1
|
Lv J, Fu Z, Zheng H, Song Q. Global research trends and emerging opportunities for integrin adhesion complexes in cardiac repair: a scientometric analysis. Front Cardiovasc Med 2024; 11:1308763. [PMID: 38699584 PMCID: PMC11063371 DOI: 10.3389/fcvm.2024.1308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Cardiac regenerative medicine has gained significant attention in recent years, and integrins are known to play a critical role in mediating cardiac development and repair, especially after an injury from the myocardial infarction (MI). Given the extensive research history and interdisciplinary nature of this field, a quantitative retrospective analysis and visualization of related topics is necessary. Materials and methods We performed a scientometric analysis of published papers on cardiac integrin adhesion complexes (IACs), including analysis of annual publications, disciplinary evolution, keyword co-occurrence, and literature co-citation. Results A total of 2,664 publications were finally included in the past 20 years. The United States is the largest contributor to the study and is leading this area of research globally. The journal Circulation Research attracts the largest number of high-quality publications. The study of IACs in cardiac repair/regenerative therapies involves multiple disciplines, particularly in materials science and developmental biology. Keywords of research frontiers were represented by Tenasin-C (2019-2023) and inflammation (2020-2023). Conclusion Integrins are topics with ongoing enthusiasm in biological development and tissue regeneration. The rapidly emerging role of matricellular proteins and non-protein components of the extracellular matrix (ECM) in regulating matrix structure and function may be a further breakthrough point in the future; the emerging role of IACs and their downstream molecular signaling in cardiac repair are also of great interest, such as induction of cardiac proliferation, differentiation, maturation, and metabolism, fibroblast activation, and inflammatory modulation.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Haoran Zheng
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Pelliccia F, Zimarino M, Niccoli G, Morrone D, De Luca G, Miraldi F, De Caterina R. In-stent restenosis after percutaneous coronary intervention: emerging knowledge on biological pathways. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead083. [PMID: 37808526 PMCID: PMC10558044 DOI: 10.1093/ehjopen/oead083] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Percutaneous coronary intervention (PCI) has evolved significantly over the past four decades. Since its inception, in-stent restenosis (ISR)-the progressive reduction in vessel lumen diameter after PCI-has emerged as the main complication of the procedure. Although the incidence of ISR has reduced from 30% at 6 months with bare-metal stents to 7% at 4 years with drug-eluting stents (DESs), its occurrence is relevant in absolute terms because of the dimensions of the population treated with PCI. The aim of this review is to summarize the emerging understanding of the biological pathways that underlie ISR. In-stent restenosis is associated with several factors, including patient-related, genetic, anatomic, stent, lesion, and procedural characteristics. Regardless of associated factors, there are common pathophysiological pathways involving molecular phenomena triggered by the mechanical trauma caused by PCI. Such biological pathways are responses to the denudation of the intima during balloon angioplasty and involve inflammation, hypersensitivity reactions, and stem cell mobilization particularly of endothelial progenitor cells (EPCs). The results of these processes are either vessel wall healing or neointimal hyperplasia and/or neo-atherosclerosis. Unravelling the key molecular and signal pathways involved in ISR is crucial to identify appropriate therapeutic strategies aimed at abolishing the 'Achille's heel' of PCI. In this regard, we discuss novel approaches to prevent DES restenosis. Indeed, available evidence suggests that EPC-capturing stents promote rapid stent re-endothelization, which, in turn, has the potential to decrease the risk of stent thrombosis and allow the use of a shorter-duration dual antiplatelet therapy.
Collapse
Affiliation(s)
- Francesco Pelliccia
- Department of Cardiovascular Sciences, University Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University, Viale Abruzzo, 332, 66100 Chieti, Italy
- Department of Cardiology, “SS. Annunziata Hospital”, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
| | - Giampaolo Niccoli
- Department of Cardiology, University of Parma, Piazzale S. Francesco, 3, 43121 Parma, Italy
| | - Doralisa Morrone
- Department of Surgical, Medical and Molecular Pathology and of Critical Sciences, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Fabio Miraldi
- Department of Cardiovascular Sciences, University Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | - Raffaele De Caterina
- Department of Surgical, Medical and Molecular Pathology and of Critical Sciences, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
3
|
Shao W, Li Z, Wang B, Gong S, Wang P, Song B, Chen Z, Feng Y. Dimethyloxalylglycine Attenuates Steroid-Associated Endothelial Progenitor Cell Impairment and Osteonecrosis of the Femoral Head by Regulating the HIF-1α Signaling Pathway. Biomedicines 2023; 11:biomedicines11040992. [PMID: 37189610 DOI: 10.3390/biomedicines11040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Endothelial impairment and dysfunction are closely related to the pathogenesis of steroid-associated osteonecrosis of the femoral head (SONFH). Recent studies have showed that hypoxia inducible factor-1α (HIF-1α) plays a crucial role in endothelial homeostasis maintenance. Dimethyloxalylglycine (DMOG) could suppress HIF-1 degradation and result in nucleus stabilization by repressing prolyl hydroxylase domain (PHD) enzymatic activity. Our results showed that methylprednisolone (MPS) remarkably undermined biological function of endothelial progenitor cells (EPC) by inhibiting colony formation, migration, angiogenesis, and stimulating senescence of EPCs, while DMOG treatment alleviated these effects by promoting HIF-1α signaling pathway, as evidenced by senescence-associated β-galactosidase (SA-β-Gal) staining, colony-forming unit, matrigel tube formation, and transwell assays. The levels of proteins related to angiogenesis were determined by ELISA and Western blotting. In addition, active HIF-1α bolstered the targeting and homing of endogenous EPCs to the injured endothelium in the femoral head. Histopathologically, our in vivo study showed that DMOG not only alleviated glucocorticoid-induced osteonecrosis but also promoted angiogenesis and osteogenesis in the femoral head as detected by microcomputed tomography (Micro-CT) analysis and histological staining of OCN, TRAP, and Factor Ⅷ. However, all of these effects were impaired by an HIF-1α inhibitor. These findings demonstrate that targeting HIF-1α in EPCs may constitute a novel therapeutic approach for the treatment of SONFH.
Collapse
Affiliation(s)
- Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beite Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixiang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Tian Y, Zheng G, Xie H, Guo Y, Zeng H, Fu Y, Liu X. Study on the Mechanism of circRNA-0024103 Reducing Endothelial Cell Injury by Regulating miR-363/MMP-10. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1709325. [PMID: 35992547 PMCID: PMC9363165 DOI: 10.1155/2022/1709325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
Cardiovascular diseases could damage the heart and blood vessels, which cause mortality and morbidity. It is of great significance to explore targeted therapeutic approaches for atherosclerosis that is one of the most common vascular lesions and the main pathological basis of cardiovascular disease. However, the function of circRNA-0024103 in cardiovascular diseases is still not clear. Therefore, we aim to observe the effect of circRNA-0024103 modulation of miR-363/MMP-10 axis on biological behaviors such as proliferation and migration of endothelial cells after ox-LDL induction. The effects on the proliferation ability of endothelial cells were observed by CCK-8 assay and EdU assay based on overexpression of circRNA-0024103 in combination with miR-363 mimic or MMP-10 siRNA, and then, the effects on apoptosis were detected by flow cytometry analysis. The effects on cell migration, invasion, and angiogenesis were further examined by scratch assay, transwell assay, and tube formation assay. The results in CCK-8 and EdU assays showed that miR-363 mimic or MMP-10siRNA significantly attenuated the proliferation-promoting effect of overexpressed circRNA-0024103 on cell proliferation. In flow cytometry assays to detect apoptosis, overexpression of circRNA-0024103 inhibited apoptosis of endothelial cells, and the intervention of combined miR-363 mimic or MMP-10 siRNA counteracted the inhibitory effect of overexpression of circRNA-0024103 on apoptosis, resulting in a significant increase in the number of endothelial cells undergoing apoptosis. The migration, invasion, and tube-forming ability of endothelial cells were significantly enhanced when circRNA-0024103 was overexpressed, while the promotion of migration, invasion, and the tube-forming ability by overexpression of circRNA-0024103 alone was counteracted when combined with miR-363 mimic or MMP-10 siRNA. circRNA-0024103 regulates the biological behaviors of endothelial cells such as proliferation, apoptosis, migration, and invasion through the miR-363/MMP-10 axis. Our finding provides a new therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yunfei Tian
- Department of Minimally Invasive Intervention, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Guofu Zheng
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Hailiang Xie
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Yi Guo
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Hui Zeng
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Youlin Fu
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| | - Xiaochun Liu
- Department of Vascular and Hernial Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
6
|
Pelliccia F, Zimarino M, De Luca G, Viceconte N, Tanzilli G, De Caterina R. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl Med 2022; 11:451-460. [PMID: 35365823 PMCID: PMC9154346 DOI: 10.1093/stcltm/szac010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a heterogeneous group of cells present in peripheral blood at various stages of endothelial differentiation. EPCs have been extensively investigated in patients with coronary artery disease (CAD), with controversial findings both on their role in atherosclerosis progression and in the process of neointimal growth after a percutaneous coronary intervention (PCI). Despite nearly 2 decades of experimental and clinical investigations, however, the significance of EPCs in clinical practice remains unclear and poorly understood. This review provides an update on the role of EPCs in the most common clinical scenarios that are experienced by cardiologists managing patients with CAD. We here summarize the main findings on the association of EPCs with cardiovascular risk factors, coronary atherosclerosis, and myocardial ischemia. We then discuss the potential effects of EPCs in post-PCI in-stent restenosis, as well as most recent findings with EPC-coated stents. Based on the mounting evidence of the relationship between levels of EPCs and several different adverse cardiovascular events, EPCs are emerging as novel predictive biomarkers of long-term outcomes in patients with CAD.
Collapse
Affiliation(s)
| | - Marco Zimarino
- Institute of Cardiology, “G. d’Annunzio” University, Chieti, Italy
- Cath Lab, SS. Annunziata Hospital, Chieti, Italy
| | - Giuseppe De Luca
- Division of Cardiology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Università del Piemonte Orientale, Novara, Italy
| | - Nicola Viceconte
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
7
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Pelliccia F, Pasceri V, Zimarino M, De Luca G, De Caterina R, Mehran R, Dangas G. Endothelial progenitor cells in coronary atherosclerosis and percutaneous coronary intervention: A systematic review and meta-analysis. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2022; 42:94-99. [DOI: 10.1016/j.carrev.2022.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
|
9
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Liu RS, Li B, Li WD, Du XL, Li XQ. miRNA-130 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells Through PI3K/AKT/mTOR Pathways. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
<sec> <title>Aim:</title> In this study, we aimed to investigate the effects and mechanisms of miRNA-130a in human endothelial progenitor cells (EPCs) involved in Deep vein thrombosis (DVT). </sec> <sec> <title>Methods:</title>
EPCs were isolated and identified by cell morphology and surface marker detection. The effect of miR-130a on the migration, invasion and angiogenesis of EPCs in vitro were also detected. In addition, whether miR-130a is involved in the MMP-1 expression and Akt/PI3K/mTOR signaling
pathway was also demonstrated. </sec> <sec> <title>Results:</title> Results suggested that miRNA-130a promotes migration, invasion, and tube formation of EPCs by positively regulating the expression of MMP-1 through Akt/PI3K/mTOR signaling pathway.
</sec> <sec> <title>Conclusion:</title> Thus, as a potential therapeutic target, miRNA-130a may play an important role in the treatment of DVT. </sec>
Collapse
Affiliation(s)
- Ru-Sheng Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Suzhou, JS 512, China
| | - Bin Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Suzhou, JS 512, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, Nanjing, JS 25, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, Nanjing, JS 25, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Suzhou, JS 512, China
| |
Collapse
|
11
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Madonna R. Multi-Target Drugs for Blood Cancer in the Elderly: Implications of Damage and Repair in the Cardiovascular Toxicity. Front Physiol 2021; 12:792751. [PMID: 34950060 PMCID: PMC8688949 DOI: 10.3389/fphys.2021.792751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosalinda Madonna
- Cardiology Division, University of Pisa, Pisa, Italy
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Nguyen DT, Smith AF, Jiménez JM. Stent strut streamlining and thickness reduction promote endothelialization. J R Soc Interface 2021; 18:20210023. [PMID: 34404229 PMCID: PMC8371379 DOI: 10.1098/rsif.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander F. Smith
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Yu J, Du Q, Hu M, Zhang J, Chen J. Endothelial Progenitor Cells in Moyamoya Disease: Current Situation and Controversial Issues. Cell Transplant 2021; 29:963689720913259. [PMID: 32193953 PMCID: PMC7444216 DOI: 10.1177/0963689720913259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the lack of animal models and difficulty in obtaining specimens, the study of pathogenesis of moyamoya disease (MMD) almost stagnated. In recent years, endothelial progenitor cells (EPCs) have attracted more and more attention in vascular diseases due to their important role in neovascularization. With the aid of paradigms and methods in cardiovascular diseases research, people began to explore the role of EPCs in the processing of MMD. In the past decade, studies have shown that abnormalities in cell amounts and functions of EPCs were closely related to the vascular pathological changes in MMD. However, the lack of consistent criteria, such as isolation, cultivation, and identification standards, is also blocking the way forward. The goal of this review is to provide an overview of the current situation and controversial issues relevant to studies about EPCs in the pathogenesis and etiology of MMD.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Du
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Vitamin D (1,25-(OH) 2D 3) Improves Endothelial Progenitor Cells Function via Enhanced NO Secretion in Systemic Lupus Erythematosus. Cardiol Res Pract 2020; 2020:6802562. [PMID: 33123377 PMCID: PMC7586170 DOI: 10.1155/2020/6802562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/02/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023] Open
Abstract
It has been proven that vitamin D was decreased and function of circulating endothelial progenitor cells (EPCs) was injured in systemic lupus erythematosus (SLE) patients. However, the effect of vitamin D on the function of EPCs in vitro and its mechanism need further study. Therefore, we investigated whether vitamin D improved the function of EPCs in vitro. The peripheral blood mononuclear cells of the participants were isolated from SLE patients and control subjects and cultured to EPCs. After the EPCs were treated with vitamin D (1,25-(OH)2D3), we evaluated the number, migratory and proliferative activities, and nitric oxide (NO) production of EPCs in vitro and detected vascular endothelial function by flow-mediated dilatation (FMD). We found that vitamin D in a dose-dependent manner improved number and migratory and proliferative activities of EPCs from SLE patients. Additionally, vitamin D upregulated NO production from EPCs in vitro. A significant correlation between the FMD and plasma NO level was found. There was also a correlation between number, migration, and proliferation of EPCs and NO production. Thus, the present findings indicated that vitamin D improved the function of EPCs from SLE patients via NO secretion.
Collapse
|
17
|
Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA J 2020; 11:629-643. [PMID: 33240451 DOI: 10.1007/s13167-020-00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Stimulated by the leading mortalities of cardiovascular diseases (CVDs), various types of cardiovascular biomaterials have been widely investigated in the past few decades. Although great therapeutic effects can be achieved by bare metal stents (BMS) and drug-eluting stents (DES) within months or years, the long-term complications such as late thrombosis and restenosis have limited their further applications. It is well accepted that rapid endothelialization is a promising approach to eliminate these complications. Convincing evidence has shown that endothelial progenitor cells (EPCs) could be mobilized into the damaged vascular sites systemically and achieve endothelial repair in situ, which significantly contributes to the re-endothelialization process. Therefore, how to effectively capture EPCs via specific molecules immobilized on biomaterials is an important point to achieve rapid endothelialization. Further, in the context of predictive, preventive, personalized medicine (PPPM), the abnormal number alteration of EPCs in circulating blood and certain inflammation responses can also serve as important indicators for predicting and preventing early cardiovascular disease. In this contribution, we mainly focused on the following sections: the definition and classification of EPCs, the mechanisms of EPCs in treating CVDs, the potential diagnostic role of EPCs in predicting CVDs, as well as the main strategies for cardiovascular biomaterials to capture EPCs.
Collapse
|
18
|
Madonna R, Pieragostino D, Cufaro MC, Doria V, Del Boccio P, Deidda M, Pierdomenico SD, Dessalvi CC, De Caterina R, Mercuro G. Ponatinib Induces Vascular Toxicity through the Notch-1 Signaling Pathway. J Clin Med 2020; 9:jcm9030820. [PMID: 32197359 PMCID: PMC7141219 DOI: 10.3390/jcm9030820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023] Open
Abstract
Ponatinib, a third-generation tyrosine kinase inhibitor (TKI), is the only approved TKI that is effective against T315I mutations in patients with chronic myeloid leukemia (CML). Specific activation of Notch signaling in CML cells by ponatinib can be considered as the “on-target effect” on the tumor and represents a therapeutic approach for CML. Nevertheless, ponatinib-induced vascular toxicity remains a serious concern, with underlying mechanisms being poorly understood. We aimed to determine the mechanisms of ponatinib-induced vascular toxicity, defining associated signaling pathways and identifying potential rescue strategies. We exposed human umbilical endothelial cells (HUVECs) to ponatinib or vehicle in the presence or absence of the neutralizing factor anti-Notch-1 antibody for exposure times of 0–72 h. Label-free proteomics and network analysis showed that protein cargo of HUVECs treated with ponatinib triggered apoptosis and inhibited vasculature development. We validated the proteomic data showing the inhibition of matrigel tube formation, an up-regulation of cleaved caspase-3 and a downregulation of phosphorylated AKT and phosphorylated eNOS. We delineated the signaling of ponatinib-induced vascular toxicity, demonstrating that ponatinib inhibits endothelial survival, reduces angiogenesis and induces endothelial senescence and apoptosis via the Notch-1 pathway. Ponatinib induced endothelial toxicity in vitro. Hyperactivation of Notch-1 in the vessels can lead to abnormal vascular development and vascular dysfunction. By hyperactivating Notch-1 in the vessels, ponatinib exerts an “on-target off tumor effect”, which leads to deleterious effects and may explain the drug’s vasculotoxicity. Selective blockade of Notch-1 prevented ponatinib-induced vascular toxicity.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy;
- Department of Internal Medicine, Cardiology Division, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Damiana Pieragostino
- Department of Medical, Oral and Biotechnological Sciences, University ‘‘G. D’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy;
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Vanessa Doria
- Institute of Cardiology, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (S.D.P.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
| | - Sante Donato Pierdomenico
- Institute of Cardiology, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (S.D.P.)
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy;
- Correspondence: (R.D.C.); (G.M.)
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
- Correspondence: (R.D.C.); (G.M.)
| |
Collapse
|
19
|
Steffen E, Mayer von Wittgenstein WBE, Hennig M, Niepmann ST, Zietzer A, Werner N, Rassaf T, Nickenig G, Wassmann S, Zimmer S, Steinmetz M. Murine sca1/flk1-positive cells are not endothelial progenitor cells, but B2 lymphocytes. Basic Res Cardiol 2020; 115:18. [PMID: 31980946 PMCID: PMC6981106 DOI: 10.1007/s00395-020-0774-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Circulating sca1+/flk1+ cells are hypothesized to be endothelial progenitor cells (EPCs) in mice that contribute to atheroprotection by replacing dysfunctional endothelial cells. Decreased numbers of circulating sca1+/flk1+ cells correlate with increased atherosclerotic lesions and impaired reendothelialization upon electric injury of the common carotid artery. However, legitimate doubts remain about the identity of the putative EPCs and their contribution to endothelial restoration. Hence, our study aimed to establish a phenotype for sca1+/flk1+ cells to gain a better understanding of their role in atherosclerotic disease. In wild-type mice, sca1+/flk1+ cells were mobilized into the peripheral circulation by granulocyte-colony stimulating factor (G-CSF) treatment and this movement correlated with improved endothelial regeneration upon carotid artery injury. Multicolor flow cytometry analysis revealed that sca1+/flk1+ cells predominantly co-expressed surface markers of conventional B cells (B2 cells). In RAG2-deficient mice and upon B2 cell depletion, sca1+/flk1+ cells were fully depleted. In the absence of monocytes, sca1+/flk1+ cell levels were unchanged. A PCR array focused on cell surface markers and next-generation sequencing (NGS) of purified sca1+/flk1+ cells confirmed their phenotype to be predominantly that of B cells. Finally, the depletion of B2 cells, including sca1+/flk1+ cells, in G-CSF-treated wild-type mice partly abolished the endothelial regenerating effect of G-CSF, indicating an atheroprotective role for sca1+/flk1+ B2 cells. In summary, we characterized sca1+/flk1+ cells as a subset of predominantly B2 cells, which are apparently involved in endothelial regeneration.
Collapse
Affiliation(s)
- Eva Steffen
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | | | - Marie Hennig
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sven Thomas Niepmann
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Nikos Werner
- Krankenhaus der Barmherzigen Brüder, Innere Medizin III, Trier, Germany
| | - Tienush Rassaf
- Westdeutsches Herz- und Gefäßzentrum, Klinik für Kardiologie und Angiologie, Universitätsklinikum Essen, Essen, Germany
| | - Georg Nickenig
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sven Wassmann
- Cardiology Pasing, Munich, Germany.,University of the Saarland, Homburg, Saar, Germany
| | - Sebastian Zimmer
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Martin Steinmetz
- Westdeutsches Herz- und Gefäßzentrum, Klinik für Kardiologie und Angiologie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
20
|
Otto M, Blatt S, Pabst A, Mandic R, Schwarz J, Neff A, Ziebart T. Influence of buffy coat-derived putative endothelial progenitor cells on tumor growth and neovascularization in oral squamous cell carcinoma xenografts. Clin Oral Investig 2019; 23:3767-3775. [PMID: 30693401 DOI: 10.1007/s00784-019-02806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this murine in vivo study was to investigate whether buffy coat-derived putative endothelial progenitor cells (BCEPC) alter tumor growth and neovascularization in oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS A murine xenograft model using the PCI-13 oral cancer cell line was deployed of which n = 24 animals received 2 × 106 BCEPC by transfusion whereas the control group (n = 24) received NaCl (0.9%) instead. Tumor size, volume, and capillary density were determined by sonography and measurement with a caliper. Immunohistochemical analysis was carried out with antibodies specific for Cytokeratins, Flt-4, Podoplanin, and Vimentin. RESULTS In the experimental group, systemic application of BCEPC significantly increased tumor volume to 362.49% (p = 0.0012) and weight to 352.38% (p = 0.0018) as well as vascular densities to 162.15% (p = 0.0021) compared with control tumors. In addition, BCEPC-treated xenografts exhibited higher Cytokeratin expression levels by a factor of 1.47 (p = 0.0417), Podoplanin by a factor of 3.3 (p = 0.0020) and Vimentin by a factor of 2.5 (p = 0.0001), respectively. CONCLUSIONS Immunohistochemical investigations support the notion that BCEPC transfusion influences neovascularization and lymphatic vessel density, thereby possibly promoting tumor progression. Future studies, which will include gene expression analysis, should help to define the possible role of BCEPC during OSCC progression in more detail. CLINICAL RELEVANCE Endothelial progenitor cells (EPCs) could serve as a target structure for the treatment of OSCC and possibly other solid tumors.
Collapse
Affiliation(s)
- Marius Otto
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Sebastian Blatt
- Clinic for Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas Pabst
- Clinic for Oral and Maxillofacial Surgery, Federal Armed Forces Hospital Koblenz, Koblenz, Germany
| | - Robert Mandic
- Interdisciplinary Head & Neck Oncology Laboratory, Department of Otolaryngology, Head & Neck Surgery, University Hospital Marburg, Marburg, Germany
| | - Johanna Schwarz
- Department of Mathematics and Computer Science, Research Group for Bioinformatics, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Neff
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany
| | - Thomas Ziebart
- Interdisciplinary Head & Neck Oncology Laboratory, Department for Oral and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, D-35033, Marburg, Germany.
| |
Collapse
|
21
|
Diego-Nieto A, Vidriales MB, Alonso-Orcajo N, Moreno-Samos JC, Martin-Herrero F, Carbonell R, Cid B, Cruz-Gonzalez I, Martin-Moreiras JC, Cuellas C, Pascual C, Lopez-Benito M, Sanchez PL, Fernandez-Vazquez F, de Prado AP. No Differences in Levels of Circulating Progenitor Endothelial Cells or Circulating Endothelial Cells Among Patients Treated With Ticagrelor Compared With Clopidogrel During Non- ST -Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2018; 7:e009444. [PMID: 30371302 PMCID: PMC6404906 DOI: 10.1161/jaha.118.009444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ticagrelor use during acute coronary syndromes demonstrated a decrease in all‐cause mortality in the PLATO (Platelet Inhibition and Patient Outcomes) trial. This effect has been attributed to a non–platelet‐derived improvement in endothelial function. The aim of this study was to determine differences in the number of endothelial progenitor cells and/or circulating endothelial cells found in peripheral blood in patients treated with either ticagrelor or clopidogrel during non–ST‐segment–elevation myocardial infarction. Methods and Results In this multicenter, randomized study (NCT02244710), patients were considered for inclusion after non–ST‐segment–elevation myocardial infarction whenever they were P2Y12‐inhibitor naïve. Ticagrelor and clopidogrel were allocated at a 1:1 ratio. Blood samples for determining endothelial progenitor cells and circulating endothelial cells were extracted before the antiplatelet loading dose, 48 hours after presentation of index symptoms, and 1 month after the event. A multichannel cytometer was used for optimal cell characterization. A total of 96 patients fulfilled the inclusion criteria. Circulating endothelial cell levels corrected by white blood cells were as follows at baseline, 48 hours, and 1 month: 44 (28–64), 50 (33–63), and 38 (23–62) cells/mL, respectively, for clopidogrel and 38 (29–60), 45 (32–85), and 35 (24–71) cells/mL, respectively, for ticagrelor (P=0.6). Endothelial progenitor cell levels were 29 (15–47), 27 (15–33), and 18 (10–25) cells/mL, respectively, for clopidogrel and 20 (11–33), 22 (12–32), and 18 (11–29) cells/mL, respectively, for ticagrelor (P=0.9). No differences in intraindividual changes were found. Conclusions Patients treated with ticagrelor during non–ST‐segment–elevation myocardial infarction, in comparison to clopidogrel, showed similar levels of endothelial progenitor cells and circulating endothelial cells. These data suggest that the endothelial protective effect mediated by ticagrelor is not related to bone marrow physiology modulation. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT02244710.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Belen Cid
- 4 Department of Cardiology City of Universitu Hospital of Santiago de Compostela
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Lo Gullo A, Aragona CO, Scuruchi M, Versace AG, Saitta A, Imbalzano E, Loddo S, Campo GM, Mandraffino G. Endothelial progenitor cells and rheumatic disease modifying therapy. Vascul Pharmacol 2018; 108:8-14. [PMID: 29842927 DOI: 10.1016/j.vph.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease.
Collapse
Affiliation(s)
- Alberto Lo Gullo
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | | | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | | | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | | | | |
Collapse
|
24
|
Sánchez PF, Brey EM, Briceño JC. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 2018; 12:2164-2178. [PMID: 30079631 DOI: 10.1002/term.2747] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Despite the wide variety of tissue-engineered vascular grafts that are currently being developed, autologous vessels, such as the saphenous vein, are still the gold standard grafts for surgical treatment of vascular disease. Recently developed technologies have shown promising results in preclinical studies, but they still do not overcome the issues that native vessels present, and only a few have made the transition into clinical use. The endothelial lining is a key aspect for the success or failure of the grafts, especially on smaller diameter grafts (<5 mm). However, during the design and evaluation of the grafts, the mechanisms for the formation of this layer are not commonly examined. Therefore, a significant amount of established research might not be relevant to the clinical context, due to important differences that exist between the vascular regeneration mechanisms found in animal models and humans. This article reviews current knowledge about endothelialization mechanisms that have been so far identified: in vitro seeding, transanastomotic growth, transmural infiltration, and fallout endothelialization. Emphasis is placed on the models used for study of theses mechanisms and their effects on the development of tissue-engineering vascular conduits.
Collapse
Affiliation(s)
- Paolo F Sánchez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Eric M Brey
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas.,Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois.,Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Juan Carlos Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.,Research Department, Fundación Cardioinfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
25
|
Yang JX, Pan YY, Wang XX, Qiu YG, Mao W. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant 2018; 27:786-795. [PMID: 29882417 PMCID: PMC6047273 DOI: 10.1177/0963689718779345] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has demonstrated that endothelial progenitor cells (EPCs) could facilitate the reendothelialization of injured arteries by replacing the dysfunctional endothelial cells, thereby suppressing the formation of neointima. Meanwhile, other findings suggest that EPCs may be involved in the pathogenesis of age-related vascular remodeling. This review is presented to summarize the characteristics of EPCs and age-related vascular remodeling. In addition, the role of EPCs in age-related vascular remodeling and possible solutions for improving the therapeutic effects of EPCs in the treatment of age-related diseases are discussed.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China.,2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yan-Yun Pan
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Xing-Xiang Wang
- 2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yuan-Gang Qiu
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Wei Mao
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
26
|
Bauman E, Granja PL, Barrias CC. Fetal bovine serum-free culture of endothelial progenitor cells-progress and challenges. J Tissue Eng Regen Med 2018; 12:1567-1578. [PMID: 29701896 DOI: 10.1002/term.2678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Two decades after the first report on endothelial progenitor cells (EPC), their key role in postnatal vasculogenesis and vascular repair is well established. The therapeutic potential of EPC and their growing use in clinical trials calls for the development of more robust, reproducible, and safer methods for the in vitro expansion and maintenance of these cells. Despite many limitations associated with its usage, fetal bovine serum (FBS) is still widely applied as a cell culture supplement. Although different approaches aiming at establishing FBS-free culture have been developed for many cell types, adequate solutions for endothelial cells, and for EPC in particular, are still scarce, possibly due to the multiple challenges that have to be faced when culturing these cells. In this review, we provide a brief overview on the therapeutic relevance of EPC and critically analyse the available literature on FBS-free endothelial cell culture methods, including xeno-free, serum-free, and chemically defined systems.
Collapse
Affiliation(s)
- E Bauman
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - P L Granja
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - C C Barrias
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
28
|
Li TB, Zhang YZ, Liu WQ, Zhang JJ, Peng J, Luo XJ, Ma QL. Correlation between NADPH oxidase-mediated oxidative stress and dysfunction of endothelial progenitor cell in hyperlipidemic patients. Korean J Intern Med 2018; 33:313-322. [PMID: 28899085 PMCID: PMC5840593 DOI: 10.3904/kjim.2016.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIMS NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX)-mediated oxidative stress plays a key role in promotion of oxidative injury in the cardiovascular system. The aim of this study is to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic patients and to assess the correlation between NOX activity and the functions EPCs. METHODS A total of 30 hyperlipidemic patients were enrolled for this study and 30 age-matched volunteers with normal level of plasma lipids served as controls. After the circulating EPCs were isolated, the EPC functions (migration, adhesion and tube formation) were evaluated and the status of NOX (expression and activity) was examined. RESULTS Compared to the controls, hyperlipidemic patients showed an increase in plasma lipids and a reduction in EPC functions including the attenuated abilities in adhesion, migration and tube formation, concomitant with an increase in NOX expression (NOX2 and NOX4), NOX activity, and reactive oxygen species production. The data analysis showed negative correlations between NOX activity and EPC functions. CONCLUSIONS There is a positive correlation between the NOX-mediated oxidative stress and the dysfunctions of circulating EPCs in hyperlipidemic patients, and suppression of NOX might offer a novel strategy to improve EPCs functions in hyperlipidemia.
Collapse
Affiliation(s)
- Ting-Bo Li
- Department of Laboratory Medicine, Xiangya School of Medicine, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yin-Zhuang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Qi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Changsha, China
- Correspondence to Xiu-Ju Luo, Ph.D. Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, 172 Tong Zi Po Rd, Changsha 410013, China Tel: +86-731-82650348 Fax: +86-731-82650348 E-mail:
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Loisel F, Provost B, Haddad F, Guihaire J, Amsallem M, Vrtovec B, Fadel E, Uzan G, Mercier O. Stem cell therapy targeting the right ventricle in pulmonary arterial hypertension: is it a potential avenue of therapy? Pulm Circ 2018; 8:2045893218755979. [PMID: 29480154 PMCID: PMC5844533 DOI: 10.1177/2045893218755979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by an increase in pulmonary arterial pressure due to pathological changes to the pulmonary vascular bed. As a result, the right ventricle (RV) is subject to an increased afterload and undergoes multiple changes, including a decrease in capillary density. All of these dysfunctions lead to RV failure. A number of studies have shown that RV function is one of the main prognostic factors for PAH patients. Many stem cell therapies targeting the left ventricle are currently undergoing development. The promising results observed in animal models have led to clinical trials that have shown an improvement of cardiac function. In contrast to left heart disease, stem cell therapy applied to the RV has remained poorly studied, even though it too may provide a therapeutic benefit. In this review, we discuss stem cell therapy as a treatment for RV failure in PAH. We provide an overview of the results of preclinical and clinical studies for RV cell therapies. Although a large number of studies have targeted the pulmonary circulation rather than the RV directly, there are nonetheless encouraging results in the literature that indicate that cell therapies may have a direct beneficial effect on RV function. This cell therapy strategy may therefore hold great promise and warrants further studies in PAH patients.
Collapse
Affiliation(s)
- Fanny Loisel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Bastien Provost
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - François Haddad
- 3 Cardiovascular Medicine, Stanford Hospital, Stanford University, CA, USA
| | - Julien Guihaire
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Myriam Amsallem
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Bojan Vrtovec
- 4 Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Elie Fadel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Georges Uzan
- 2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Olaf Mercier
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| |
Collapse
|
30
|
Sapp RM, Hagberg JM. Rebuttal from Ryan M. Sapp and James M. Hagberg. J Physiol 2018; 596:547. [DOI: 10.1113/jp275554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan M. Sapp
- Department of Kinesiology; School of Public Health; University of Maryland; College Park MD USA
| | - James M. Hagberg
- Department of Kinesiology; School of Public Health; University of Maryland; College Park MD USA
| |
Collapse
|
31
|
Wang S, Miao J, Qu M, Yang GY, Shen L. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem Biophys Res Commun 2017; 493:64-70. [DOI: 10.1016/j.bbrc.2017.09.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
|
32
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
33
|
Bittencourt CRDO, Izar MCDO, França CN, Schwerz VL, Póvoa RMDS, Fonseca FAH. Effects of Chronic Exercise on Endothelial Progenitor Cells and Microparticles in Professional Runners. Arq Bras Cardiol 2017; 108:212-216. [PMID: 28443964 PMCID: PMC5389870 DOI: 10.5935/abc.20170022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Background The effects of chronic exposure to exercise training on vascular biomarkers
have been poorly explored. Objective Our study aimed to compare the amounts of endothelial progenitor cells
(EPCs), and endothelial (EMP) and platelet (PMP) microparticles between
professional runners and healthy controls. Methods Twenty-five half-marathon runners and 24 age- and gender-matched healthy
controls were included in the study. EPCs (CD34+/KDR+, CD133+/KDR+, and
CD34+/CD133+), EMP (CD51+) and PMP (CD42+/CD31+) were quantified by
flow-cytometry. All blood samples were obtained after 12 h of fasting and
the athletes were encouraged to perform their routine exercises on the day
before. Results As compared with controls, the CD34+/KDR+ EPCs (p=0.038) and CD133+/KDR+ EPCs
(p=0.018) were increased, whereas CD34+/CD133+ EPCs were not different
(p=0.51) in athletes. In addition, there was no difference in MPs levels
between the groups. Conclusion Chronic exposure to exercise in professional runners was associated with
higher percentage of EPCs. Taking into account the similar number of MPs in
athletes and controls, the study suggests a favorable effect of exercise on
these vascular biomarkers.
Collapse
|
34
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
35
|
The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease-The REMEDY-EPC early substudy. PLoS One 2017; 12:e0172800. [PMID: 28394933 PMCID: PMC5386268 DOI: 10.1371/journal.pone.0172800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/09/2017] [Indexed: 01/11/2023] Open
Abstract
RATIONALE AND OBJECTIVE Endothelial progenitor cells (EPCs) play a role in vascular repair, while circulating endothelial cells (CECs) are biomarkers of vascular damage and regeneration. Statins may promote EPC/CEC mobilization in the peripheral blood. We evaluated whether pre-procedural exposure to different lipid-lowering drugs (statins±ezetimibe) can acutely increase levels/activity of EPCs/CECs in patients with stable coronary artery disease (CAD). METHODS In a planned sub-analysis of the Rosuvastatin For REduction Of Myocardial DamagE During Coronary AngioplastY (REMEDY) trial, 38 patients with stable CAD on chronic low-dose statin therapy were randomized, in a double-blind, placebo-controlled design, into 4 groups before PCI: i. placebo (n = 11); ii. atorvastatin (80 mg+40 mg, n = 9); iii. rosuvastatin (40 mg twice, n = 9); and iv. rosuvastatin (5 mg) and ezetimibe (10 mg) twice, (n = 9). At baseline and 24 h after treatment-before PCI-, patients underwent blinded analyses of EPCs [colony forming units-endothelial cells (CFU-ECs), endothelial colony-forming cells (ECFCs) and tubulization activity] and CECs in peripheral blood. RESULTS We found no significant treatment effects on parameters investigated such as number of CECs [Median (IQR): i. 0(0), ii. 4.5(27), iii. 1.9(2.3), iv. 1.9(2.3)], CFU-ECs [Median (IQR): i. 27(11), ii. 19(31), iii. 47(36), iv. 30(98)], and ECFCs [Median (IQR): i. 86(84), ii. 7(84), iii. 8/(42.5), iv. 5(2)], as well as tubulization activity [total tubuli (well), Median (IQR): i. 19(7), ii. 5(4), iii. 25(13), iv. 15(24)]. CONCLUSIONS In this study, we found no evidence of acute changes in levels or activity of EPCs and CECs after high-dose lipid-lowering therapy in stable CAD patients.
Collapse
|
36
|
Endothelial Progenitor Cells' Classification and Application in Neurological Diseases. Tissue Eng Regen Med 2017; 14:327-332. [PMID: 30603489 DOI: 10.1007/s13770-017-0043-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
Abstract
The therapeutic effects of endothelial progenitor cells (EPCs) on ischemic stroke have been extensively studied in recent years. However, the differences in early EPCs and endothelial outgrowth cells (EOCs) are still unclear. Clarifications of their respective properties and specific functioning characteristics contribute to better applications of EPCs in ischemic diseases. In this review, we discuss cellular origin, isolation, culture, surface markers of early EPCs and EOCs and relevant applications in neurological diseases. We conclude that EOCs possess all characteristics of true endothelial progenitors and have potent advantages in EPC-based therapies for ischemic diseases. A number of preclinical and clinical applications of EPCs in neurological diseases are under study. More studies are needed to determine the specific characteristics of EPCs and the relevant mechanisms of EPCs for neurological diseases.
Collapse
|
37
|
Briguori C, Madonna R, Zimarino M, Calabrò P, Quintavalle C, Salomone M, Condorelli G, De Caterina R. Rosuvastatin for Reduction of Myocardial Damage during Coronary Angioplasty - the Remedy Trial. Cardiovasc Drugs Ther 2017; 30:465-472. [PMID: 27358173 DOI: 10.1007/s10557-016-6672-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Periprocedural myocardial infarction (MI) is a frequent complication of percutaneous coronary intervention (PCI). Statins might reduce its incidence. The aims of the present study are to assess whether such benefit is a class-effect or whether differences exist between various lipid-lowering strategies and whether cardioprotection is exerted by increasing circulating endothelial progenitor cells (EPCs). METHODS The REMEDY study will enroll a total of 1080 patients submitted to elective PCI. Eligible patients will be randomized into 4 groups: 1) placebo; 2) atorvastatin (80 mg + 40 mg before PCI); 3) rosuvastatin (40 mg twice before PCI); and 4) rosuvastatin (5 mg) and ezetimibe (10 mg) twice before PCI. Peri-procedural MI is defined as an elevation of markers of cardiac injury (either CK-MB or troponin I or T) values >5x the upper reference limit estimated at the 99th percentile of the normal distribution, or a rise >20 % in case of baseline values already elevated. EPCs will be assessed before, at 24 h and - in a subset of diabetic patients - at 3 months after PCI (EPC-substudies). The primary endpoint of the main REMEDY study is the rate of peri-procedural MI in each of the 4 treatment arms. Secondary endpoints are the combined occurrence of 1-month major adverse events (MACE, including death, MI, or the need for unplanned revascularization); and any post-procedural increase in serum creatinine. Endpoints of the EPC-substudies are the impact of tested regimens on 1) early (24-h) and 3-month EPC levels and functional activity; 2) stent strut re-endothelialization and neointimal hyperplasia; 3) 1-year MACE. REMEDY will add important information on the cardioprotective effects of statins after PCI.
Collapse
Affiliation(s)
| | - Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University - Chieti, C/o Ospedale SS. Annunziata, Via dei Vestini, 66013, Chieti, Italy
| | - Marco Zimarino
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University - Chieti, C/o Ospedale SS. Annunziata, Via dei Vestini, 66013, Chieti, Italy
| | - Paolo Calabrò
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | - Maria Salomone
- Dimensione Ricerca, Milan, Italy.,ES Health Science Foundation, Lugo, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University - Chieti, C/o Ospedale SS. Annunziata, Via dei Vestini, 66013, Chieti, Italy.
| |
Collapse
|
38
|
Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol 2017; 90:1-7. [PMID: 28137665 DOI: 10.1016/j.vph.2017.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, as well as the activation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular pathways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Yong-Jian Geng
- The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Raffaele De Caterina
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
39
|
Madonna R, Novo G, Balistreri CR. Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: As biomarkers and targets for new treatments. Mech Ageing Dev 2016; 159:22-30. [DOI: 10.1016/j.mad.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 12/24/2022]
|
40
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
41
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
42
|
Slater SC, Carrabba M, Madeddu P. Vascular stem cells-potential for clinical application. Br Med Bull 2016; 118:127-37. [PMID: 27298231 PMCID: PMC5127425 DOI: 10.1093/bmb/ldw017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cell therapy is a growing area of research as an alternative to pharmaceuticals or surgery for the treatment of ischaemic disease. Studies are focusing on delivering tissue-derived cells into damaged organs to promote vascular regeneration or gain of function. SOURCES OF DATA Pubmed, clinicaltrials.gov, BHF website. AREAS OF AGREEMENT Stem cells have the potential to become a viable treatment for many diseases, as indicated by the numerous pre-clinical studies demonstrating therapeutic benefit. AREAS OF CONTROVERSY The mechanisms of action for transplanted stem cells are still open to debate. Proposed mechanism includes direct cell incorporation and paracrine action. Additionally, the secretome produced by transplanted cells remains largely unknown. GROWING POINTS Initial studies focused on delivering stem cells by injection; however, current research is utilizing biomaterials to target cell delivery to specific areas. AREAS TIMELY FOR DEVELOPING RESEARCH Whilst stem cell research in the laboratory is expanding rapidly, transition into clinical studies is hindered by the availability of equivalent clinical grade reagents.
Collapse
Affiliation(s)
- Sadie C Slater
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Michele Carrabba
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| |
Collapse
|
43
|
Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis 2016; 248:97-109. [PMID: 26994427 PMCID: PMC6478391 DOI: 10.1016/j.atherosclerosis.2016.03.007] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is an interface between the blood stream and the vessel wall. Changes in this single cell layer of the artery wall are believed of primary importance in the pathogenesis of vascular disease/atherosclerosis. The endothelium responds to humoral, neural and especially hemodynamic stimuli and regulates platelet function, inflammatory responses, vascular smooth muscle cell growth and migration, in addition to modulating vascular tone by synthesizing and releasing vasoactive substances. Compromised endothelial function contributes to the pathogenesis of cardiovascular disease; endothelial 'dysfunction' is associated with risk factors, correlates with disease progression, and predicts cardiovascular events. Therapies for atherosclerosis have been developed, therefore, that are directed towards improving endothelial function.
Collapse
Affiliation(s)
- Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
44
|
Rurali E, Bassetti B, Perrucci GL, Zanobini M, Malafronte C, Achilli F, Gambini E. BM ageing: Implication for cell therapy with EPCs. Mech Ageing Dev 2016; 159:4-13. [PMID: 27045606 DOI: 10.1016/j.mad.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a well-recognized source of stem/progenitor cells for cell therapy in cardiovascular diseases (CVDs). Preclinical and clinical studies suggest that endothelial progenitor cells (EPCs) contribute to reparative process of vascular endothelium and participate in angiogenesis. As for all organs and cells across the lifespan, BM and EPCs are negatively impacted by ageing due to microenvironment modifications and EPC progressive dysfunctions. The encouraging results in terms of neovascularization observed in young animals after EPC administration were mitigated in aged patients treated for ischemic CVDs. The limited efficacy of EPC-based therapy in clinical setting might be ascribed at least partly to ageing. In this review, we comprehensively discussed the age-related changes of BM and EPCs and their implication for cardiovascular cell-therapies. Finally, we examined alternative approaches under investigation to enhance EPC potency.
Collapse
Affiliation(s)
- Erica Rurali
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marco Zanobini
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | - Felice Achilli
- Cardiology Department, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| |
Collapse
|
45
|
Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin Oral Investig 2016; 20:2293-2300. [PMID: 26993659 DOI: 10.1007/s00784-016-1785-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Angiogenesis and neovascularisation plays a crucial role for tumorigenesis and tumor progression in head and neck squamous cell carcinoma (HNSCC). The aim of our study was to investigate the neovascularization capacity by endothelial progenitor cells (EPC) in tumor patient as a possible predictor for tumor progression and tumor stage. MATERIALS AND METHODS Therefore, we investigated the cell number and biologic activity by cell migration and colony-forming ability of EPC. Cells were isolated from the peripheral venous blood of 79 patients who suffer HNSCC in different stages of disease. Thirty-three healthy individuals served as the control group. RESULTS Significantly increased biological activities were reflected by expression of the migration rate (1027 ± 1510) in comparison to the control group (632 ± 269) and the clonal potency measured by colony-forming unit (CFU) (tumor patients (19.7 ± 12.3) vs. control group (10.84 ± 4.8)). To determine whether or not EPC number can be used as a valid prognostic marker for clinical outcome of tumor patients, we furthermore compared a "high EPC-number-subgroup" (HI) with a "low EPC-number-subgroup" (LO) in a Kaplan-Meier survival curve. The HI-subgroup shows herein clearly a worse outcome. CONCLUSIONS Our findings indicate a possible pathway for EPC to play a critical role in the vasculogenesis and consequently in the progression of HNSCC. CLINICAL RELEVANCE Our findings could serve as possible predictors for the neovascularisation potential in HNSCC tumor patients.
Collapse
|
46
|
Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev 2016; 159:49-62. [PMID: 26919825 DOI: 10.1016/j.mad.2016.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Karmela Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Lora Kirigin
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| |
Collapse
|
47
|
Ricottini E, Madonna R, Grieco D, Zoccoli A, Stampachiacchiere B, Patti G, Tonini G, De Caterina R, Di Sciascio G. Effect of High-Dose Atorvastatin Reload on the Release of Endothelial Progenitor Cells in Patients on Long-Term Statin Treatment Who Underwent Percutaneous Coronary Intervention (from the ARMYDA-EPC Study). Am J Cardiol 2016; 117:165-71. [PMID: 26743348 DOI: 10.1016/j.amjcard.2015.10.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
Endothelial progenitor cells (EPCs) may concur to endogenous vascular repair. Previous studies have reported that statin treatment increases EPC levels. We investigated whether this occurs in patients on long-term statin treatment who underwent percutaneous coronary interventions (PCIs). In a phase A study, 53 patients (atorvastatin reload [AR] 80 mg 12 hours before + 40 mg 2 hours before PCI, n = 27; placebo [P], n = 26) were evaluated for EPC mobilization as CD45dim/CD34+/CD133+/KDR+ cell number by flow cytometry. Assays were run at randomization (12 hours before PCI, R), immediately before PCI (T0) at 8 (T8) and 24 hours (T24). In phase B study, 50 patients (AR, n = 25; P, n = 25) were evaluated for early colony formation by Hill colony forming unit (CFU) assay, with sampling at randomization and 24 hours later. In phase A, EPCs levels were similar at randomization between 2 arms (0.23% [0.14 to 0.54] of total events in AR vs 0.22% [0.04 to 0.37] in P group; p = 0.33). At PCI, EPC levels were higher in AR arm (0.42% [0.06 to 0.30] vs 0.19% [0.06 to 030]; p = 0.009). Higher EPC levels in AR group were also found at 8 and 24 hours. In phase B, EPC CFUs/well numbers at randomization were similar in the 2 arms (8 [6 to 12] in AR vs 12 [6 to 20] in P group, p = 0.109). EPC CFU/well at 24 hours became significantly higher in AR arm (17 [10 to 23] vs 5 [2 to 13], p = 0.002). In conclusion, high-dose AR before PCI in patients on long-term statin therapy promptly increases EPCs mobilization, which are capable of early colony formation and may contribute to cardioprotection.
Collapse
|
48
|
Kurtagic E, Rich CB, Buczek-Thomas JA, Nugent MA. Neutrophil Elastase-Generated Fragment of Vascular Endothelial Growth Factor-A Stimulates Macrophage and Endothelial Progenitor Cell Migration. PLoS One 2015; 10:e0145115. [PMID: 26672607 PMCID: PMC4682631 DOI: 10.1371/journal.pone.0145115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Elastase released from neutrophils as part of the innate immune system has been implicated in chronic diseases such as emphysema and cardiovascular disease. We have previously shown that neutrophil elastase targets vascular endothelial growth factor-A (VEGF) for partial degradation to generate a fragment of VEGF (VEGFf) that has distinct activities. Namely, VEGFf binds to VEGF receptor 1 but not to VEGF receptor 2 and shows altered signaling compared to intact VEGF. In the present study we investigated the chemotactic function of VEGF and VEGFf released from cells by neutrophil elastase. We found that endothelial cells migrated in response to intact VEGF but not VEGFf whereas RAW 264.7 macrophages/monocytes and embryonic endothelial progenitor cells were stimulated to migrate by either VEGF or VEGFf. To investigate the role of elastase-mediated release of VEGF from cells/extracellular matrices, a co-culture system was established. High or low VEGF producing cells were co-cultured with macrophages, endothelial or endothelial progenitor cells and treated with neutrophil elastase. Elastase treatment stimulated macrophage and endothelial progenitor cell migration with the response being greater with the high VEGF expressing cells. However, elastase treatment led to decreased endothelial cell migration due to VEGF cleavage to VEGF fragment. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment.
Collapse
Affiliation(s)
- Elma Kurtagic
- Department of Biochemistry Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Celeste B. Rich
- Department of Biochemistry Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jo Ann Buczek-Thomas
- Department of Biochemistry Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew A. Nugent
- Department of Biochemistry Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:835934. [PMID: 26509164 PMCID: PMC4609774 DOI: 10.1155/2015/835934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/19/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are leading numerous researchers to focus their attention on “regenerative medicine” as possible solutions for cardiovascular diseases (CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very crucial aspect of EPCs “characterization and definition,” which seems to be the real cause of large heterogeneity existing in literature data on this topic.
Collapse
|
50
|
Avolio E, Caputo M, Madeddu P. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol 2015; 3:39. [PMID: 26176009 PMCID: PMC4485350 DOI: 10.3389/fcell.2015.00039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Massimo Caputo
- Congenital Heart Surgery, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| |
Collapse
|