1
|
Ahluwalia K, Du Z, Martinez-Camarillo JC, Naik A, Thomas BB, Pollalis D, Lee SY, Dave P, Zhou E, Li Z, Chester C, Humayun MS, Louie SG. Unveiling Drivers of Retinal Degeneration in RCS Rats: Functional, Morphological, and Molecular Insights. Int J Mol Sci 2024; 25:3749. [PMID: 38612560 PMCID: PMC11011632 DOI: 10.3390/ijms25073749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zhaodong Du
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| | - Juan Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| |
Collapse
|
2
|
Gao F, Li Z, Kang Z, Liu D, Li P, Ou Q, Xu JY, Li W, Tian H, Jin C, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Inhibition of PARP activity improves therapeutic effect of ARPE-19 transplantation in RCS rats through decreasing photoreceptor death. Exp Eye Res 2021; 204:108448. [PMID: 33484702 DOI: 10.1016/j.exer.2021.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ziwei Kang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Koster C, Wever KE, Wagstaff EL, van den Hurk KT, Hooijmans CR, Bergen AA. A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models. Int J Mol Sci 2020; 21:E2719. [PMID: 32295315 PMCID: PMC7216090 DOI: 10.3390/ijms21082719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. METHODS In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. RESULTS original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), n = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), n = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. CONCLUSIONS This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.
Collapse
Affiliation(s)
- Céline Koster
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Kimberley E. Wever
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
| | - Ellie L. Wagstaff
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Koen T. van den Hurk
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Carlijn R. Hooijmans
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
- Department of Ophthalmology, AUMC, AMC, UvA, 1105 AZ Amsterdam, The Netherlands
- Department of Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chintalapudi SR, Wang X, Wang X, Shi Y, Kocak M, Palamoor M, Davis RN, Hollingsworth TJ, Jablonski MM. NA3 glycan: a potential therapy for retinal pigment epithelial deficiency. FEBS J 2019; 286:4876-4888. [PMID: 31322324 DOI: 10.1111/febs.15006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/01/2022]
Abstract
Atrophic age-related macular degeneration (AMD) is the most common type of AMD, yet there is no United States Food and Drug Administration (FDA)-approved therapy. This disease is characterized by retinal pigment epithelial (RPE) insufficiency, primarily in the macula, which affects the structure and physiology of photoreceptors and ultimately, visual function. In this study, we evaluated the protective effects of a naturally derived small molecule glycan therapeutic-asialo-, tri-antennary complex-type N-glycan (NA3)-in two distinct preclinical models of atrophic AMD. In RPE-deprived Xenopus laevis tadpole eyes, NA3 supported normal retinal ultrastructure. In RCS rats, NA3 supported fully functioning visual integrity. Furthermore, structural analyses revealed that NA3 prevented photoreceptor outer segment degeneration, pyknosis of the outer nuclear layer, and reactive gliosis of Müller cells (MCs). It also promoted maturation of adherens junctions between MC and photoreceptors. Our results demonstrate the neuroprotective effects of a naturally derived small molecular glycan therapeutic-NA3-in two unique preclinical models with RPE insufficiency. These data suggest that NA3 glycan therapy may provide a new therapeutic avenue in the prevention and/or treatment of retinal diseases such as atrophic AMD.
Collapse
Affiliation(s)
- Sumana R Chintalapudi
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - XiaoFei Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yunfeng Shi
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mehmet Kocak
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mallika Palamoor
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raven N Davis
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - T J Hollingsworth
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Pasovic L, Utheim TP, Reppe S, Khan AZ, Jackson CJ, Thiede B, Berg JP, Messelt EB, Eidet JR. Improvement of Storage Medium for Cultured Human Retinal Pigment Epithelial Cells Using Factorial Design. Sci Rep 2018; 8:5688. [PMID: 29632395 PMCID: PMC5890280 DOI: 10.1038/s41598-018-24121-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.
Collapse
Affiliation(s)
- L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Surgery, Akershus University Hospital, Lørenskog, Norway.
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C J Jackson
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - B Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - J P Berg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - E B Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - J R Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
McGill TJ, Wilson DJ, Stoddard J, Renner LM, Neuringer M. Cell Transplantation for Retinal Degeneration: Transition from Rodent to Nonhuman Primate Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:641-647. [DOI: 10.1007/978-3-319-75402-4_78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Huang L, Li Z, Tian H, Wang W, Cui D, Zhou Z, Chen X, Cheung HS, Xu GT, Chen Y. Adult human periodontal ligament-derived stem cells delay retinal degeneration and maintain retinal function in RCS rats. Stem Cell Res Ther 2017; 8:290. [PMID: 29273085 PMCID: PMC5741902 DOI: 10.1186/s13287-017-0731-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Retinal degeneration (RD) is a leading cause of irreversible blindness, affecting millions of people worldwide. Stem cell transplantation has been considered a promising therapy for retinal degenerative diseases. This study aimed to investigate the therapeutic potential of human periodontal ligament-derived stem cells (hPDLSCs) for intervention in the progress of this degeneration in the Royal College Surgeons (RCS) rat. Methods hPDLSCs were injected into the subretinal space of 3-week-old RCS rats. Control animals received a phosphate-buffered saline injection or were untreated. Retinal function was assessed by electroretinography recording. Eyes were collected afterward for histology and molecular studies. Results Retinal function maintenance was observed at 2 weeks and persisted for up to 8 weeks following hPDLSC transplantation. Retinal structure preservation was demonstrated in hPDLSC-transplanted eyes at 4 and 8 weeks following transplantation, as reflected in the preservation of outer nuclear layer thickness and gene expression of Rho, Crx, and Opsin. The percentage of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic photoreceptors was significantly lower in the hPDLSC-injected retinas than in those of the control groups. hPDLSCs were also found to express multiple neurotrophic factors, including vascular endothelial growth factor, bioactive basic fibroblast growth factor, brain-derived neurotrophic factor, neurotrophin-3, insulin-like growth factor 1, nerve growth factor, and glial cell line-derived neurotrophic factor. Conclusions Our findings suggest that hPDLSC transplantation is effective in delaying photoreceptor loss and provides significant preservation of retinal function in RCS rats. This study supports further exploration of hPDLSCs for treating RD. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0731-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
| | - Zongyi Li
- Qingdao University, Qingdao, 266071, China.,Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.,The Stem Cell Research Center and the Stem Cell Bank, Tongji University School of Medicine, Shanghai, 200092, China
| | - Weiguo Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Dawei Cui
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
| | - Zhe Zhou
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310003, China
| | - Xiao Chen
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Herman S Cheung
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA.,Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs (VA) Medical Center, Miami, FL, 33146, USA
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China. .,The Stem Cell Research Center and the Stem Cell Bank, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Chen
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Assessment of Safety and Functional Efficacy of Stem Cell-Based Therapeutic Approaches Using Retinal Degenerative Animal Models. Stem Cells Int 2017; 2017:9428176. [PMID: 28928775 PMCID: PMC5592015 DOI: 10.1155/2017/9428176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.
Collapse
|
9
|
Kennelly KP, Holmes TM, Wallace DM, O'Farrelly C, Keegan DJ. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity. Cell Transplant 2017; 26:983-1000. [PMID: 28105976 DOI: 10.3727/096368917x694697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.
Collapse
|
10
|
Eckmier A, Daney de Marcillac W, Maître A, Jay TM, Sanders MJ, Godsil BP. Rats can acquire conditional fear of faint light leaking through the acrylic resin used to mount fiber optic cannulas. ACTA ACUST UNITED AC 2016; 23:684-688. [PMID: 27918272 PMCID: PMC5110984 DOI: 10.1101/lm.042465.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
Abstract
Rodents are exquisitely sensitive to light and optogenetic behavioral experiments routinely introduce light-delivery materials into experimental situations, which raises the possibility that light could leak and influence behavioral performance. We examined whether rats respond to a faint diffusion of light, termed caplight, which emanated through the translucent dental acrylic resin used to affix deep-brain optical cannulas in place. Although rats did not display significant changes in locomotion or rearing to caplight in a darkened open field, they did acquire conditional fear via caplight-footshock pairings. These findings highlight the potential confounding influence of extraneous light emanating from light-delivery materials during optogenetic analyses.
Collapse
Affiliation(s)
- Adam Eckmier
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | | | - Agnès Maître
- INSP, CNRS7588, Université Pierre et Marie Curie-Paris 6, F-75252 Paris Cedex 05 92037, France
| | - Thérèse M Jay
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Matthew J Sanders
- Psychology Department, College of Letters and Sciences, National University, La Jolla, California 92037, USA
| | - Bill P Godsil
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris 75014, France .,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| |
Collapse
|
11
|
Qu Z, Guan Y, Cui L, Song J, Gu J, Zhao H, Xu L, Lu L, Jin Y, Xu GT. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration. Stem Cell Res Ther 2015; 6:219. [PMID: 26553210 PMCID: PMC4640237 DOI: 10.1186/s13287-015-0207-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. METHODS The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. RESULTS We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. CONCLUSIONS We have successfully differentiated rESCs to glia enriched RPCs and retinal neuron enriched RPCs in vitro. The retinal neuron enriched rESC-RPC2 protected the structure and function of retina in rats with genetic retinal degeneration and could be a candidate cell source for treating some degenerative retinal diseases in human trials.
Collapse
Affiliation(s)
- Zepeng Qu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yuan Guan
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Lu Cui
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jian Song
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Lei Xu
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
13
|
Alvarez Palomo AB, McLenachan S, Chen FK, Da Cruz L, Dilley RJ, Requena J, Lucas M, Lucas A, Drukker M, Edel MJ. Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. FIBROGENESIS & TISSUE REPAIR 2015; 8:9. [PMID: 25984235 PMCID: PMC4432516 DOI: 10.1186/s13069-015-0026-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
Collapse
Affiliation(s)
- Ana Belen Alvarez Palomo
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Lyndon Da Cruz
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD England
| | - Rodney J Dilley
- Ear Sciences Centre, 1 Salvado Rd, Subiaco, WA 6008 Australia ; School of Surgery, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| | - Jordi Requena
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Michaela Lucas
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia ; PathWest, SCGH Laboratories Hospital Ave, Nedlands, WA 6009 Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Perth, WA 6150 Australia
| | - Micha Drukker
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain ; Division of Pediatrics and Child Health, Westmead Children's Hospital, Corner Hawkesbury Road and Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ; School of Anatomy, Physiology & Human Biology and Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| |
Collapse
|
14
|
Antioxidants Improve the Viability of Stored Adult Retinal Pigment Epithelial-19 Cultures. Ophthalmol Ther 2014; 3:49-61. [PMID: 25134496 PMCID: PMC4254857 DOI: 10.1007/s40123-014-0024-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/03/2022] Open
Abstract
Introduction There is increasing evidence that retinal pigment epithelium (RPE) can be used to treat age-related macular degeneration, one of the leading causes of blindness worldwide. However, the best way to store RPE to enable worldwide distribution is unknown. We investigated the effects of supplementing our previously published storage method with seven additives, attempting to improve the number of viable adult retinal pigment epithelial (ARPE)-19 cells after storage. Materials and methods ARPE-19 cells were cultured on multiwell plates before being stored for 1 week at 16 °C. Unsupplemented Minimal Essential Medium (MEM) (control) and a total of seven individual additives (DADLE ([d-Ala2, d-Leu5]-encephalin), capsazepine, docosahexaenoic acid (DHA), resveratrol, quercetin, simvastatin and sulforaphane) at three to four concentrations in MEM were tested. The individual effect of each additive on cell viability was analyzed with a microplate fluorometer. Cell phenotype was investigated by both microplate fluorometer and epifluorescence microscopy, and morphology by scanning electron microscopy. Results Supplementation of the storage medium with DADLE, capsazepine, DHA or resveratrol significantly increased the number of viable cells by 86.1% ± 41.9%, 67.9% ± 24.7%, 36.5% ± 10.3% and 21.1% ± 6.4%, respectively, compared to cells stored in unsupplemented MEM. DHA and resveratrol significantly reduced caspase-3 expression, while expression of RPE65 was maintained across groups. Conclusion The number of viable ARPE-19 cells can be increased by the addition of DADLE, capsazepine, DHA or resveratrol to the storage medium without perturbing apoptosis or differentiation. Electronic supplementary material The online version of this article (doi:10.1007/s40123-014-0024-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Optimization of Storage Temperature for Cultured ARPE-19 Cells. J Ophthalmol 2013; 2013:216359. [PMID: 24251032 PMCID: PMC3819763 DOI: 10.1155/2013/216359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 12/31/2022] Open
Abstract
Purpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C) for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7% ± 9.8%; P < 0.01 compared to 4°C, 8°C, and 24°C–37°C; P < 0.05 compared to 12°C). Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.
Collapse
|
16
|
Cui L, Guan Y, Qu Z, Zhang J, Liao B, Ma B, Qian J, Li D, Li W, Xu GT, Jin Y. WNT signaling determines tumorigenicity and function of ESC-derived retinal progenitors. J Clin Invest 2013; 123:1647-61. [PMID: 23524971 PMCID: PMC3613909 DOI: 10.1172/jci65048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023] Open
Abstract
Tumor formation constitutes a major obstacle to the clinical application of embryonic stem cell-derived (ESC-derived) cells. In an attempt to find major extracellular signaling and intrinsic factors controlling tumorigenicity and therapeutic functionality of transplanted ESC-derived retinal progenitor cells (ESC-RPCs), we evaluated multiple kinds of ESC-RPCs in a mouse retinal degeneration model and conducted genome-wide gene expression profiling. We identified canonical WNT signaling as a critical determinant for the tumorigenicity and therapeutic function of ESC-RPCs. The function of WNT signaling is primarily mediated by TCF7, which directly induces expression of Sox2 and Nestin. Inhibition of WNT signaling, overexpression of dominant-negative Tcf7, and silencing Tcf7, Sox2, or Nestin all resulted in drastically reduced tumor formation and substantially improved retinal integration and visual preservation in mice. These results demonstrate that the WNT signaling cascade plays a critical role in modulating the tumorigenicity and functionality of ESC-derived progenitors.
Collapse
Affiliation(s)
- Lu Cui
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Yuan Guan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Zepeng Qu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Jingfa Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Bing Liao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Bo Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Jiang Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Dangsheng Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Weiye Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Guo-Tong Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| |
Collapse
|
17
|
Wong LL, Hirst SM, Pye QN, Reilly CM, Seal S, McGinnis JF. Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One 2013; 8:e58431. [PMID: 23536794 PMCID: PMC3594235 DOI: 10.1371/journal.pone.0058431] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
Cerium oxide nanoparticles (nanoceria) possess catalytic and regenerative radical scavenging activities. The ability of nanoceria to maintain cellular redox balance makes them ideal candidates for treatment of retinal diseases whose development is tightly associated with oxidative damage. We have demonstrated that our stable water-dispersed nanoceria delay photoreceptor cell degeneration in rodent models and prevent pathological retinal neovascularization in vldlr mutant mice. The objectives of the current study were to determine the temporal and spatial distributions of nanoceria after a single intravitreal injection, and to determine if nanoceria had any toxic effects in healthy rat retinas. Using inductively-coupled plasma mass spectrometry (ICP-MS), we discovered that nanoceria were rapidly taken up by the retina and were preferentially retained in this tissue even after 120 days. We also did not observe any acute or long-term negative effects of nanoceria on retinal function or cytoarchitecture even after this long-term exposure. Because nanoceria are effective at low dosages, nontoxic and are retained in the retina for extended periods, we conclude that nanoceria are promising ophthalmic therapeutics for treating retinal diseases known to involve oxidative stress in their pathogeneses.
Collapse
Affiliation(s)
- Lily L. Wong
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- * E-mail: (LLW); (JFM)
| | - Suzanne M. Hirst
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, and Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Quentin N. Pye
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Christopher M. Reilly
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, and Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Sudipta Seal
- Advanced Materials Processing Analysis Center, Mechanical Materials Aerospace Engineering, Nanoscience and Technology Center, University of Central Florida, Orlando, Florida, United States of America
| | - James F. McGinnis
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, College of Medicine, and Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Graduate College, Oklahoma City, Oklahoma, United States of America
- * E-mail: (LLW); (JFM)
| |
Collapse
|
18
|
McGill TJ, Prusky GT, Douglas RM, Yasumura D, Matthes MT, Lowe RJ, Duncan JL, Yang H, Ahern K, Daniello KM, Silver B, LaVail MM. Discordant anatomical, electrophysiological, and visual behavioral profiles of retinal degeneration in rat models of retinal degenerative disease. Invest Ophthalmol Vis Sci 2012; 53:6232-44. [PMID: 22899760 DOI: 10.1167/iovs.12-9569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To assess structural, functional, and visual behavioral relationships in mutant rhodopsin transgenic (Tg) rats and to determine whether early optokinetic tracking (OKT) visual experience, known to permanently elevate visual thresholds in normal rats, can enhance vision in rats with photoreceptor degeneration. METHODS Eight lines of pigmented Tg rats and RCS rats were used in this study. OKT thresholds were tested at single ages (1, 2, 3, 4, and 6 months) in naïve groups of rats, or daily in groups that began at eye-opening (P15) or 10 days later (P25). Electroretinogram (ERG) response amplitudes were recorded after OKT testing, and outer nuclear layer (ONL) thickness measurements were then obtained. RESULTS OKT thresholds, when measured at a single time point in naïve Tg lines beginning at P30, did not decline until months after significant photoreceptor loss. Daily testing of Tg lines resulted mostly with OKT thresholds inversely related to photoreceptor degeneration, with rapid degenerations resulting in sustained OKT thresholds for long periods despite the rapid photoreceptor loss. Slower degenerations resulted in rapid decline of thresholds, long before the loss of most photoreceptors, which was even more pronounced when daily testing began at eye opening. This amplified loss of function was not a result of testing-induced damage to the rod or cone photoreceptors, as ERG amplitudes and ONL thicknesses were the same as untested controls. CONCLUSIONS The unexpected lack of correlation of OKT testing with photoreceptor degeneration in the Tg rats emphasizes the need in behavioral therapeutic studies for careful analysis of visual thresholds of experimental animals prior to therapeutic intervention.
Collapse
Affiliation(s)
- Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cell-type specific roles for PTEN in establishing a functional retinal architecture. PLoS One 2012; 7:e32795. [PMID: 22403711 PMCID: PMC3293905 DOI: 10.1371/journal.pone.0032795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022] Open
Abstract
Background The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. Methodology/Principal Findings In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. Conclusions/Significance We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.
Collapse
|
20
|
Matsumoto T, Okada T, Sawada Y, Ishibashi Y. Changes in the scotopic vision of juvenile Pacific bluefin tuna (Thunnus orientalis) with growth. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:693-700. [PMID: 21331803 DOI: 10.1007/s10695-011-9469-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
In cultured juvenile Pacific bluefin tuna (Thunnus orientalis), reducing the mass deaths caused by collision or contact with tank or net walls at night is a priority for seedling production. Pacific bluefin tuna is a visually dependant species, although its scotopic vision is poor. We recorded electroretinograms to investigate the visual function with growth in the dark-adapted eyes of juvenile Pacific bluefin tuna. Peak wavelengths of spectral sensitivity [38-62 days posthatch (dph), 77-167 mm standard length (SL)] were observed between 474 and 494 nm. Visual light sensitivity has a tendency to increase slightly with growth at 28-64 dph in individuals that measured 29-175 mm SL. However, visual temporal resolution did not significantly increase with growth at 38-62 days dph in individuals that measured 77-167 mm SL. These results suggest that the mass death continues between 28 and 64 dph because of low visual function and increasing swimming speed with growth.
Collapse
Affiliation(s)
- Taro Matsumoto
- Department of Fisheries, Faculty of Agriculture, Kinki University, Naka-Machi, Nara 631-8505, Japan
| | | | | | | |
Collapse
|
21
|
Wong IYH, Poon MW, Pang RTW, Lian Q, Wong D. Promises of stem cell therapy for retinal degenerative diseases. Graefes Arch Clin Exp Ophthalmol 2011; 249:1439-48. [PMID: 21866334 PMCID: PMC3178027 DOI: 10.1007/s00417-011-1764-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
With the development of stem cell technology, stem cell-based therapy for retinal degeneration has been proposed to restore the visual function. Many animal studies and some clinical trials have shown encouraging results of stem cell-based therapy in retinal degenerative diseases. While stem cell-based therapy is a promising strategy to replace damaged retinal cells and ultimately cure retinal degeneration, there are several important challenges which need to be overcome before stem cell technology can be applied widely in clinical settings. In this review, different types of donor cell origins used in retinal treatments, potential target cell types for therapy, methods of stem cell delivery to the eye, assessments of potential risks in stem cell therapy, as well as future developments of retinal stem cells therapy, will be discussed.
Collapse
Affiliation(s)
- Ian Yat-Hin Wong
- Department of Medicine and Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | | | | | | | | |
Collapse
|
22
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Temporal and spatial characteristics of cone degeneration in RCS rats. Jpn J Ophthalmol 2011; 55:155-62. [DOI: 10.1007/s10384-010-0908-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 09/30/2010] [Indexed: 11/26/2022]
|
24
|
Schatz A, Willmann G, Enderle H, Sliesoraityte I, Messias A, Bartz-Schmidt K, Zrenner E, Gekeler F. A new DTL-electrode holder for recording of electroretinograms in animals. J Neurosci Methods 2011; 195:128-34. [PMID: 21075141 DOI: 10.1016/j.jneumeth.2010.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
25
|
Transplantation of photoreceptor and total neural retina preserves cone function in P23H rhodopsin transgenic rat. PLoS One 2010; 5:e13469. [PMID: 20976047 PMCID: PMC2957406 DOI: 10.1371/journal.pone.0013469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/27/2010] [Indexed: 01/13/2023] Open
Abstract
Background Transplantation as a therapeutic strategy for inherited retinal degeneration has been historically viewed to restore vision as a method by replacing the lost retinal cells and attempting to reconstruct the neural circuitry with stem cells, progenitor cells and mature neural retinal cells. Methods and Findings We present evidence for an alternative strategy aimed at preventing the secondary loss of cones, the most crucial photoreceptors for vision, by transplanting normal photoreceptors cells into the eye of the P23H rat, a model of dominant retinitis pigmentosa. We carried out transplantation of photoreceptors or total neural retina in 3-month-old P23H rats and evaluated the function and cell counts 6 months after surgery. In both groups, cone loss was significantly reduced (10%) in the transplanted eyes where the cone outer segments were found to be considerably longer. This morphological effect correlated with maintenance of the visual function of cones as scored by photopic ERG recording, but more precisely with an increase in the photopic b-wave amplitudes by 100% and 78% for photoreceptor transplantation and whole retinal transplantation respectively. Conclusions We demonstrate here that the transplanted tissue prevents the loss of cone function, which is further translated into cone survival.
Collapse
|
26
|
Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89:911-9. [PMID: 20164818 PMCID: PMC2855750 DOI: 10.1097/tp.0b013e3181d45a61] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. METHODS Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RESULTS RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. CONCLUSIONS ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Joaquin Tosi
- Department of Ophthalmology, Columbia University, New York City, NY
| | | | - Chai Lin Chou
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Nancy Parmalee
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Genetics and Development, Columbia University, New York, NY
| | - Katherine J. Wert
- Department of Ophthalmology, Columbia University, New York City, NY
- Institute of Human Nutrient, Columbia University, New York, NY
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chyuan-Sheng Lin
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| |
Collapse
|
27
|
Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJK, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 2009; 4:e8152. [PMID: 19997644 PMCID: PMC2780911 DOI: 10.1371/journal.pone.0008152] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/06/2009] [Indexed: 12/16/2022] Open
Abstract
Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs). These induced pluripotent stem (iPS) cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD), the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE). As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS) dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.
Collapse
Affiliation(s)
- Amanda-Jayne Carr
- Department of Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matsumoto T, Ihara H, Ishida Y, Okada T, Kurata M, Sawada Y, Ishibashi Y. Electroretinographic analysis of night vision in juvenile pacific bluefin tuna (Thunnus orientalis). THE BIOLOGICAL BULLETIN 2009; 217:142-150. [PMID: 19875819 DOI: 10.1086/bblv217n2p142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We used electroretinogram recordings to investigate visual function in the dark-adapted eyes of the juvenile scombrid fishes Pacific bluefin tuna (Thunnus orientalis) and chub mackerel (Scomber japonicus) and the carangid fish striped jack (Pseudocaranx dentex). Despite the fast swimming speed of the Pacific bluefin tuna, analysis of flicker electroretinograms showed that visual temporal resolution in this species was inferior to that in chub mackerel. Peak wavelengths of spectral sensitivity in Pacific bluefin tuna and striped jack were 479 and 512 nm, respectively. The light sensitivity of Pacific bluefin tuna was comparable to that of chub mackerel but lower than that of striped jack. The Pacific bluefin tuna may not need high-level visual function under dim light conditions in natural habitat because it is a diurnal fish. However, this low temporal resolution and light sensitivity probably explain the mass deaths from contact or collisions with net walls in cultured Pacific bluefin tuna.
Collapse
Affiliation(s)
- Taro Matsumoto
- Department of Fisheries, School of Agriculture, Kinki University, Naka-machi, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Pinilla I, Cuenca N, Martínez-Navarrete G, Lund RD, Sauvé Y. Intraretinal processing following photoreceptor rescue by non-retinal cells. Vision Res 2009; 49:2067-77. [PMID: 19497333 DOI: 10.1016/j.visres.2009.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 01/13/2023]
Abstract
Royal College of Surgeon (RCS) rats undergo retinal degeneration due to the inability of retinal pigment epithelial (RPE) cells to phagocytose shed outer segments. We explored the effect of introducing Schwann cells to the subretinal space of RCS rats (before the onset of retinal degeneration), by relying on electroretinogram (ERG) recordings and correlative retinal morphology. Scotopic ERGs recorded from cell-injected eyes showed preserved amplitudes of mixed a-wave b-wave, rod b-waves, and cone b-waves over controls (sham-injected eyes); photopic b-wave amplitudes and critical flicker fusion were also improved. Normal retinal morphology was found in areas of retinas that had received cell injections. Since Schwann cells have no phagocytic properties, their therapeutic effect is best explained through a paracrine mechanism (secretion of factors that ensure photoreceptor survival).
Collapse
Affiliation(s)
- I Pinilla
- Department of Ophthalmology, Hospital Universitario Miguel Servet, Zaragoza, Instituto Aragones de Ciencias de la Salud, Spain
| | | | | | | | | |
Collapse
|
30
|
Gilmour GS, Gaillard F, Watson J, Kuny S, Mema SC, Bonfield S, Stell WK, Sauvé Y. The electroretinogram (ERG) of a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). Vision Res 2008; 48:2723-31. [DOI: 10.1016/j.visres.2008.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
|
31
|
Thumann G, Salz AK, Walter P, Johnen S. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells. Graefes Arch Clin Exp Ophthalmol 2008; 247:363-9. [PMID: 19034478 DOI: 10.1007/s00417-008-0998-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors. METHODS Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy. RESULTS Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 microm retina+/-sd: rIPE 41.67 +/- 28; hIPE 29.50 +/- 16; ARPE-19 36.12 +/- 21; sham 16.56 +/- 6) compared to age-matched, control rats (number of photoreceptors/300 microm retina+/-sd: 9.71 +/- 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE). CONCLUSION Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.
Collapse
Affiliation(s)
- Gabriele Thumann
- IZKF Biomat, RWTH University of Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | | | | | | |
Collapse
|
32
|
Doering CJ, Rehak R, Bonfield S, Peloquin JB, Stell WK, Mema SC, Sauvé Y, McRory JE. Modified Ca(v)1.4 expression in the Cacna1f(nob2) mouse due to alternative splicing of an ETn inserted in exon 2. PLoS One 2008; 3:e2538. [PMID: 18596967 PMCID: PMC2432030 DOI: 10.1371/journal.pone.0002538] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/15/2008] [Indexed: 01/19/2023] Open
Abstract
The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect and follow moving sine-wave gratings compared to their wild type counterparts.
Collapse
Affiliation(s)
- Clinton J. Doering
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Lions Centre for Retinal Degeneration Research, University of Calgary, Calgary, Canada
| | - Renata Rehak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Stephan Bonfield
- Cell Biology and Anatomy / Surgery, University of Calgary, Calgary, Canada
- Lions Centre for Retinal Degeneration Research, University of Calgary, Calgary, Canada
| | - Jean B. Peloquin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Lions Centre for Retinal Degeneration Research, University of Calgary, Calgary, Canada
| | - William K. Stell
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Cell Biology and Anatomy / Surgery, University of Calgary, Calgary, Canada
- Lions Centre for Retinal Degeneration Research, University of Calgary, Calgary, Canada
| | - Silvina C. Mema
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | - Yves Sauvé
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | - John E. McRory
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Lions Centre for Retinal Degeneration Research, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
33
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pinilla I, Cuenca N, Sauvé Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 2007; 85:381-92. [PMID: 17662715 PMCID: PMC2711686 DOI: 10.1016/j.exer.2007.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 05/03/2007] [Accepted: 06/05/2007] [Indexed: 11/23/2022]
Abstract
We have examined how transplantation of an RPE cell line to the subretinal space of RCS rats affects the distribution of synaptic connectivity markers in the outer plexiform layer of the retina. Using markers of pre- and post-synaptic profiles (bassoon and synaptophysin as presynaptic markers and mGluR6 for postsynaptic profiles) we found that the normal orderly patterns seen between photoreceptors and rod and ON-cone bipolar cells were severely disrupted in dystrophic rats. In areas in which injected cells preserved photoreceptors, more normally appearing pairing of pre- and post-synaptic markers was seen for both rods and cones. The degree of normality correlated with the amount of photoreceptor rescue. The secondary changes that are normally seen in bipolar and horizontal cells were prevented by the photoreceptor preservation. ERG recordings in the animals subsequently studied morphologically showed that both a- and b-waves could be rescued by grafting, albeit with lower amplitudes than normal. Together these anatomical and physiological studies indicate that besides the integrity of outer nuclear layer cells and phototransduction processes, relay circuitry through the outer retina was rescued by cell grafts.
Collapse
Affiliation(s)
- Isabel Pinilla
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
35
|
Gaillard F, Sauvé Y. Cell-based therapy for retina degeneration: the promise of a cure. Vision Res 2007; 47:2815-24. [PMID: 17719072 DOI: 10.1016/j.visres.2007.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 01/23/2023]
Abstract
Cell-based therapies in the retina have been associated with the recovery of visual function in animal models of retinal degeneration. This review covers the current status of such therapies with regard to the source of the donor cells, their integration, and their impact on the degenerating host retina. Emphasis is also put on the importance of a careful interpretation of what is meant by "recovery of visual function". Two main approaches are considered here: (1) the use of human embryonic stem cell derived retinal pigment epithelial (RPE) cells to rescue photoreceptors in an animal model of RPE defect; and (2) the use of photoreceptor precursors to repair the degenerating neural retina. The current conclusions are that major hurdles have to be dealt with, such as finding an appropriate and ethically compliant donor cell source that would yield protracted survival and integration of the replacement retinal cells, and that there is no evidence yet that cell-based therapies can allow the long-term preservation or recovery of conscious vision.
Collapse
Affiliation(s)
- Frédéric Gaillard
- Institut de Physiologie et Biologie Cellulaires, UMR 6187 CNRS, Université de Poitiers, Poitiers, France
| | | |
Collapse
|
36
|
da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26:598-635. [PMID: 17920328 DOI: 10.1016/j.preteyeres.2007.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.
Collapse
Affiliation(s)
- Lyndon da Cruz
- Division of Cellular Therapy, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
37
|
Gamm DM, Wang S, Lu B, Girman S, Holmes T, Bischoff N, Shearer RL, Sauvé Y, Capowski E, Svendsen CN, Lund RD. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2007; 2:e338. [PMID: 17396165 PMCID: PMC1828619 DOI: 10.1371/journal.pone.0000338] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/07/2007] [Indexed: 12/17/2022] Open
Abstract
Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo.
Collapse
Affiliation(s)
- David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM, Chin FY, Gosiewska A, Mistry SK. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. STEM CELLS (DAYTON, OHIO) 2006; 25:602-11. [PMID: 17053209 DOI: 10.1634/stemcells.2006-0308] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Progressive photoreceptor degeneration resulting from genetic and other factors is a leading and largely untreatable cause of blindness worldwide. The object of this study was to find a cell type that is effective in slowing the progress of such degeneration in an animal model of human retinal disease, is safe, and could be generated in sufficient numbers for clinical application. We have compared efficacy of four human-derived cell types in preserving photoreceptor integrity and visual functions after injection into the subretinal space of the Royal College of Surgeons rat early in the progress of degeneration. Umbilical tissue-derived cells, placenta-derived cells, and mesenchymal stem cells were studied; dermal fibroblasts served as cell controls. At various ages up to 100 days, electroretinogram responses, spatial acuity, and luminance threshold were measured. Both umbilical-derived and mesenchymal cells significantly reduced the degree of functional deterioration in each test. The effect of placental cells was not much better than controls. Umbilical tissue-derived cells gave large areas of photoreceptor rescue; mesenchymal stem cells gave only localized rescue. Fibroblasts gave sham levels of rescue. Donor cells were confined to the subretinal space. There was no evidence of cell differentiation into neurons, of tumor formation or other untoward pathology. Since the umbilical tissue-derived cells demonstrated the best photoreceptor rescue and, unlike mesenchymal stem cells, were capable of sustained population doublings without karyotypic changes, it is proposed that they may provide utility as a cell source for the treatment of retinal degenerative diseases such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Raymond D Lund
- Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|