1
|
McIllhatton A, Lanting S, Chuter V. The Effect of Overweight/Obesity on Cutaneous Microvascular Reactivity as Measured by Laser-Doppler Fluxmetry: A Systematic Review. Biomedicines 2024; 12:2488. [PMID: 39595054 PMCID: PMC11591868 DOI: 10.3390/biomedicines12112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION We sought to determine by systematic review the independent effect of overweight/obesity on cutaneous microvascular reactivity in adults as measured by laser-Doppler fluxmetry. METHODS CINAHL Complete, SPORTSDiscus, Embase, Medline, and Cochrane Library were searched until March 2024 to identify studies investigating cutaneous microvascular reactivity in an overweight/obese but otherwise healthy group versus a lean/healthy weight. Reporting is consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Quality appraisal of included studies was performed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. RESULTS Nineteen eligible articles reported on 1847 participants. Most articles reported impaired cutaneous microvascular reactivity in cohorts with overweight/obesity compared to cohorts with lean/healthy weight. Investigating reactivity via post-occlusive reactive hyperaemia (PORH) and iontophoresis of acetylcholine (ACh) has shown significance. No significant differences were reported between groups in response to local heating or to iontophoresis of methacholine or insulin, while findings of the effect of obesity on iontophoresis of sodium nitroprusside (SNP) were mixed. CONCLUSIONS The pathophysiology of impaired cutaneous microvascular reactivity in overweight/obesity requires further investigation; however, impaired function of vasoactive substances, endothelial dysfunction, sensory nerves, and calcium-activated potassium channels may be implicated. Identifying these impaired microvascular responses should inform possible therapy targets in overweight and obesity.activated potassium channels may be implicated. Identifying these impaired microvascular responses should inform possible therapy targets in overweight and obesity.
Collapse
Affiliation(s)
- Ally McIllhatton
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Sean Lanting
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Discipline of Podiatric Medicine, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Vivienne Chuter
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Discipline of Podiatric Medicine, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
2
|
Maruyama-Fumoto K, McGuire JJ, Fairlie DP, Shinozuka K, Kagota S. Activation of protease-activated receptor 2 is associated with blood pressure regulation and proteinuria reduction in metabolic syndrome. Clin Exp Pharmacol Physiol 2021; 48:211-220. [PMID: 33124085 DOI: 10.1111/1440-1681.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) increases the risk of kidney disease. In SHRSP.Z-Leprfa /IzmDmcr (SHRSP.ZF) rats with MetS, protease-activated receptor 2 (PAR2)-mediated vasorelaxation is preserved in the aorta at 20 weeks of age (weeks) via enhancement of nitric oxide production but impaired at 30 weeks by oxidative stress. However, impairment of PAR2-mediated vasorelaxation of renal arteries and its possible implications for kidney disease are unclear. We used organ baths to assess PAR2-mediated vasorelaxation of isolated renal arteries, colorimetric methods to measure urinary protein levels as an index of renal function, and western blot to determine expression of PAR2 and nephrin proteins in the kidneys of SHRSP.ZF rats at 10, 20, and 30 weeks. We assessed renal arteries and kidney function for effects of orally administered GB88, a pathway-dependent PAR2 antagonist, from 10 to 18 weeks, and azilsartan, an angiotensin II type 1 receptor blocker, from 13 to 23 weeks. PAR2-mediated vasorelaxation was slightly lower at 20 weeks and attenuated significantly at 30 weeks compared with those at 10 weeks. Urinary protein levels were increased at 20 and 30 weeks. Decreased protein expression of PAR2 and nephrin in the kidney were observed at 30 weeks. Administration of GB88 increased blood pressure (BP) and proteinuria. Azilsartan reduced the high BP and the impaired PAR2-mediated vasorelaxation, but did not restore the increase in urinary protein levels and decreased PAR2 and nephrin protein expression in the kidney. PAR2 activation in the kidney may be associated with maintenance of BP and urinary protein excretion in MetS.
Collapse
Affiliation(s)
- Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
3
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Li N, Ding H, Zhang P, Li Z, Liu Y, Wang P. Attenuated BK channel function promotes overactive bladder in a rat model of obesity. Aging (Albany NY) 2019; 11:6199-6216. [PMID: 31480021 PMCID: PMC6738405 DOI: 10.18632/aging.102182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
Abstract
Overactive bladder (OAB) is mostly observed in obese individuals, and is associated with enhanced excitability and contractility of the detrusor smooth muscle (DSM). Large-conductance voltage- and Ca2+-activated K+ (BK) channels reduce the excitability and contractility of the DSM. We tested whether obesity-induced OAB is associated with altered BK channel expression and activity in the DSM. Seven-week-old female Sprague-Dawley rats (N=80) were fed a normal or high-fat diet (HFD) for 12 weeks. HFD-fed rats exhibited a higher average bodyweight and urodynamically established detrusor overactivity. mRNA levels of the Kcnma1 (BKα subunit) and Kcnmb1 (BKβ1 subunit) in whole tissues and cells from the DSM were reduced in HFD-fed rats. A selective BK channel opener, NS1619, was then applied to DSM cells from the two groups of rats. Patch-clamp techniques revealed that spontaneous transient outward currents, NS1619-induced activation of spontaneous transient outward currents, and whole-cell BK currents, as well as NS1619-induced membrane hyperpolarization, were attenuated in DSM cells from HFD-fed rats. The relaxation effect of NS1619 on contractility was reduced in DSM strips from HFD-fed rats. Thus, impaired expression of Kcnma1 and Kcnmb1 in the DSM contributes to obesity-induced OAB, suggesting that BK channels could be a useful treatment targets in OAB.
Collapse
Affiliation(s)
- Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Department of Urology, Affiliated Hospital, Chifeng University, Chifeng, Neimeng, China
| | - Peng Zhang
- Department of General Surgery, Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Zizheng Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Maruyama K, McGuire JJ, Kagota S. Progression of Time-Dependent Changes to the Mechanisms of Vasodilation by Protease-Activated Receptor 2 in Metabolic Syndrome. Biol Pharm Bull 2018; 40:2039-2044. [PMID: 29199228 DOI: 10.1248/bpb.b17-00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteases released from tissues or by synthetic peptide ligands administered pharmacologically. Its wide expression in the cardiovascular system, particularly within the endothelium, vasodilation activity, and link to increased expression of inflammatory cytokines positions PAR2 as a potentially important regulator of vascular pathology under conditions of tissue inflammation, and injury; and thus, a pharmaceutical target for new therapeutics. Obesity is considered a chronic low-grade systemic inflammatory condition as inflammatory cytokines released from adipocytes are closely related to development of metabolic syndrome and related disorders. Our work over the past five-years has focused on the changes in vasomotor functions of PAR2 in metabolic syndrome, using an animal model known as the SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF). In young SHRSP.ZF that had already developed impaired responses to nitric oxide, we reported that PAR2-induced endothelium-dependent vasodilation is preserved. However, this PAR2 vasodilation decreased with increasing age and further chronic exposure to the conditions of metabolism disorder. These findings raise the possibility that PAR2 regulates tissue perfusion and can protect organs from injury, which is an increasing clinical concern at later stages of metabolic syndrome. Here we present our studies on the time-dependent changes in vasoreactivity to PAR2 in metabolic syndrome and the underlying mechanisms. Furthermore, we discuss the implications of these age-related changes in PAR2 for the cardiovascular system in metabolic syndrome.
Collapse
Affiliation(s)
- Kana Maruyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - John J McGuire
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
7
|
Enhancement of bradykinin-induced relaxation by focal brain ischemia in the rat middle cerebral artery: Receptor expression upregulation and activation of multiple pathways. PLoS One 2018; 13:e0198553. [PMID: 29912902 PMCID: PMC6005516 DOI: 10.1371/journal.pone.0198553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Focal brain ischemia markedly affects cerebrovascular reactivity. So far, these changes have mainly been related to alterations in the level of smooth muscle cell function while alterations of the endothelial lining have not yet been studied in detail. We have, therefore, investigated the effects of ischemia/reperfusion injury on bradykinin (BK)-induced relaxation since BK is an important mediator of tissue inflammation and affects vascular function in an endothelium-dependent manner. Focal brain ischemia was induced in rats by endovascular filament occlusion (2h) of the middle cerebral artery (MCA). After 22h reperfusion, both MCAs were harvested and the response to BK studied in organ bath experiments. Expression of the BK receptor subtypes 1 and 2 (B1, B2) was determined by real-time semi-quantitative RT-qPCR methodology, and whole mount immunofluorescence staining was performed to show the B2 receptor protein expression. In control animals, BK did not induce significant vasomotor effects despite a functionally intact endothelium and robust expression of B2 mRNA. After ischemia/reperfusion injury, BK induced a concentration-related sustained relaxation in all arteries studied, more pronounced in the ipsilateral than in the contralateral MCA. The B2 mRNA was significantly upregulated and the B1 mRNA displayed de novo expression, again more pronounced ipsi- than contralaterally. Endothelial cells displaying B2 receptor immunofluorescence were observed scattered or clustered in previously occluded MCAs. Relaxation to BK was mediated by B2 receptor activation, abolished after endothelium denudation, and largely diminished by blocking nitric oxide (NO) release or soluble guanylyl cyclase activity. Relaxation to BK was partially inhibited by charybdotoxin (ChTx), but not apamin or iberiotoxin suggesting activation of an endothelium-dependent hyperpolarization pathway. When the NO-cGMP pathway was blocked, BK induced a transient relaxation which was suppressed by ChTx. After ischemia/reperfusion injury BK elicits endothelium-dependent relaxation which was not detectable in control MCAs. This gain of function is mediated by B2 receptor activation and involves the release of NO and activation of an endothelium-dependent hyperpolarization. It goes along with increased B2 mRNA and protein expression, leaving the functional role of the de novo B1 receptor expression still open.
Collapse
|
8
|
Lemmey HAL, Ye X, Ding HC, Triggle CR, Garland CJ, Dora KA. Hyperglycaemia disrupts conducted vasodilation in the resistance vasculature of db/db mice. Vascul Pharmacol 2018; 103-105:29-35. [PMID: 29339138 PMCID: PMC5906692 DOI: 10.1016/j.vph.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Vascular dysfunction in small resistance arteries is observed during chronic elevations in blood glucose. Hyperglycaemia-associated effects on endothelium-dependent vasodilation have been well characterized, but effects on conducted vasodilation in the resistance vasculature are not known. Small mesenteric arteries were isolated from healthy and diabetic db/db mice, which were used as a model of chronic hyperglycaemia. Endothelium-dependent vasodilation via the Gq/11-coupled proteinase activated receptor 2 (PAR2) was stimulated with the selective agonist SLIGRL. The Ca2+-sensitive fluorescent indicator fluo-8 reported changes in endothelial cell (EC) [Ca2+]i, and triple cannulated bifurcating mesenteric arteries were used to study conducted vasodilation. Chronic hyperglycaemia did not affect either EC Ca2+ or local vasodilation to SLIGRL. However, both acute and chronic exposure to high glucose or the mannitol osmotic control attenuated conducted vasodilation to 10μM SLIGRL. This investigation demonstrates for the first time that a hypertonic solution containing glucose or mannitol can interfere with the spread of a hyperpolarizing current along the endothelium in a physiological setting. Our findings reiterate the importance of studying the effects of hyperglycaemia in the vasculature, and provide the basis for further studies regarding the modulation of junctional proteins involved in cell to cell communication by diseases such as diabetes.
Collapse
Affiliation(s)
- Hamish A L Lemmey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Hong C Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Christopher R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Christopher J Garland
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
9
|
Maruyama K, Kagota S, McGuire JJ, Wakuda H, Yoshikawa N, Nakamura K, Shinozuka K. Age-related changes to vascular protease-activated receptor 2 in metabolic syndrome: a relationship between oxidative stress, receptor expression, and endothelium-dependent vasodilation. Can J Physiol Pharmacol 2016; 95:356-364. [PMID: 28103056 DOI: 10.1139/cjpp-2016-0298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protease-activated receptor 2 (PAR2) is expressed in vascular endothelium. Nitric oxide (NO) - cyclic GMP-mediated vasodilation in response to 2-furoyl-LIGRLO-amide (2fLIGRLO), a PAR2-activating peptide, is impaired in aortas from aged SHRSP.Z-Leprfa/IzmDmcr (SHRSP.ZF) rats with metabolic syndrome. Here we investigated mechanisms linking PAR2's vascular effects to phenotypic characteristics of male SHRSP.ZF rats at 10, 20, and 30 weeks of age. We found vasodilation responses to either 2fLIGRLO or enzyme-mediated PAR2 activation by trypsin were sustained until 20 weeks and lessened at 30 weeks. PAR2 protein and mRNA levels were lower in aortas at 30 weeks than at 10 and 20 weeks. PAR2-mediated responses positively correlated with PAR2 protein and mRNA levels. Decreased cGMP accumulation in the presence of 2fLIGRLO paralleled the decreased relaxations elicited by nitroprusside and the cGMP analog 8-pCPT-cGMP, and the less soluble guanylyl cyclase protein at 30 weeks. 2fLIGRLO-induced relaxation was negatively correlated with serum thiobarbituric acid reactive substances, an index of oxidative stress, which increased with age. Forward stepwise data regression supported a model of age-related decreases in PAR2 function resulting from decreased PAR2 mRNA and increased oxidative stress. We conclude that decreased responsiveness of aortic smooth muscle to NO and downregulation of receptor expression impair PAR2 functions at later stages of metabolic syndrome in SHRSP.ZF rats.
Collapse
Affiliation(s)
- Kana Maruyama
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Satomi Kagota
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - John J McGuire
- b Cardiovascular Research Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Hirokazu Wakuda
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Noriko Yoshikawa
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Kazuki Nakamura
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Kazumasa Shinozuka
- a Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| |
Collapse
|
10
|
Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3130496. [PMID: 27006943 PMCID: PMC4781943 DOI: 10.1155/2016/3130496] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study.
Collapse
|
11
|
Hennessey JC, Stuyvers BD, McGuire JJ. Small caliber arterial endothelial cells calcium signals elicited by PAR2 are preserved from endothelial dysfunction. Pharmacol Res Perspect 2015; 3:e00112. [PMID: 25729579 PMCID: PMC4324686 DOI: 10.1002/prp2.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/05/2022] Open
Abstract
Endothelial cell (EC)-dependent vasodilation by proteinase-activated receptor 2 (PAR2) is preserved in small caliber arteries in disease states where vasodilation by muscarinic receptors is decreased. In this study, we identified and characterized the PAR2-mediated intracellular calcium (Ca2+)-release mechanisms in EC from small caliber arteries in healthy and diseased states. Mesenteric arterial EC were isolated from PAR2 wild-type (WT) and null mice, after saline (controls) or angiotensin II (AngII) infusion, for imaging intracellular calcium and characterizing the calcium-release system by immunofluorescence. EC Ca2+ signals comprised two forms of Ca2+-release events that had distinct spatial-temporal properties and occurred near either the plasmalemma (peripheral) or center of EC. In healthy EC, PAR2-dependent increases in the densities and firing rates of both forms of Ca2+-release were abolished by inositol 1,4,5- trisphosphate receptor (IP3R) inhibitor, but partially reduced by transient potential vanilloid channels inhibitor ruthenium red (RR). Acetylcholine (ACh)-induced less overall Ca2+-release than PAR2 activation, but enhanced selectively the incidence of central events. PAR2-dependent Ca2+-activity, inhibitors sensitivities, IP3R, small- and intermediate-conductance Ca2+-activated potassium channels expressions were unchanged in EC from AngII WT. However, the same cells exhibited decreases in ACh-induced Ca2+-release, RR sensitivity, and endothelial nitric oxide synthase expression, indicating AngII-induced dysfunction was differentiated by receptor, Ca2+-release, and downstream targets of EC activation. We conclude that PAR2 and muscarinic receptors selectively elicit two elementary Ca2+ signals in single EC. PAR2-selective IP3R-dependent peripheral Ca2+-release mechanisms are identical between healthy and diseased states. Further study of PAR2-selective Ca2+-release for eliciting pathological and/or normal EC functions is warranted.
Collapse
Affiliation(s)
- John C Hennessey
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - Bruno D Stuyvers
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - John J McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| |
Collapse
|