1
|
Tong J, Phu J, Alonso-Caneiro D, Kugelman J, Khuu S, Agar A, Coroneo M, Kalloniatis M. Exploring the relationship between 24-2 visual field and widefield optical coherence tomography data across healthy, glaucoma suspect and glaucoma eyes. Ophthalmic Physiol Opt 2024; 44:1484-1499. [PMID: 39056571 DOI: 10.1111/opo.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE To utilise ganglion cell-inner plexiform layer (GCIPL) measurements acquired using widefield optical coherence tomography (OCT) scans spanning 55° × 45° to explore the link between co-localised structural parameters and clinical visual field (VF) data. METHODS Widefield OCT scans acquired from 311 healthy, 268 glaucoma suspect and 269 glaucoma eyes were segmented to generate GCIPL thickness measurements. Estimated ganglion cell (GC) counts, calculated from GCIPL measurements, were plotted against 24-2 SITA Faster visual field (VF) thresholds, and regression models were computed with data categorised by diagnosis and VF status. Classification of locations as VF defective or non-defective using GCIPL parameters computed across eccentricity- and hemifield-dependent clusters was assessed by analysing areas under receiver operating characteristic curves (AUROCCs). Sensitivities and specificities were calculated per diagnostic category. RESULTS Segmented linear regression models between GC counts and VF thresholds demonstrated higher variability in VF defective locations relative to non-defective locations (mean absolute error 6.10-9.93 dB and 1.43-1.91 dB, respectively). AUROCCs from cluster-wide GCIPL parameters were similar across methods centrally (p = 0.06-0.84) but significantly greater peripherally, especially when considering classification of more central locations (p < 0.0001). Across diagnoses, cluster-wide GCIPL parameters demonstrated variable sensitivities and specificities (0.36-0.93 and 0.65-0.98, respectively), with the highest specificities observed across healthy eyes (0.73-0.98). CONCLUSIONS Quantitative prediction of VF thresholds from widefield OCT is affected by high variability at VF defective locations. Prediction of VF status based on cluster-wide GCIPL parameters from widefield OCT could become useful to aid clinical decision-making in appropriately targeting VF assessments.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Jack Phu
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Concord Clinical School, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - David Alonso-Caneiro
- School of Science, Technology and Engineering, University of Sunshine Coast, Sunshine Coast, Queensland, Australia
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jason Kugelman
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Sieu Khuu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashish Agar
- Department of Ophthalmology, University of New South Wales at Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Minas Coroneo
- Department of Ophthalmology, University of New South Wales at Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
2
|
Witten JL, Lukyanova V, Harmening WM. Sub-cone visual resolution by active, adaptive sampling in the human foveola. eLife 2024; 13:RP98648. [PMID: 39468921 PMCID: PMC11521370 DOI: 10.7554/elife.98648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The foveated architecture of the human retina and the eye's mobility enables prime spatial vision, yet the interplay between photoreceptor cell topography and the constant motion of the eye during fixation remains unexplored. With in vivo foveal cone-resolved imaging and simultaneous microscopic photo stimulation, we examined visual acuity in both eyes of 16 participants while precisely recording the stimulus path on the retina. We find that resolution thresholds were correlated with the individual retina's sampling capacity, and exceeded what static sampling limits would predict by 18%, on average. The length and direction of fixational drift motion, previously thought to be primarily random, played a key role in achieving this sub-cone diameter resolution. The oculomotor system finely adjusts drift behavior towards retinal areas with higher cone densities within only a few hundred milliseconds to enhance retinal sampling.
Collapse
Affiliation(s)
- Jenny L Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Veronika Lukyanova
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Wolf M Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| |
Collapse
|
3
|
Liu B, Alexopoulou ZS, van Ede F. Attentional shifts bias microsaccade direction but do not cause new microsaccades. COMMUNICATIONS PSYCHOLOGY 2024; 2:97. [PMID: 39438653 PMCID: PMC11496105 DOI: 10.1038/s44271-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Brain circuitry that controls where we look also contributes to attentional selection of visual contents outside current fixation, or content within the spatial layout of working memory. A behavioural manifestation of this contribution comes from modulations in microsaccade direction that accompany spatial attention shifts. Here, we address whether such modulations come about because attention shifts trigger new microsaccades or whether, instead, spatial attention only biases the direction of ongoing microsaccades that would have been made whether or not attention was also shifted. We utilised an internal-selective-attention task that has recently been shown to yield robust spatial microsaccade modulations and compared microsaccade rates following colour retrocues that were carefully matched for sensory input, but differed in whether they invited an attention shift or not. If attention shifts trigger new microsaccades then we would expect more microsaccades following attention-directing cues than following neutral cues. In contrast, we found no evidence for an increase in overall microsaccade rate, despite robust modulations in microsaccade direction. This implies that shifting spatial attention biases the direction of ongoing microsaccades without changing the probability of microsaccade occurrence. These findings help to explain why microsaccades and visual-spatial shifts of attention are often correlated but not obligatorily linked.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Zampeta-Sofia Alexopoulou
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Greilich J, Baumann MP, Hafed ZM. Microsaccadic suppression of peripheral perceptual detection performance as a function of foveated visual image appearance. J Vis 2024; 24:3. [PMID: 39365250 PMCID: PMC11457924 DOI: 10.1167/jov.24.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.
Collapse
Affiliation(s)
- Julia Greilich
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Duyar A, Carrasco M. Eyes on the past: Gaze stability differs between temporal expectation and temporal attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598015. [PMID: 38895241 PMCID: PMC11185784 DOI: 10.1101/2024.06.07.598015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Temporal expectation and temporal attention distinctly improve performance and gaze stability, and interact at the behavioral and neural levels. Foreperiod-the interval between the preparatory signal and stimulus onset-facilitates temporal expectation. Preceding foreperiod-the foreperiod in the previous trial-modulates expectation at behavioral and oculomotor levels. Here, we investigated whether preceding foreperiod guides temporal attention. Regardless of the preceding foreperiod, temporal attention improved performance, particularly at early moments,and consistently accelerated gaze stability onset and offset by shifting microsaccade timing. However, only with preceding expected foreperiods, attention inhibited microsaccade rates. Moreover, preceding late foreperiods weakened expectation effects on microsaccade rates, but such a weakening was overridden by attention. Altogether, these findings reveal that the oculomotor system's flexibility does not translate to performance, and suggest that although selection history can be utilized as one of the sources of expectation in subsequent trials, it does not necessarily determine, strengthen, or guide attentional deployment.
Collapse
Affiliation(s)
- Aysun Duyar
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
6
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? J Vis 2024; 24:11. [PMID: 38869372 PMCID: PMC11178122 DOI: 10.1167/jov.24.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Carrasco Lab, New York University, New York, NY, USA
| |
Collapse
|
7
|
Abstract
Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zampeta-Sofia Alexopoulou
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
8
|
Rolfs M, Hübner C. Blink and you see it. Proc Natl Acad Sci U S A 2024; 121:e2404021121. [PMID: 38578986 PMCID: PMC11032442 DOI: 10.1073/pnas.2404021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Affiliation(s)
- Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, 10099Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, 10587Berlin, Germany
| | - Carolin Hübner
- Department of Psychology, Humboldt-Universität zu Berlin, 10099Berlin, Germany
- Department of Psychology, Technische Universität Chemnitz, 09120Chemnitz, Germany
| |
Collapse
|
9
|
Yang B, Intoy J, Rucci M. Eye blinks as a visual processing stage. Proc Natl Acad Sci U S A 2024; 121:e2310291121. [PMID: 38564641 PMCID: PMC11009678 DOI: 10.1073/pnas.2310291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Humans blink their eyes frequently during normal viewing, more often than it seems necessary for keeping the cornea well lubricated. Since the closure of the eyelid disrupts the image on the retina, eye blinks are commonly assumed to be detrimental to visual processing. However, blinks also provide luminance transients rich in spatial information to neural pathways highly sensitive to temporal changes. Here, we report that the luminance modulations from blinks enhance visual sensitivity. By coupling high-resolution eye tracking in human observers with modeling of blink transients and spectral analysis of visual input signals, we show that blinking increases the power of retinal stimulation and that this effect significantly enhances visibility despite the time lost in exposure to the external scene. We further show that, as predicted from the spectral content of input signals, this enhancement is selective for stimuli at low spatial frequencies and occurs irrespective of whether the luminance transients are actively generated or passively experienced. These findings indicate that, like eye movements, blinking acts as a computational component of a visual processing strategy that uses motor behavior to reformat spatial information into the temporal domain.
Collapse
Affiliation(s)
- Bin Yang
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY14627
- Center for Visual Science, University of Rochester, Rochester, NY14627
| | - Janis Intoy
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY14627
- Center for Visual Science, University of Rochester, Rochester, NY14627
| | - Michele Rucci
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY14627
- Center for Visual Science, University of Rochester, Rochester, NY14627
| |
Collapse
|
10
|
Wang Z, Meghanathan RN, Pollmann S, Wang L. Common structure of saccades and microsaccades in visual perception. J Vis 2024; 24:20. [PMID: 38656530 PMCID: PMC11044844 DOI: 10.1167/jov.24.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/24/2024] [Indexed: 04/26/2024] Open
Abstract
We obtain large amounts of external information through our eyes, a process often considered analogous to picture mapping onto a camera lens. However, our eyes are never as still as a camera lens, with saccades occurring between fixations and microsaccades occurring within a fixation. Although saccades are agreed to be functional for information sampling in visual perception, it remains unknown if microsaccades have a similar function when eye movement is restricted. Here, we demonstrated that saccades and microsaccades share common spatiotemporal structures in viewing visual objects. Twenty-seven adults viewed faces and houses in free-viewing and fixation-controlled conditions. Both saccades and microsaccades showed distinctive spatiotemporal patterns between face and house viewing that could be discriminated by pattern classifications. The classifications based on saccades and microsaccades could also be mutually generalized. Importantly, individuals who showed more distinctive saccadic patterns between faces and houses also showed more distinctive microsaccadic patterns. Moreover, saccades and microsaccades showed a higher structure similarity for face viewing than house viewing and a common orienting preference for the eye region over the mouth region. These findings suggested a common oculomotor program that is used to optimize information sampling during visual object perception.
Collapse
Affiliation(s)
- Zhenni Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | | | - Stefan Pollmann
- Department of Experimental Psychology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lihui Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Zhao S, Contadini-Wright C, Chait M. Cross-Modal Interactions Between Auditory Attention and Oculomotor Control. J Neurosci 2024; 44:e1286232024. [PMID: 38331581 PMCID: PMC10941240 DOI: 10.1523/jneurosci.1286-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Microsaccades are small, involuntary eye movements that occur during fixation. Their role is debated with recent hypotheses proposing a contribution to automatic scene sampling. Microsaccadic inhibition (MSI) refers to the abrupt suppression of microsaccades, typically evoked within 0.1 s after new stimulus onset. The functional significance and neural underpinnings of MSI are subjects of ongoing research. It has been suggested that MSI is a component of the brain's attentional re-orienting network which facilitates the allocation of attention to new environmental occurrences by reducing disruptions or shifts in gaze that could interfere with processing. The extent to which MSI is reflexive or influenced by top-down mechanisms remains debated. We developed a task that examines the impact of auditory top-down attention on MSI, allowing us to disentangle ocular dynamics from visual sensory processing. Participants (N = 24 and 27; both sexes) listened to two simultaneous streams of tones and were instructed to attend to one stream while detecting specific task "targets." We quantified MSI in response to occasional task-irrelevant events presented in both the attended and unattended streams (frequency steps in Experiment 1, omissions in Experiment 2). The results show that initial stages of MSI are not affected by auditory attention. However, later stages (∼0.25 s postevent onset), affecting the extent and duration of the inhibition, are enhanced for sounds in the attended stream compared to the unattended stream. These findings provide converging evidence for the reflexive nature of early MSI stages and robustly demonstrate the involvement of auditory attention in modulating the later stages.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | | | - Maria Chait
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| |
Collapse
|
12
|
Mössing WA, Schroeder SCY, Biel AL, Busch NA. Contralateral delay activity and alpha lateralization reflect retinotopic and screen-centered reference frames in visual memory. Prog Neurobiol 2024; 234:102576. [PMID: 38309459 DOI: 10.1016/j.pneurobio.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The visual system represents objects in a lateralized manner, with contralateral cortical hemispheres responsible for left and right visual hemifields. This organization extends to visual short-term memory (VSTM), as evidenced by electrophysiological indices of VSTM maintenance: contralateral delay activity (CDA) and alpha-band lateralization. However, it remains unclear if VSTM represents object locations in gaze-centered (retinotopic) or screen-centered (spatiotopic) coordinates, especially after eye movements. In two experiments, participants encoded the colors of target objects and made a lateral saccade during the maintenance interval, thereby shifting the object's location on the retina. A non-lateralized probe stimulus was then presented at the new fixation for a change detection task. The CDA maintained lateralization towards the target's original retinotopic location, unaffected by subsequent saccades, and did not invert polarity even when a saccade brought that location into the opposite hemifield. We also found conventional alpha lateralization towards the target's location before a saccade. After a saccade, however, alpha was lateralized towards the screen center regardless of the target's original location, even in a control condition without any memory requirements. This suggests that post-saccadic alpha-band lateralization reflects attentional processes unrelated to memory, while pre- and post-saccade CDA reflect VSTM maintenance in a retinotopic reference frame.
Collapse
Affiliation(s)
- Wanja A Mössing
- Institute of Psychology, University of Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Svea C Y Schroeder
- Institute of Psychology, University of Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Anna Lena Biel
- Institute of Psychology, University of Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Niko A Busch
- Institute of Psychology, University of Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
13
|
Gu Q, Zhang Q, Han Y, Li P, Gao Z, Shen M. Microsaccades reflect attention shifts: a mini review of 20 years of microsaccade research. Front Psychol 2024; 15:1364939. [PMID: 38440250 PMCID: PMC10909968 DOI: 10.3389/fpsyg.2024.1364939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Microsaccades are small, involuntary eye movements that occur during fixation. Since the 1950s, researchers have conducted extensive research on the role of microsaccades in visual information processing, and found that they also play an important role in human advanced visual cognitive activities. Research over the past 20 years further suggested that there is a close relationship between microsaccades and visual attention, yet lacking a timely review. The current article aims to provide a state-of-the-art review and bring microsaccades studies into the sight of attention research. We firstly introduce basic characteristics about microsaccades, then summarized the empirical evidence supporting the view that microsaccades can reflect both external (perception) and internal (working memory) attention shifts. We finally conclude and highlight three promising avenues for future research.
Collapse
Affiliation(s)
- Quan Gu
- Yongjiang Laboratory, Ningbo, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Qikai Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yueming Han
- Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Zaifeng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Linde-Domingo J, Spitzer B. Geometry of visuospatial working memory information in miniature gaze patterns. Nat Hum Behav 2024; 8:336-348. [PMID: 38110511 PMCID: PMC10896725 DOI: 10.1038/s41562-023-01737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/25/2023] [Indexed: 12/20/2023]
Abstract
Stimulus-dependent eye movements have been recognized as a potential confound in decoding visual working memory information from neural signals. Here we combined eye-tracking with representational geometry analyses to uncover the information in miniature gaze patterns while participants (n = 41) were cued to maintain visual object orientations. Although participants were discouraged from breaking fixation by means of real-time feedback, small gaze shifts (<1°) robustly encoded the to-be-maintained stimulus orientation, with evidence for encoding two sequentially presented orientations at the same time. The orientation encoding on stimulus presentation was object-specific, but it changed to a more object-independent format during cued maintenance, particularly when attention had been temporarily withdrawn from the memorandum. Finally, categorical reporting biases increased after unattended storage, with indications of biased gaze geometries already emerging during the maintenance periods before behavioural reporting. These findings disclose a wealth of information in gaze patterns during visuospatial working memory and indicate systematic changes in representational format when memory contents have been unattended.
Collapse
Affiliation(s)
- Juan Linde-Domingo
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
- Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain.
- Department of Experimental Psychology, University of Granada, Granada, Spain.
| | - Bernhard Spitzer
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
15
|
Kadosh O, Inbal K, Snir H, Bonneh YS. Oculomotor inhibition markers of working memory load. Sci Rep 2024; 14:1872. [PMID: 38253785 PMCID: PMC10803752 DOI: 10.1038/s41598-024-52518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Involuntary eye movements occur constantly even during fixation and were shown to convey information about cognitive processes. They are inhibited momentarily in response to external stimuli (oculomotor inhibition, OMI), with a time and magnitude that depend on stimulus saliency, attention, and expectations. It was recently shown that the working memory load for numbers modulates the microsaccade rate; however, the generality of the effect and its temporal properties remain unclear. Our goal was to investigate the relationship between OMI and the working memory load for simple colored shapes. Participants (N = 26) maintained their fixation while their eyes were tracked; they viewed briefly flashed colored shapes accompanied by small arrows indicating the shapes to be memorized (1/2/3). After a retention period, a probe shape appeared for matching. The microsaccade rate modulation and temporal properties were analyzed for the memory encoding, maintenance, and retrieval phases. Microsaccade inhibition was stronger when more shapes were memorized, and performance improved when microsaccades were suppressed during maintenance and retrieval. This occurred even though the physical stimuli were identical in number under all conditions. Thus, oculomotor inhibition may play a role in silencing the visual input while processing current stimuli and is generally related to processing time and load.
Collapse
Affiliation(s)
- Oren Kadosh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kfir Inbal
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Snir
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
16
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575288. [PMID: 38260406 PMCID: PMC10802594 DOI: 10.1101/2024.01.11.575288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microsaccades-tiny fixational eye movements- improve discriminability in high acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at perifovea, we examined MS characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: Horizontal-Vertical Anisotropy (better discrimination along the horizontal than vertical meridian), and Vertical Meridian Asymmetry (better discrimination along the lower- than upper-vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, USA
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
17
|
Guzhang Y, Shelchkova N, Clark AM, Poletti M. Ultra-fine resolution of pre-saccadic attention in the fovea. Curr Biol 2024; 34:147-155.e2. [PMID: 38154463 PMCID: PMC10842882 DOI: 10.1016/j.cub.2023.11.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Microsaccades, the tiny gaze relocations that occurr during fixation, have been linked to covert attention deployed degrees away from the center of gaze. However, the link between attention and microsaccades is deeper in that it also unfolds at the foveal scale. Here, we have examined the spatial grain of pre-microsaccadic attention across the 1° foveola. Through the use of high-precision eye-tracking and gaze-contingent display system that achieves arcminute precision in gaze localization, we have shown that the spotlight of attention at this scale can reach a strikingly high resolution, in the order of 0.17°. Further, when a microsaccade occurs, vision is modulated in a peculiar way across the foveola; whereas fine spatial vision is enhanced at the microsaccade goal location, it drops at the very center of gaze, where acuity is normally highest. These results reveal the finesse of the visuomotor system and of the interplay between eye movements and attention.
Collapse
Affiliation(s)
- Yue Guzhang
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Rochester, NY 14627, USA
| | - Natalya Shelchkova
- Graduate Program in Computational Neuroscience, University of Chicago, 5812 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Ashley M Clark
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Rochester, NY 14627, USA
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA.
| |
Collapse
|
18
|
de Vries E, van Ede F. Microsaccades Track Location-Based Object Rehearsal in Visual Working Memory. eNeuro 2024; 11:ENEURO.0276-23.2023. [PMID: 38176905 PMCID: PMC10849020 DOI: 10.1523/eneuro.0276-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
Besides controlling eye movements, the brain's oculomotor system has been implicated in the control of covert spatial attention and the rehearsal of spatial information in working memory. We investigated whether the oculomotor system also contributes to rehearsing visual objects in working memory when object location is never asked about. To address this, we tracked the incidental use of locations for mnemonic rehearsal via directional biases in microsaccades while participants maintained two visual objects (colored oriented gratings) in working memory. By varying the stimulus configuration (horizontal, diagonal, and vertical) at encoding, we could quantify whether microsaccades were more aligned with the configurational axis of the memory contents, as opposed to the orthogonal axis. Experiment 1 revealed that microsaccades continued to be biased along the axis of the memory content several seconds into the working memory delay. In Experiment 2, we confirmed that this directional microsaccade bias was specific to memory demands, ruling out lingering effects from passive and attentive encoding of the same visual objects in the same configurations. Thus, by studying microsaccade directions, we uncover oculomotor-driven rehearsal of visual objects in working memory through their associated locations.
Collapse
Affiliation(s)
- Eelke de Vries
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Freek van Ede
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
19
|
Krasovskaya S, Kristjánsson Á, MacInnes WJ. Microsaccade rate activity during the preparation of pro- and antisaccades. Atten Percept Psychophys 2023; 85:2257-2276. [PMID: 37258896 DOI: 10.3758/s13414-023-02731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Microsaccades belong to the category of fixational micromovements and may be crucial for image stability on the retina. Eye movement paradigms typically require fixational control, but this does not eliminate all oculomotor activity. The antisaccade task requires a planned eye movement in the direction opposite of an onset, allowing separation of planning and execution. We build on previous studies of microsaccades in the antisaccade task using a combination of fixed and mixed pro- and antisaccade blocks. We hypothesized that microsaccade rates may be reduced prior to the execution of antisaccades as compared with regular saccades (prosaccades). In two experiments, we measured microsaccades in four conditions across three trial blocks: one block each of fixed prosaccade and antisaccade trials, and a mixed block where both saccade types were randomized. We anticipated that microsaccade rates would be higher prior to antisaccades than prosaccades due to the need to preemptively suppress reflexive saccades during antisaccade generation. In Experiment 1, with monocular eye tracking, there was an interaction between the effects of saccade and block type on microsaccade rates, suggesting lower rates on antisaccade trials, but only within mixed blocks. In Experiment 2, eye tracking was binocular, revealing suppressed microsaccade rates on antisaccade trials. A cluster permutation analysis of the microsaccade rate over the course of a trial did not reveal any particular critical time for this difference in microsaccade rates. Our findings suggest that microsaccade rates reflect the degree of suppression of the oculomotor system during the antisaccade task.
Collapse
Affiliation(s)
- Sofia Krasovskaya
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland.
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland.
- Vision Modelling Lab, HSE University, Moscow, Russia.
| | - Árni Kristjánsson
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland
| | - W Joseph MacInnes
- Vision Modelling Lab, HSE University, Moscow, Russia
- Department of Computer Science, Swansea University, Swansea, UK
| |
Collapse
|
20
|
Poletti M. An eye for detail: Eye movements and attention at the foveal scale. Vision Res 2023; 211:108277. [PMID: 37379763 PMCID: PMC10528557 DOI: 10.1016/j.visres.2023.108277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Human vision relies on a tiny region of the retina, the 1-deg foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Here I will review work that, building on recent advances in eye-tracking and gaze-contingent display, examines how attention and eye movements operate at the foveal level. This research highlights how exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. It shows that, together with highly precise control of attention, this motor activity is linked to non-homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Overall, the picture emerges of a highly dynamic foveal perception in which fine spatial vision, rather than simply being the result of placing a stimulus at the center of gaze, is the result of a finely tuned and orchestrated synergy of motor, cognitive, and attentional processes.
Collapse
Affiliation(s)
- Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester, United States; Center for Visual Science, University of Rochester, United States; Department of Neuroscience, University of Rochester, United States.
| |
Collapse
|
21
|
Meermeier A, Lappe M, Li YH, Rifai K, Wahl S, Rucci M. Fine-scale measurement of the blind spot borders. Vision Res 2023; 211:108208. [PMID: 37454560 PMCID: PMC10494866 DOI: 10.1016/j.visres.2023.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/04/2022] [Accepted: 02/20/2023] [Indexed: 07/18/2023]
Abstract
The blind spot is both a necessity and a nuisance for seeing. It is the portion of the visual field projecting to where the optic nerve crosses the retina, a region devoid of photoreceptors and hence visual input. The precise way in which vision transitions into blindness at the blind spot border is to date unknown. A chief challenge to map this transition is the incessant movement of the eye, which unavoidably smears measurements across space. In this study, we used high-resolution eye-tracking and state-of-the-art retinal stabilization to finely map the blind spot borders. Participants reported the onset of tiny high-contrast probes that were briefly flashed at precise positions around the blind spot. This method has sufficient resolution to enable mapping of blood vessels from psychophysical measurements. Our data show that, even after accounting for eye movements, the transition zones at the edges of the blind spot are considerable. On the horizontal meridian, the regions with detection rates between 80% and 20% span approximately 25% of the overall width of the blind spot. These borders also vary considerably in size across different axes. These data show that the transition from full visibility to blindness at the blind spot border is not abrupt but occurs over a broad area.
Collapse
Affiliation(s)
- Annegret Meermeier
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Yuanhao H Li
- Department of Brain & Cognitive Sciences, University of Rochester, New York, USA; Center for Visual Science, University of Rochester, New York, USA
| | | | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany; Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany
| | - Michele Rucci
- Department of Brain & Cognitive Sciences, University of Rochester, New York, USA; Center for Visual Science, University of Rochester, New York, USA
| |
Collapse
|
22
|
Roth N, Rolfs M, Hellwich O, Obermayer K. Objects guide human gaze behavior in dynamic real-world scenes. PLoS Comput Biol 2023; 19:e1011512. [PMID: 37883331 PMCID: PMC10602265 DOI: 10.1371/journal.pcbi.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
The complexity of natural scenes makes it challenging to experimentally study the mechanisms behind human gaze behavior when viewing dynamic environments. Historically, eye movements were believed to be driven primarily by space-based attention towards locations with salient features. Increasing evidence suggests, however, that visual attention does not select locations with high saliency but operates on attentional units given by the objects in the scene. We present a new computational framework to investigate the importance of objects for attentional guidance. This framework is designed to simulate realistic scanpaths for dynamic real-world scenes, including saccade timing and smooth pursuit behavior. Individual model components are based on psychophysically uncovered mechanisms of visual attention and saccadic decision-making. All mechanisms are implemented in a modular fashion with a small number of well-interpretable parameters. To systematically analyze the importance of objects in guiding gaze behavior, we implemented five different models within this framework: two purely spatial models, where one is based on low-level saliency and one on high-level saliency, two object-based models, with one incorporating low-level saliency for each object and the other one not using any saliency information, and a mixed model with object-based attention and selection but space-based inhibition of return. We optimized each model's parameters to reproduce the saccade amplitude and fixation duration distributions of human scanpaths using evolutionary algorithms. We compared model performance with respect to spatial and temporal fixation behavior, including the proportion of fixations exploring the background, as well as detecting, inspecting, and returning to objects. A model with object-based attention and inhibition, which uses saliency information to prioritize between objects for saccadic selection, leads to scanpath statistics with the highest similarity to the human data. This demonstrates that scanpath models benefit from object-based attention and selection, suggesting that object-level attentional units play an important role in guiding attentional processing.
Collapse
Affiliation(s)
- Nicolas Roth
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
| | - Martin Rolfs
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Germany
| | - Olaf Hellwich
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Computer Engineering and Microelectronics, Technische Universität Berlin, Germany
| | - Klaus Obermayer
- Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Germany
| |
Collapse
|
23
|
Krause A, Poth CH. Maintaining eye fixation relieves pressure of cognitive action control. iScience 2023; 26:107520. [PMID: 37636052 PMCID: PMC10457444 DOI: 10.1016/j.isci.2023.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Cognitive control enables humans to behave guided by their current goals and intentions. Cognitive control in one task generally suffers when humans try to engage in another task on top. However, we discovered an additional task that supports conflict resolution. In two experiments, participants performed a spatial cognitive control task. For different blocks of trials, they either received no instruction regarding eye movements or were asked to maintain the eyes fixated on a stimulus. The additional eye fixation task did not reduce task performance, but selectively ameliorated the adverse effects of cognitive conflicts on reaction times (Experiment 1). Likewise, in urgent situations, the additional task reduced performance impairments due to stimulus-driven processing overpowering cognitive control (Experiment 2). These findings suggest that maintaining eye fixation locks attentional resources that would otherwise induce spatial cognitive conflicts. This reveals an attentional disinhibition that boosts goal-directed action by relieving pressure from cognitive control.
Collapse
Affiliation(s)
- Anika Krause
- Biopsychology and Cognitive Neuroscience, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Christian H. Poth
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Barquero C, Chen JT, Munoz DP, Wang CA. Human microsaccade cueing modulation in visual- and memory-delay saccade tasks after theta burst transcranial magnetic stimulation over the frontal eye field. Neuropsychologia 2023; 187:108626. [PMID: 37336260 DOI: 10.1016/j.neuropsychologia.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Microsaccades that occur during periods of fixation are modulated by various cognitive processes and have an impact on visual processing. A network of brain areas is involved in microsaccade generation, including the superior colliculus and frontal eye field (FEF) which are involved in modulating microsaccade rate and direction after the appearance of a visual cue (referred to as microsaccade cueing modulation). Although the neural mechanisms underlying microsaccade cueing modulations have been demonstrated in monkeys, limited research has investigated a causal role of these areas in humans. By applying continuous theta-burst transcranial magnetic stimulation (cTBS) over the right FEF and vertex, we investigated the role of human FEF in modulating microsaccade responses after the appearance of a visual target in a visual- and memory-delay saccade task. After target appearance, microsaccade rate was initially suppressed but then increased in both cTBS conditions. More importantly, in the visual-delay task, microsaccades after target appearance were directed to the ipsilateral side more often with FEF, compared to vertex stimulation. Moreover, microsaccades were directed towards the target location, then to the opposite location of the target in both tasks, with larger effects in the visual-, compared to, memory-delay task. This microsaccade direction modulation was delayed after FEF stimulation in the memory-delay task. Overall, some microsaccade cueing modulations were moderately disrupted after FEF cTBS, suggesting a causal role for involvement of the human FEF in microsaccade generation after presentation of salient stimuli.
Collapse
Affiliation(s)
- Cesar Barquero
- Eye-Tracking Laboratory, Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Chin-An Wang
- Eye-Tracking Laboratory, Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
25
|
Becker W, Behler A, Vintonyak O, Kassubek J. Patterns of small involuntary fixation saccades (SIFSs) in different neurodegenerative diseases: the role of noise. Exp Brain Res 2023:10.1007/s00221-023-06633-6. [PMID: 37247026 DOI: 10.1007/s00221-023-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
During the attempt to steadily fixate at a single spot, sequences of small involuntary fixation saccades (SIFSs, known also as microsaccades οr intrusions) occur which form spatio-temporal patterns such as square wave jerks (SWJs), a pattern characterised by alternating centrifugal and centripetal movements of similar magnitude. In many neurodegenerative disorders, SIFSs exhibit elevated amplitudes and frequencies. Elevated SIFS amplitudes have been shown to favour the occurrence of SWJs ("SWJ coupling"). We analysed SIFSs in different subject groups comprising both healthy controls (CTR) and patients with amyotrophic lateral sclerosis (ALS) and progressive supranuclear palsy (PSP), i.e. two neurodegenerative diseases with completely different neuropathological basis and different clinical phenotypes. We show that, across these groups, the relations between SIFS amplitude and the relative frequency of SWJ-like patterns and other SIFS characteristics follow a common law. As an explanation, we propose that physiological and technical noise comprises a small, amplitude-independent component that has little effect on large SIFSs, but causes considerable deviations from the intended amplitude and direction of small ones. Therefore, in contrast to large SIFSs, successive small SIFSs have a lower chance to meet the SWJ similarity criteria. In principle, every measurement of SIFSs is affected by an amplitude-independent noise background. Therefore, the dependence of SWJ coupling on SIFS amplitude will probably be encountered in almost any group of subjects. In addition, we find a positive correlation between SIFS amplitude and frequency in ALS, but none in PSP, suggesting that the elevated amplitudes might arise at different sites in the two disorders.
Collapse
Affiliation(s)
- Wolfgang Becker
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany.
| | - Anna Behler
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Olga Vintonyak
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
26
|
Palmieri H, Fernández A, Carrasco M. Microsaccades and temporal attention at different locations of the visual field. J Vis 2023; 23:6. [PMID: 37145653 PMCID: PMC10168009 DOI: 10.1167/jov.23.5.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal attention, the prioritization of information at specific points in time, improves performance in behavioral tasks but cannot ameliorate the perceptual asymmetries that exist across the visual field. That is, even after attentional deployment, performance is better along the horizontal than vertical meridian and worse at the upper than lower vertical meridian. Here we asked whether and how microsaccades-tiny fixational eye-movements-could mirror or alternatively attempt to compensate for these performance asymmetries by assessing temporal profiles and direction of microsaccades as a function of visual field location. Observers were asked to report the orientation of one of two targets presented at different time points, in one of three blocked locations (fovea, right horizontal meridian, upper vertical meridian). We found the following: (1) Microsaccade occurrence did not affect either task performance or the magnitude of the temporal attention effect. (2) Temporal attention modulated the microsaccade temporal profiles, and this modulation varied with polar angle location. At all locations, microsaccade rates were significantly more suppressed in anticipation of the target when temporally cued than in the neutral condition. Moreover, microsaccade rates were more suppressed during target presentation in the fovea than in the right horizontal meridian. (3) Across locations and attention conditions, there was a pronounced bias toward the upper hemifield. Overall, these results reveal that temporal attention benefits performance similarly around the visual field, microsaccade suppression is more pronounced for attention than expectation (neutral trials) across locations, and the directional bias toward the upper hemifield could reflect an attempt to compensate for typical poor performance at the upper vertical meridian.
Collapse
Affiliation(s)
- Helena Palmieri
- Department of Psychology, New York University, New York, NY, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY, USA
- Department of Psychology, University of Texas in Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
27
|
Wu RJ, Clark AM, Cox MA, Intoy J, Jolly PC, Zhao Z, Rucci M. High-resolution eye-tracking via digital imaging of Purkinje reflections. J Vis 2023; 23:4. [PMID: 37140912 PMCID: PMC10166114 DOI: 10.1167/jov.23.5.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Reliably measuring eye movements and determining where the observer looks are fundamental needs in vision science. A classical approach to achieve high-resolution oculomotor measurements is the so-called dual Purkinje image (DPI) method, a technique that relies on the relative motion of the reflections generated by two distinct surfaces in the eye, the cornea and the back of the lens. This technique has been traditionally implemented in fragile and difficult to operate analog devices, which have remained exclusive use of specialized oculomotor laboratories. Here we describe progress on the development of a digital DPI, a system that builds on recent advances in digital imaging to enable fast, highly precise eye-tracking without the complications of previous analog devices. This system integrates an optical setup with no moving components with a digital imaging module and dedicated software on a fast processing unit. Data from both artificial and human eyes demonstrate subarcminute resolution at 1 kHz. Furthermore, when coupled with previously developed gaze-contingent calibration methods, this system enables localization of the line of sight within a few arcminutes.
Collapse
Affiliation(s)
- Ruei-Jr Wu
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Ashley M Clark
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele A Cox
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Janis Intoy
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Paul C Jolly
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Zhetuo Zhao
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele Rucci
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| |
Collapse
|
28
|
Liu B, Nobre AC, van Ede F. Microsaccades transiently lateralise EEG alpha activity. Prog Neurobiol 2023; 224:102433. [PMID: 36907349 PMCID: PMC10074474 DOI: 10.1016/j.pneurobio.2023.102433] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
The lateralisation of 8-12 Hz alpha activity is a canonical signature of human spatial cognition that is typically studied under strict fixation requirements. Yet, even during attempted fixation, the brain produces small involuntary eye movements known as microsaccades. Here we report how spontaneous microsaccades - made in the absence of incentives to look elsewhere - can themselves drive transient lateralisation of EEG alpha power according to microsaccade direction. This transient lateralisation of posterior alpha power occurs similarly following start and return microsaccades and is, at least for start microsaccades, driven by increased alpha power ipsilateral to microsaccade direction. This reveals new links between spontaneous microsaccades and human electrophysiological brain activity. It highlights how microsaccades are an important factor to consider in studies relating alpha activity - including spontaneous fluctuations in alpha activity - to spatial cognition, such as studies on visual attention, anticipation, and working memory.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands.
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom.
| |
Collapse
|
29
|
Clinical analysis of eye movement-based data in the medical diagnosis of amblyopia. Methods 2023; 213:26-32. [PMID: 36924866 DOI: 10.1016/j.ymeth.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Amblyopia is an abnormal visual processing-induced developmental disorder of the central nervous system that affects static and dynamic vision, as well as binocular visual function. Currently, changes in static vision in one eye are the gold standard for amblyopia diagnosis. However, there have been few comprehensive analyses of changes in dynamic vision, especially eye movement, among children with amblyopia. Here, we proposed an optimization scheme involving a video eye tracker combined with an "artificial eye" for comprehensive examination of eye movement in children with amblyopia; we sought to improve the diagnostic criteria for amblyopia and provide theoretical support for practical treatment. The resulting eye movement data were used to construct a deep learning approach for diagnostic and predictive applications. Through efforts to manage the uncooperativeness of children with strabismus who could not complete the eye movement assessment, this study quantitatively and objectively assessed the clinical implications of eye movement characteristics in children with amblyopia. Our results indicated that an amblyopic eye is always in a state of adjustment, and thus is not "lazy." Additionally, we found that the eye movement parameters of amblyopic eyes and eyes with normal vision are significantly different. Finally, we identified eye movement parameters that can be used to supplement and optimize the diagnostic criteria for amblyopia, providing a diagnostic basis for evaluation of binocular visual function.
Collapse
|
30
|
Battaje A, Brock O, Rolfs M. An interactive motion perception tool for kindergarteners (and vision scientists). Iperception 2023; 14:20416695231159182. [PMID: 37008832 PMCID: PMC10064475 DOI: 10.1177/20416695231159182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
We implement Adelson and Bergen's spatiotemporal energy model with extension to three-dimensional (x-y-t) in an interactive tool. It helps gain an easy understanding of early (first-order) visual motion perception. We demonstrate its usefulness in explaining an assortment of phenomena, including some that are typically not associated with the spatiotemporal energy model.
Collapse
Affiliation(s)
- Aravind Battaje
- Aravind Battaje, Robotics and Biology Laboratory, Technische Universität Berlin, Germany.
| | | | | |
Collapse
|
31
|
A Narrative Literature Review About the Role of Microsaccades in Sports. Motor Control 2023:1-15. [PMID: 36640777 DOI: 10.1123/mc.2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
In many daily and sport situations, people have to simultaneously perceive and process multiple objects and scenes in a short amount of time. A wrong decision may lead to a disadvantage for a team or for a single athlete, and during daily life (i.e., driving, surgery), it could have more dangerous consequences. Considering the results of different studies, the ability to distribute visual attention depends on different levels of expertise and environment-related constraints. This article is a narrative review of the current scientific evidence in the field of eye movements in sports, focusing on the role of microsaccades in sporting task situations. Over the past 10 years, microsaccades have become one of the most increasing areas of research in visual and oculomotor studies and even in the area of sport science. Here, we review the latest findings and discuss the relationships between microsaccades and attention, perception, and action in sports.
Collapse
|
32
|
Mäkelä S, Kujala J, Salmelin R. Removing ocular artifacts from magnetoencephalographic data on naturalistic reading of continuous texts. Front Neurosci 2022; 16:974162. [PMID: 36620454 PMCID: PMC9815455 DOI: 10.3389/fnins.2022.974162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Naturalistic reading paradigms and stimuli consisting of long continuous texts are essential for characterizing the cortical basis of reading. Due to the highly dynamic nature of the reading process, electrophysiological brain imaging methods with high spatial and temporal resolution, such as magnetoencephalography (MEG), are ideal for tracking them. However, as electrophysiological recordings are sensitive to electromagnetic artifacts, data recorded during naturalistic reading is confounded by ocular artifacts. In this study, we evaluate two different pipelines for removing ocular artifacts from MEG data collected during continuous, naturalistic reading, with the focus on saccades and blinks. Both pipeline alternatives are based on blind source separation methods but differ fundamentally in their approach. The first alternative is a multi-part process, in which saccades are first extracted by applying Second-Order Blind Identification (SOBI) and, subsequently, FastICA is used to extract blinks. The other alternative uses a single powerful method, Adaptive Mixture ICA (AMICA), to remove all artifact types at once. The pipelines were tested, and their effects compared on MEG data recorded from 13 subjects in a naturalistic reading task where the subjects read texts with the length of multiple pages. Both pipelines performed well, extracting the artifacts in a single component per artifact type in most subjects. Signal power was reduced across the whole cortex in all studied frequency bands from 1 to 90 Hz, but especially in the frontal cortex and temporal pole. The results were largely similar for the two pipelines, with the exception that SOBI-FastICA reduced signal in the right frontal cortex in all studied frequency bands more than AMICA. However, there was considerable interindividual variation in the effects of the pipelines. As a holistic conclusion, we choose to recommend AMICA for removing artifacts from MEG data on naturalistic reading but note that the SOBI-FastICA pipeline has also various favorable characteristics.
Collapse
Affiliation(s)
- Sasu Mäkelä
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland,Aalto NeuroImaging, Aalto University, Espoo, Finland,*Correspondence: Sasu Mäkelä,
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland,Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland,Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
33
|
Face familiarity revealed by fixational eye movements and fixation-related potentials in free viewing. Sci Rep 2022; 12:20178. [PMID: 36418497 PMCID: PMC9684544 DOI: 10.1038/s41598-022-24603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Event-related potentials (ERPs) and the oculomotor inhibition (OMI) in response to visual transients are known to be sensitive to stimulus properties, attention, and expectation. We have recently found that the OMI is also sensitive to face familiarity. In natural vision, stimulation of the visual cortex is generated primarily by saccades, and it has been recently suggested that fixation-related potentials (FRPs) share similar components with the ERPs. Here, we investigated whether FRPs and microsaccade inhibition (OMI) in free viewing are sensitive to face familiarity. Observers freely watched a slideshow of seven unfamiliar and one familiar facial images presented randomly for 4-s periods, with multiple images per identity. We measured the occipital fixation-related N1 relative to the P1 magnitude as well as the associated fixation-triggered OMI. We found that the average N1-P1 was significantly smaller and the OMI was shorter for the familiar face, compared with any of the seven unfamiliar faces. Moreover, the P1 was suppressed across saccades for the familiar but not for the unfamiliar faces. Our results highlight the sensitivity of the occipital FRPs to stimulus properties such as face familiarity and advance our understanding of the integration process across successive saccades in natural vision.
Collapse
|
34
|
Hofmann J, Domdei L, Jainta S, Harmening WM. Assessment of binocular fixational eye movements including cyclotorsion with split-field binocular scanning laser ophthalmoscopy. J Vis 2022; 22:5. [PMID: 36069941 PMCID: PMC9465939 DOI: 10.1167/jov.22.10.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fixational eye movements are a hallmark of human gaze behavior, yet little is known about how they interact between fellow eyes. Here, we designed, built and validated a split-field binocular scanning laser ophthalmoscope to record high-resolution eye motion traces from both eyes of six observers during fixation in different binocular vergence conditions. In addition to microsaccades and drift, torsional eye motion could be extracted, with a spatial measurement error of less than 1 arcmin. Microsaccades were strongly coupled between fellow eyes under all conditions. No monocular microsaccade occurred and no significant delay between microsaccade onsets across fellow eyes could be detected. Cyclotorsion was also firmly coupled between both eyes, occurring typically in conjugacy, with gradual changes during drift and abrupt changes during saccades.
Collapse
Affiliation(s)
- Julia Hofmann
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany.,Fraunhofer Institute for Optronics, Systems Technologies and Image Exploitations IOSB, Karlsruhe, Germany., https://www.iosb.fraunhofer.de/en.html
| | - Lennart Domdei
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany., https://ao.ukbonn.de/
| | - Stephanie Jainta
- SRH University of Applied Sciences in North Rhine-Westphalia, Hamm, Germany., https://www.srh-hochschule-nrw.de/
| | - Wolf M Harmening
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany., https://ao.ukbonn.de/
| |
Collapse
|
35
|
Hu X, Yang Q. Real-time correction of image rotation with adaptive optics scanning light ophthalmoscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1663-1672. [PMID: 36215635 DOI: 10.1364/josaa.465889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fixational eye motion includes typical translation and torsion. In the registration of images from adaptive optics scanning light ophthalmoscopy (AOSLO), image rotation due to eye torsion and/or head rotation is often ignored because (a) the amount of rotation is trivial compared to translation within a short duration of imaging or recording time and (b) computational cost increases substantially when the registration algorithm involves simultaneous detection of rotation and translation. However, it becomes critically important under cases such as long exposure, functional measurements, and precise motion tracking. We developed a fast method to detect and correct rotation from AOSLO images, together with the detection of strip-level motion translation. The computational cost for rotation detection and correction alone is about 5 ms/frame (512×512 pixels) on an nVidia GTX960M GPU. Image quality is compared with and without rotation correction from 10 healthy human subjects and 8 diseased eyes with a total of 180 videos. The results show that residual image motions between the reference images and the registered images with rotation correction are a fraction of those without rotation correction, and the ratio is 0.74-0.89 at the image center and 0.37-0.51 at the four corners of the images.
Collapse
|
36
|
Hoogerbrugge AJ, Strauch C, Oláh ZA, Dalmaijer ES, Nijboer TCW, Van der Stigchel S. Seeing the Forrest through the trees: Oculomotor metrics are linked to heart rate. PLoS One 2022; 17:e0272349. [PMID: 35917377 PMCID: PMC9345484 DOI: 10.1371/journal.pone.0272349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Fluctuations in a person’s arousal accompany mental states such as drowsiness, mental effort, or motivation, and have a profound effect on task performance. Here, we investigated the link between two central instances affected by arousal levels, heart rate and eye movements. In contrast to heart rate, eye movements can be inferred remotely and unobtrusively, and there is evidence that oculomotor metrics (i.e., fixations and saccades) are indicators for aspects of arousal going hand in hand with changes in mental effort, motivation, or task type. Gaze data and heart rate of 14 participants during film viewing were used in Random Forest models, the results of which show that blink rate and duration, and the movement aspect of oculomotor metrics (i.e., velocities and amplitudes) link to heart rate–more so than the amount or duration of fixations and saccades. We discuss that eye movements are not only linked to heart rate, but they may both be similarly influenced by the common underlying arousal system. These findings provide new pathways for the remote measurement of arousal, and its link to psychophysiological features.
Collapse
Affiliation(s)
- Alex J. Hoogerbrugge
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- * E-mail:
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Zoril A. Oláh
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Edwin S. Dalmaijer
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Tanja C. W. Nijboer
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, De Hoogstraat Rehabilitation, Utrecht, Netherlands
- Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
37
|
Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA. The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 2022; 32:3331-3346. [PMID: 34963140 PMCID: PMC9340396 DOI: 10.1093/cercor/bhab418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
Decades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. The spiking responses of neurons throughout the brain have been associated with the pupil, small fixational saccades, and vigor in eye movements, but it has been difficult to isolate how internal states affect the eyes, and vice versa. While recording from populations of neurons in the visual and prefrontal cortex (PFC), we recently identified a latent dimension of neural activity called "slow drift," which appears to reflect a shift in a global brain state. Here, we asked if slow drift is correlated with the action of the eyes in distinct behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and PFC, while they performed a memory-guided saccade task. In both tasks, slow drift was associated with the size of the pupil and the microsaccade rate, two external indicators of the internal state of the animal. These results show that metrics related to the action of the eyes are associated with a dominant and task-independent mode of neural activity that can be accessed in the population activity of neurons across the cortex.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam C Snyder
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Sanjeev B Khanna
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Deepa Issar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
38
|
Unequal allocation of overt and covert attention in Multiple Object Tracking. Atten Percept Psychophys 2022; 84:1519-1537. [PMID: 35562630 PMCID: PMC9232469 DOI: 10.3758/s13414-022-02501-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
In many real-life contexts, where objects are moving around, we are often required to allocate our attention unequally between targets or regions of different importance. However, typical multiple object tracking (MOT) tasks, primarily investigate equal attention allocation as the likelihood of each target being probed is the same. In two experiments, we investigated whether participants can allocate attention unequally across regions of the visual field, using a MOT task where two regions were probed with either a high and low or with equal priority. Experiment 1 showed that for high-priority regions, accuracy (for direction of heading judgments) improved, and participants had more frequent and longer fixations in that region compared with a low-priority region. Experiment 2 showed that eye movements were functional in that they slightly improved accuracy when participants could freely move their eyes compared with when they had to centrally fixate. Replicating Experiment 1, we found better tracking performance for high compared with low-priority regions, in both the free and fixed viewing conditions, but the benefit was greater for the free viewing condition. Although unequal attention allocation is possible without eye movements, eye movements seem to improve tracking ability, presumably by allowing participants to fixate more in the high-priority region and get a better, foveal view of the objects. These findings can help us better understand how observers in real-life settings (e.g., CCTV monitoring, driving) can use their limited attentional capacity to allocate their attention unequally in a demand-based manner across different tracking regions.
Collapse
|
39
|
Liu B, Nobre AC, van Ede F. Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nat Commun 2022; 13:3503. [PMID: 35715471 PMCID: PMC9205986 DOI: 10.1038/s41467-022-31217-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Covert spatial attention is associated with spatial modulation of neural activity as well as with directional biases in fixational eye movements known as microsaccades. We studied how these two 'fingerprints' of attention are interrelated in humans. We investigated spatial modulation of 8-12 Hz EEG alpha activity and microsaccades when attention is directed internally within the spatial layout of visual working memory. Consistent with a common origin, spatial modulations of alpha activity and microsaccades co-vary: alpha lateralisation is stronger in trials with microsaccades toward versus away from the memorised location of the to-be-attended item and occurs earlier in trials with earlier microsaccades toward this item. Critically, however, trials without attention-driven microsaccades nevertheless show clear spatial modulation of alpha activity - comparable to trials with attention-driven microsaccades. Thus, directional biases in microsaccades correlate with neural signatures of spatial attention, but they are not necessary for neural modulation by spatial attention to be manifest.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Abstract
For over 100 years, eye movements have been studied and used as indicators of human sensory and cognitive functions. This review evaluates how eye movements contribute to our understanding of the processes that underlie decision-making. Eye movement metrics signify the visual and task contexts in which information is accumulated and weighed. They indicate the efficiency with which we evaluate the instructions for decision tasks, the timing and duration of decision formation, the expected reward associated with a decision, the accuracy of the decision outcome, and our ability to predict and feel confident about a decision. Because of their continuous nature, eye movements provide an exciting opportunity to probe decision processes noninvasively in real time. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Miriam Spering
- Department of Ophthalmology & Visual Sciences and the Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada;
| |
Collapse
|
41
|
Simultaneous Corneal Topography and Epithelial Thickness Mapping from a Single Measurement Using Optical Coherence Tomography. J Ophthalmol 2022; 2022:7339306. [PMID: 35496772 PMCID: PMC9050264 DOI: 10.1155/2022/7339306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the performance of corneal epithelial thickness mapping (ETM) and demonstrate simultaneous measurement of ETMs and corneal topography using REVO NX (Optopol Technology, Zawiercie, Poland)—an OCT device for anterior and posterior segment imaging. Methods One hundred thirty-seven eyes of 137 normal subjects and patients with corneal diseases were recruited to the study. Each subject was scanned with REVO NX. ETMs and corneal topography maps were reconstructed from a single measurement. Corneal topography was also carried out using Pentacam (Oculus, Wetzlar, Germany). One hundred twenty-eight eyes were qualified for the final analysis. Forty healthy eyes were used to evaluate the performance of ETM, and 88 eyes were used to compare ETMs and corneal topography. The repeatability and reproducibility of ETMs in healthy subjects were assessed on the basis of 17 spatial zones derived from an 8-mm diameter corneal scan using within-subject standard deviation, test-retest repeatability, within-subject coefficient of variation (CoV), and intraclass correlation coefficient (ICC). Results The ICC for both repeatability and reproducibility of ETMs for the central sector was 0.95. The ICC value for the other sectors was only moderately lower. However, the CoV for repeatability (≤1.55%) was slightly higher than the value reported for the RTVue device (Optovue, Inc, Fremont, California, USA), for which a CoV in the central zone of 1.07% was reported in unoperated eyes. The superior quadrants were found to be the thinnest while the inferior ones were the thickest. ETMs and topography maps created from a single OCT measurement present a complementary image of the cornea. Conclusions ETMs obtained using REVO NX show high levels of repeatability and reproducibility in normal eyes. Because the topographic and epithelial thickness analyses are performed using the same data, which means they are based on the exact same 3D corneal model, they do not require reciprocal centration and map matching. This ensures a complete point-to-point correlation between ETMs and corneal topography maps, which paints a fuller picture of a given pathology.
Collapse
|
42
|
Fixation-related saccadic inhibition in free viewing in response to stimulus saliency. Sci Rep 2022; 12:6619. [PMID: 35459790 PMCID: PMC9033846 DOI: 10.1038/s41598-022-10605-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
Microsaccades that occur during fixation were studied extensively in response to transient stimuli, showing a typical inhibition (Oculomotor Inhibition, OMI), and a later release with a latency that depends on stimulus saliency, attention, and expectations. Here, we investigated the hypothesis that in free viewing every saccade provides a new transient stimulation that should result in a stimulus-dependent OMI like a flashed presentation during fixation. Participants (N = 16) freely inspected static displays of randomly oriented Gabor texture images, with varied contrast and spatial frequency (SF) for periods of 10 s each. Eye tracking recordings were divided into epochs triggered by saccade landing (> 1 dva), and microsaccade latency relative to fixation onset was computed (msRT). We found that the msRT in free viewing was shorter for more salient stimuli (higher contrast or lower SF), as previously found for flashed stimuli. It increased with saccade size and decreased across successive saccades, but only for higher contrast, suggesting contrast-dependent repetition enhancement in free viewing. Our results indicate that visual stimulus-dependent inhibition of microsaccades also applies to free viewing. These findings are in agreement with the similarity found between event-related and fixation-related potentials and open the way for studies combining both approaches to study natural vision.
Collapse
|
43
|
Kadosh O, Bonneh YS. Involuntary oculomotor inhibition markers of saliency and deviance in response to auditory sequences. J Vis 2022; 22:8. [PMID: 35475911 PMCID: PMC9055552 DOI: 10.1167/jov.22.5.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our eyes move constantly but are often inhibited momentarily in response to external stimuli (oculomotor inhibition [OMI]), depending on the stimulus saliency, anticipation, and attention. Previous studies have shown prolonged OMI for auditory oddballs; however, they required counting the oddballs, possibly reflecting voluntary attention. Here, we investigated whether the “passive” OMI response to auditory deviants can provide a quantitative measure of deviance strength (pitch difference) and studied its dependence on the inter-trial interval (ITI). Participants fixated centrally and passively listened to repeated short sequences of pure tones that contained a deviant tone either regularly or with 20% probability (oddballs). In an “active” control experiment, participants counted the deviant or the standard. As in previous studies, the results showed prolonged microsaccade inhibition and increased pupil dilation following the rare deviant tone. Earlier inhibition onset was found in proportion to the pitch deviance (the saliency effect), and a later release was found for oddballs, but only for ITI <2.5 seconds. The active control experiment showed similar results when counting the deviant but longer OMI for the standard when counting it. Taken together, these results suggest that OMI provides involuntary markers of saliency and deviance, which can be obtained without the participant's response.
Collapse
Affiliation(s)
- Oren Kadosh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.,
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel., https://yorambonneh.wixsite.com/bonneh-lab
| |
Collapse
|
44
|
The dynamics of microsaccade amplitude reflect shifting of covert attention. Conscious Cogn 2022; 101:103322. [PMID: 35395549 DOI: 10.1016/j.concog.2022.103322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Attention flexibly shifts between spatial locations to accommodate task demands. The present study examined if the dynamics of attentional shifting are seen in microsaccades whose direction has been shown to accompany the shifts of covert attention. In a spatial cueing task, the cue predicted the target location on 100%, 75%, or 50% of the trials. The results revealed that microsaccade rate and amplitude were both reduced following cue onset and then rebounded. Both microsaccade rate and amplitude were biased towards the opposite direction of the cue and then returned to the cued direction. Importantly, the cue validity modulated the temporal profile of microsaccade amplitude but had little impact on the temporal profile of microsaccade rate. In line with this, the cueing effect measured with target response accuracy was correlated with the microsaccade amplitude only. These results indicate that the temporal dynamics of microsaccade amplitude reflect shifting of covert attention.
Collapse
|
45
|
Holmqvist K, Örbom SL, Zemblys R. Small head movements increase and colour noise in data from five video-based P-CR eye trackers. Behav Res Methods 2022; 54:845-863. [PMID: 34357538 PMCID: PMC8344338 DOI: 10.3758/s13428-021-01648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2021] [Indexed: 11/08/2022]
Abstract
We empirically investigate the role of small, almost imperceptible balance and breathing movements of the head on the level and colour of noise in data from five commercial video-based P-CR eye trackers. By comparing noise from recordings with completely static artificial eyes to noise from recordings where the artificial eyes are worn by humans, we show that very small head movements increase levels and colouring of the noise in data recorded from all five eye trackers in this study. This increase of noise levels is seen not only in the gaze signal, but also in the P and CR signals of the eye trackers that provide these camera image features. The P and CR signals of the SMI eye trackers correlate strongly during small head movements, but less so or not at all when the head is completely still, indicating that head movements are registered by the P and CR images in the eye camera. By recording with artificial eyes, we can also show that the pupil size artefact has no major role in increasing and colouring noise. Our findings add to and replicate the observation by Niehorster et al., (2021) that lowpass filters in video-based P-CR eye trackers colour the data. Irrespective of source, filters or head movements, coloured noise can be confused for oculomotor drift. We also find that usage of the default head restriction in the EyeLink 1000+, the EyeLink II and the HiSpeed240 result in noisier data compared to less head restriction. Researchers investigating data quality in eye trackers should consider not using the Gen 2 artificial eye from SR Research / EyeLink. Data recorded with this artificial eye are much noisier than data recorded with other artificial eyes, on average 2.2-14.5 times worse for the five eye trackers.
Collapse
Affiliation(s)
- Kenneth Holmqvist
- Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
- Department of Psychology, Regensburg University, Regensburg, Germany
- Department of Computer Science and Informatics, University of the Free State, Bloemfontein, South Africa
| | - Saga Lee Örbom
- Department of Psychology, Regensburg University, Regensburg, Germany
| | | |
Collapse
|
46
|
Xu W, Gao P, He F, Qi H. Improving the performance of a gaze independent P300-BCI by using the expectancy wave. J Neural Eng 2022; 19. [PMID: 35325878 DOI: 10.1088/1741-2552/ac60c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A P300-BCI conveys a subject's intention through recognition of their ERPs. However, in the case of visual stimuli, its performance depends strongly on eye gaze. When eye movement is impaired, it becomes difficult to focus attention on a target stimulus, and the quality of the ERP declines greatly, thereby affecting recognition efficiency. APPROACH In this paper, the expectancy wave (E-wave) is proposed to improve signal quality and thereby improve identification of visual targets under the covert attention. The stimuli of the P300-BCI described here are presented in a fixed sequence, so the subjects can predict the next target stimulus and establish a stable expectancy effect of the target stimulus through training. Features from the E-wave that occurred 0~300ms before a stimulus were added to the post-stimulus ERP components for intention recognition. MAIN RESULTS Comparisons of 10 healthy subjects before and after training demonstrated that the expectancy wave generated before target stimulus could be used with the P300 component to improve character recognition accuracy (CRA) from 85% to 92.4%. In addition, CRA using only the expectancy component can reach 68.2%, which is significantly greater than random probability (16.7%). The results of this study indicate that the expectancy wave can be used to improve recognition efficiency for a gaze-independent P300-BCI, and that training contributes to induction and recognition of the potential. SIGNIFICANCE This study proposes an effective approach to an efficient gaze-independent P300-BCI system.
Collapse
Affiliation(s)
- Wei Xu
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, 300072, CHINA
| | - Pin Gao
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Feng He
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Hongzhi Qi
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
47
|
Microsaccades, Drifts, Hopf Bundle and Neurogeometry. J Imaging 2022; 8:jimaging8030076. [PMID: 35324631 PMCID: PMC8953095 DOI: 10.3390/jimaging8030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The first part of the paper contains a short review of the image processing in early vision is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in fixation eye movements. In the second part, we give an interpretation of Donders’ and Listing’s law in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere SL+, called Listing hemisphere, and saccades are described as geodesic segments of SL+ with respect to the standard round metric. We study fixation eye movements (drift and microsaccades) in terms of this model and discuss the role of fixation eye movements in vision. A model of fixation eye movements is proposed that gives an explanation of presaccadic shift of receptive fields.
Collapse
|
48
|
White AL, Moreland JC, Rolfs M. Oculomotor freezing indicates conscious detection free of decision bias. J Neurophysiol 2022; 127:571-585. [PMID: 35080462 PMCID: PMC8873031 DOI: 10.1152/jn.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The appearance of a salient stimulus rapidly and automatically inhibits saccadic eye movements. Curiously, this "oculomotor freezing" response is triggered only by stimuli that the observer reports seeing. It remains unknown, however, whether oculomotor freezing is linked to the observer's sensory experience or their decision that a stimulus was present. To dissociate between these possibilities, we manipulated decision criterion via monetary payoffs and stimulus probability in a detection task. These manipulations greatly shifted observers' decision criteria but did not affect the degree to which microsaccades were inhibited by stimulus presence. Moreover, the link between oculomotor freezing and explicit reports of stimulus presence was stronger when the criterion was conservative rather than liberal. We conclude that the sensory threshold for oculomotor freezing is independent of decision bias. Provided that conscious experience is also unaffected by such bias, oculomotor freezing is an implicit indicator of sensory awareness.NEW & NOTEWORTHY Sometimes a visual stimulus reaches awareness, and sometimes it does not. To understand why, we need objective, bias-free measures of awareness. We discovered that a reflexive freezing of small eye movements indicates when an observer detects a stimulus. Furthermore, when we biased observers' decisions to report seeing the stimulus, the oculomotor response was unaltered. This suggests that the threshold for conscious perception is independent of the decision criterion and is revealed by oculomotor freezing.
Collapse
Affiliation(s)
- Alex L. White
- 1Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York
| | - James C. Moreland
- 2Department of Psychology, University of Washington, Seattle, Washington
| | - Martin Rolfs
- 3Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Romeo A, Supèr H. Spiking model of fixational eye movements and figure-ground segmentation. NETWORK (BRISTOL, ENGLAND) 2022; 33:143-166. [PMID: 35613078 DOI: 10.1080/0954898x.2022.2073393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
We present a model connecting eye movements and cortical state. Its structure includes simulated retinal images, motion detection, feature detectors and layers of spiking neurons. The designed scheme shows how the effect of micro-saccadic scale eye movements can lead to successful figure segregation in a figure-ground paradigm, by inducing changes in the neural dynamics through the time evolution of the inhibition range.
Collapse
Affiliation(s)
- August Romeo
- Vision and Control of Action Group, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Hans Supèr
- Vision and Control of Action Group, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona (UBNeuro), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
50
|
Exogenous attention generalizes location transfer of perceptual learning in adults with amblyopia. iScience 2022; 25:103839. [PMID: 35243224 PMCID: PMC8857599 DOI: 10.1016/j.isci.2022.103839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/19/2021] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Visual perceptual learning (VPL) is a behavioral manifestation of brain neuroplasticity. However, its practical effectiveness is limited because improvements are often specific to the trained conditions and require significant time and effort. It is critical to understand the conditions that promote learning and transfer. Covert endogenous (voluntary) and exogenous (involuntary) spatial attention help overcome VPL location specificity in neurotypical adults, but whether they also do so for people with atypical visual development is unknown. This study investigates the role of exogenous attention during VPL in adults with amblyopia, an ideal population given their asymmetrically developed, but highly plastic, visual cortex. Here we show that training on a discrimination task leads to improvements in foveal contrast sensitivity, acuity, and stereoacuity. Notably, exogenous attention helps generalize learning beyond trained spatial locations. Future large-scale studies can verify the extent to which attention enhances the effectiveness of perceptual learning during rehabilitation of visual disorders. Contrast sensitivity (CS)-based VPL in amblyopes improves CS, acuity and stereoacuity Similar improvement in trained amblyopic eye and untrained fellow eye Exogenous spatial attention facilitates location transfer of VPL in amblyopic adults
Collapse
|