CDH, the potential benefit of prenatal PDE5 inhibition in improving the outcome for infants with CDH warrants further studies.
Collapse
Affiliation(s)
- Christina Luong
- Department of Pediatrics, Women and Children Health Research Institute, Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schatz A, Willmann G, Enderle H, Sliesoraityte I, Messias A, Bartz-Schmidt K, Zrenner E, Gekeler F. A new DTL-electrode holder for recording of electroretinograms in animals. J Neurosci Methods 2011; 195:128-34. [PMID: 21075141 DOI: 10.1016/j.jneumeth.2010.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
28
|
Pinilla I, Cuenca N, Martínez-Navarrete G, Lund RD, Sauvé Y. Intraretinal processing following photoreceptor rescue by non-retinal cells. Vision Res 2009; 49:2067-77. [PMID: 19497333 DOI: 10.1016/j.visres.2009.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 01/13/2023]
Abstract
Royal College of Surgeon (RCS) rats undergo retinal degeneration due to the inability of retinal pigment epithelial (RPE) cells to phagocytose shed outer segments. We explored the effect of introducing Schwann cells to the subretinal space of RCS rats (before the onset of retinal degeneration), by relying on electroretinogram (ERG) recordings and correlative retinal morphology. Scotopic ERGs recorded from cell-injected eyes showed preserved amplitudes of mixed a-wave b-wave, rod b-waves, and cone b-waves over controls (sham-injected eyes); photopic b-wave amplitudes and critical flicker fusion were also improved. Normal retinal morphology was found in areas of retinas that had received cell injections. Since Schwann cells have no phagocytic properties, their therapeutic effect is best explained through a paracrine mechanism (secretion of factors that ensure photoreceptor survival).
Collapse
Affiliation(s)
- I Pinilla
- Department of Ophthalmology, Hospital Universitario Miguel Servet, Zaragoza, Instituto Aragones de Ciencias de la Salud, Spain
| | | | | | | | | |
Collapse
|
29
|
Gilmour GS, Gaillard F, Watson J, Kuny S, Mema SC, Bonfield S, Stell WK, Sauvé Y. The electroretinogram (ERG) of a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). Vision Res 2008; 48:2723-31. [DOI: 10.1016/j.visres.2008.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
|
30
|
Moskowitz A, Hansen RM, Akula JD, Eklund SE, Fulton AB. Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci 2008; 50:950-8. [PMID: 18824728 DOI: 10.1167/iovs.08-2544] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To evaluate rod photoreceptor and postreceptor retinal function in pediatric patients with achromatopsia (ACHR) and blue cone monochromatism (BCM) using contemporary electroretinographic (ERG) procedures. METHODS Fifteen patients (age range, 1-20 years) with ACHR and six patients (age range, 4-22 years) with BCM were studied. ERG responses to full-field stimuli were obtained in scotopic and photopic conditions. Rod photoreceptor (S(rod), R(rod)) and rod-driven postreceptor (log sigma, V(max)) response parameters were calculated from the a-wave and b-wave. ERG records were digitally filtered to demonstrate the oscillatory potentials (OPs); a sensitivity parameter, log SOPA(1/2), and an amplitude parameter, SOPA(max), were used to characterize the OP response. Response parameters were compared with those of 12 healthy control subjects. RESULTS As expected, photopic responses were nondetectable in patients with ACHR and BCM. In addition, mean scotopic photoreceptor (R(rod)) and postreceptor (V(max) and SOPA(max)) amplitude parameters were significantly reduced compared with those in healthy controls. The flash intensity required to evoke a half-maximum b-wave amplitude (log sigma) was significantly increased. CONCLUSIONS Results of this study provide evidence that deficits in rod and rod-mediated function occur in the primary cone dysfunction syndromes ACHR and BCM.
Collapse
Affiliation(s)
- Anne Moskowitz
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
31
|
Valjakka A. The reflection of retinal light response information onto the superior colliculus in the rat. Graefes Arch Clin Exp Ophthalmol 2008; 245:1199-210. [PMID: 17219107 DOI: 10.1007/s00417-006-0519-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 11/22/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The functional principles of mediation of retina-encoded visual information through the optic nerve to the superior colliculus (SC) of the contralateral brain hemisphere were investigated in non-drugged and unrestrained albino rats by considering the following issues: (1) the type of information transmitted, (2) the response components of the retina and SC involved in encoding the transmitted information, and (3) the timing of related processes. METHODS The field potential responses for different intensities of flashes, under different background illuminations, were simultaneously recorded from the sclera area of the eye and the optic layer of the contralateral SC. RESULTS It was found that the b-wave crest of the retinal electroretinogram (ERG) and the peak-1 or peak-2 of the SC correlate by their amplitude, while the a-wave trough of the retinal ERG and the peak-1 of the SC correlate by their latency. The values of these mutually correlating response components were invariably determined by the given light response bias of the retina (photoreceptors), the change in the photon flux of the light stimulus and, obviously, the change in the wavelength of the light stimulus. The a-wave trough, peak-1, b-wave crest and peak-2 were invariably induced in this time-order. CONCLUSIONS The data suggest that the information properties of (a) intensity, (b) presentation time and, obviously, (c) colour of the light stimulus, such as are shed on the retina, and information about the light response bias of the retina are mediated correlatively and quantitatively to the cell network system of the SC through the optic nerve. These processes must happen during the a-to-b-wave phases of the ERG. The data indicate that the random-type variations in the activity of the related cellular systems may actually be harnessed in mediating the defined information properties of the visual stimulus from the retina to the SC of the brain through the optic nerve. This study shows a method of measuring the function of the optic nerve.
Collapse
Affiliation(s)
- Antti Valjakka
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, Kuopio 70211, Finland.
| |
Collapse
|
32
|
Pinilla I, Cuenca N, Sauvé Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 2007; 85:381-92. [PMID: 17662715 PMCID: PMC2711686 DOI: 10.1016/j.exer.2007.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 05/03/2007] [Accepted: 06/05/2007] [Indexed: 11/23/2022]
Abstract
We have examined how transplantation of an RPE cell line to the subretinal space of RCS rats affects the distribution of synaptic connectivity markers in the outer plexiform layer of the retina. Using markers of pre- and post-synaptic profiles (bassoon and synaptophysin as presynaptic markers and mGluR6 for postsynaptic profiles) we found that the normal orderly patterns seen between photoreceptors and rod and ON-cone bipolar cells were severely disrupted in dystrophic rats. In areas in which injected cells preserved photoreceptors, more normally appearing pairing of pre- and post-synaptic markers was seen for both rods and cones. The degree of normality correlated with the amount of photoreceptor rescue. The secondary changes that are normally seen in bipolar and horizontal cells were prevented by the photoreceptor preservation. ERG recordings in the animals subsequently studied morphologically showed that both a- and b-waves could be rescued by grafting, albeit with lower amplitudes than normal. Together these anatomical and physiological studies indicate that besides the integrity of outer nuclear layer cells and phototransduction processes, relay circuitry through the outer retina was rescued by cell grafts.
Collapse
Affiliation(s)
- Isabel Pinilla
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
33
|
Rubin GR, Kraft TW. Flicker assessment of rod and cone function in a model of retinal degeneration. Doc Ophthalmol 2007; 115:165-72. [PMID: 17674067 DOI: 10.1007/s10633-007-9066-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Critical flicker frequency (CFF) is the lowest frequency for which a flickering light is indistinguishable from a non-flickering light of the same mean luminance. CFF is related to light intensity, with cone photoreceptors capable of achieving higher CFF than rods. A contemporaneous measure of rod and cone function can facilitate characterization of a retinal degeneration. We used sinusoidal flicker ERG to obtain CFF values, over a wide range of light intensities, in RCS dystrophic (RCS-p(+)) and wild type rats. Recordings were made at PN23, PN44, and PN64. The CFF curve in control animals increased in proportion to the log of stimulus intensity, with a gentle slope over the lowest 4 log-unit intensity range. The slope of the CFF curve dramatically increased for higher intensities, indicating a rod-cone break. In the RCS rats the rod driven CFF was significantly lower in amplitude compared to normal rats at the earliest age tested (PN23). By PN64 the rod driven CFF was immeasurable in the RCS rats. The amplitude of the cone driven CFF approached normal values at PN23, but was greatly reduced by PN44. By PN64 the entire CFF function was greatly depressed and there was no longer a discernable rod-cone break. These CFF/ERG data show that RCS rats exhibit significant early degeneration of the rods, followed soon after by degeneration of the cones. Using this approach, rod and cone function can be independently accessed using flicker ERG by testing at a few select intensities.
Collapse
Affiliation(s)
- Glen R Rubin
- Department of Vision Sciences, University of Alabama at Birmingham, 924 18th Street South, Worrell Building, Birmingham, AL 35294-4390, USA
| | | |
Collapse
|
34
|
Ohzeki T, Machida S, Takahashi T, Ohtaka K, Kurosaka D. The Effect of intravitreal N-methyl-DL-aspartic acid on the electroretinogram in Royal College of surgeons rats. Jpn J Ophthalmol 2007; 51:165-74. [PMID: 17554477 DOI: 10.1007/s10384-007-0420-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/19/2007] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate how the third-order neuronal response contributes to shaping the electroretinogram (ERG) in the Royal College of Surgeons (RCS) rat. METHODS Full-field ERGs were recorded from dystrophic RCS rats (n = 30) at 4, 6, 8, 10, 12, or 14 weeks of age in response to different stimulus intensities (maximum intensity, 0.84 log cd-s/m(2)). N-methyl-DL: -aspartic acid (NMDA, 5 mM) was injected into the vitreous cavity of the right eyes to eliminate the third-order neuronal response. The left eyes received the vehicle and served as controls. The third-order neuronal response was isolated by digitally subtracting waveforms of the NMDA-injected eyes from those of the control eyes. RESULTS The ERG a- and b-waves deteriorated with the age of the rat. The third-order neuronal response was preserved to a greater degree than the b-wave despite progression of photoreceptor degeneration. Intravitreal injection of NMDA attenuated the a-wave and enhanced the b-wave across the stimulus range from low to middle intensities. This tendency became more pronounced with advancing rat age. In aged dystrophic RCS rats this phenomenon was seen even at maximum intensity. The difference between NMDA-injected and vehicle-injected eyes was larger for the threshold than for the maximum amplitude at each examined time point (P < 0.001). Intravitreal injection of NMDA decreased implicit times of the a- and b-waves after the rats reached 8 weeks of age (P < 0.005 for the a-wave). CONCLUSION With advancing photoreceptor degeneration, the third-order neuronal response made a greater contribution to shaping the a- and b-waves in dystrophic RCS rats.
Collapse
Affiliation(s)
- Takayuki Ohzeki
- Department of Ophthalmology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | | | | | | | | |
Collapse
|
35
|
Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauvé Y, Lanza R. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. CLONING AND STEM CELLS 2006; 8:189-99. [PMID: 17009895 DOI: 10.1089/clo.2006.8.189] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.
Collapse
Affiliation(s)
- Raymond D Lund
- Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM, Chin FY, Gosiewska A, Mistry SK. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. STEM CELLS (DAYTON, OHIO) 2006; 25:602-11. [PMID: 17053209 DOI: 10.1634/stemcells.2006-0308] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Progressive photoreceptor degeneration resulting from genetic and other factors is a leading and largely untreatable cause of blindness worldwide. The object of this study was to find a cell type that is effective in slowing the progress of such degeneration in an animal model of human retinal disease, is safe, and could be generated in sufficient numbers for clinical application. We have compared efficacy of four human-derived cell types in preserving photoreceptor integrity and visual functions after injection into the subretinal space of the Royal College of Surgeons rat early in the progress of degeneration. Umbilical tissue-derived cells, placenta-derived cells, and mesenchymal stem cells were studied; dermal fibroblasts served as cell controls. At various ages up to 100 days, electroretinogram responses, spatial acuity, and luminance threshold were measured. Both umbilical-derived and mesenchymal cells significantly reduced the degree of functional deterioration in each test. The effect of placental cells was not much better than controls. Umbilical tissue-derived cells gave large areas of photoreceptor rescue; mesenchymal stem cells gave only localized rescue. Fibroblasts gave sham levels of rescue. Donor cells were confined to the subretinal space. There was no evidence of cell differentiation into neurons, of tumor formation or other untoward pathology. Since the umbilical tissue-derived cells demonstrated the best photoreceptor rescue and, unlike mesenchymal stem cells, were capable of sustained population doublings without karyotypic changes, it is proposed that they may provide utility as a cell source for the treatment of retinal degenerative diseases such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Raymond D Lund
- Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cuenca N, Pinilla I, Sauvé Y, Lund R. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci 2006; 22:1057-72. [PMID: 16176347 DOI: 10.1111/j.1460-9568.2005.04300.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON-bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a-waves and b-waves were already reduced by P21 but not oscillatory potentials. While cone-driven responses (photopic b-wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone-driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Moran Eye Center, Ophthalmology and Visual Sciences, 75 North Medical Dr, University of Utah, 84132 Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
38
|
Sauvé Y, Pinilla I, Lund RD. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res 2005; 46:1459-72. [PMID: 16364396 DOI: 10.1016/j.visres.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 09/28/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
We quantified rod- and cone-related electroretinogram (ERG) responses following subretinal injections of the human-derived retinal pigment epithelial (hRPE) cell line ARPE-19 at age P23 to prevent progressive photoreceptor loss in the Royal College of Surgeons (RCS) rat. Culture medium-injected eyes served as sham controls. At P60, in comparison with sham-injected eyes, all recordings from hRPE-injected eyes showed preserved scotopic a- and b-waves, oscillatory potentials, double-flash-derived rod b-waves and photopic cone b-waves, and flicker critical fusion frequencies and amplitudes. Although the actual preservation did not exceed 10% of a-wave and 20% of b-wave amplitude values in non-dystrophic RCS and deteriorated rapidly by P90, rod- and cone-related ERG parameters were still recordable up to P120 unlike the virtually unresponsive sham-injected eyes.
Collapse
Affiliation(s)
- Y Sauvé
- Department of Ophthalmology, 7-55 Medical Sciences Bldg, University of Alberta, Edmonton, Alta., Canada T6G 2H7.
| | | | | |
Collapse
|
39
|
Pinilla I, Lund RD, Sauvé Y. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation. Neurosci Lett 2005; 382:16-21. [PMID: 15911114 DOI: 10.1016/j.neulet.2005.02.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/11/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The heterozygous P23H transgenic rat is a model of autosomal dominant retinitis pigmentosa, in which a mutation in the rhodopsin gene leads to a rapid loss of rods and a more protracted loss of cones. It has been suggested that rods play an essential role in preserving cones. We tested this hypothesis by examining whether higher levels of dysfunctional rhodopsin in rats homozygous for the P23H mutation would result in exacerbated cone dysfunction when compared with heterozygous P23H rats. Electroretinogram (ERG) responses were recorded from P21 to P250 in Sprague-Dawley (SD) and homozygous P23H rats. Both scotopic and photopic intensity response ERGs were severely depressed already at P21 when compared with age-matched SD rats. Furthermore, flicker amplitudes and critical fusion frequencies were also lower in P23H compared with SD rats at P21. Scotopic and photopic intensity responses as well as flicker amplitude and critical fusion frequencies declined rapidly up to P60, reaching a steady state that was maintained up to P200. We conclude that in rats homozygous for P23H rhodopsin mutations, the severe loss of rod function already seen by P21 is accompanied by substantial cone functional loss at that age. While rod-related responses are more severely affected than cone-related responses at all ages, their actual rate of decline with age is surprisingly similar. Both undergo a biphasic temporal pattern of decline: very rapid (P21-P60) followed by very slow (P60-P200) deterioration in response parameters, implying a tight link between rod and cone functional deterioration.
Collapse
Affiliation(s)
- I Pinilla
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, 75 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
40
|
Pinilla I, Lund RD, Lu B, Sauvé Y. Measuring the cone contribution to the ERG b-wave to assess function and predict anatomical rescue in RCS rats. Vision Res 2005; 45:635-41. [PMID: 15621180 DOI: 10.1016/j.visres.2004.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Subretinal injections of human retinal pigment epithelial (RPE) cells early in the course of retinal degeneration in Royal College of Surgeons (RCS) rats can rescue photoreceptors. Fourteen injected animals were studied using a double flash electroretinogram (ERG): 10 were examined longitudinally and four terminally with immunohistochemistry. The proportion of cone contribution to the ERG b-wave rather than the absolute size of isolated cone response proved to be a reliable indicator of function over time and a predictor of the proportion of cones identified anatomically in the area of optimal photoreceptor rescue.
Collapse
Affiliation(s)
- I Pinilla
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, 75 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
41
|
Girman SV, Wang S, Lund RD. Time course of deterioration of rod and cone function in RCS rat and the effects of subretinal cell grafting: a light- and dark-adaptation study. Vision Res 2005; 45:343-54. [PMID: 15607350 DOI: 10.1016/j.visres.2004.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Revised: 08/17/2004] [Indexed: 11/28/2022]
Abstract
To examine how rod and cone function are differentially affected during retinal degeneration, and after subretinal cell grafting, we obtained light- and dark-adaptation curves by recording threshold multiunit responses from the superior colliculus of anesthetized rats. Unoperated RCS dystrophic and non-dystrophic rats were used and the effects of subretinal grafting in dystrophic rats of cells known to limit photoreceptor degeneration were examined. The adaptation curves showed that rod function was severely compromised in unoperated dystrophic RCS rats at low luminance levels, even as early as 21 days of age and that cone thresholds became gradually elevated over time. While cell transplantation preserved both rod and cone photoreceptors, rod function did not recover, although further deterioration of cone threshold responses was prevented. This raises concern that measures of outer nuclear layer thickness may not in themselves be an accurate measure of visual capabilities and efficacy of a restoration strategy.
Collapse
Affiliation(s)
- S V Girman
- Moran Eye Center, University of Utah Health Sciences Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|