1
|
Busnelli M, Colombo A, Manzini S, Franchi E, Chiesa G. The transcriptome profiling of diseased mouse aortas discloses a dysregulation of the sympathetic neurotransmission in atherosclerosis. Heliyon 2024; 10:e31852. [PMID: 38841495 PMCID: PMC11152669 DOI: 10.1016/j.heliyon.2024.e31852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Previous reports suggest an association between the development of atherosclerosis and alterations in the aortic sympathetic nervous system, but there is no agreement on whether atherosclerotic plaques are accompanied by increased or decreased sympathetic innervation in the arterial wall. In the present study, the aortic transcriptional profile of mice with different predisposition to atherosclerosis was investigated to clarify how the expression of genes involved in sympathetic neurotransmission varied. Eight-week-old C57Bl/6J control mice, Apoe knockout mice (EKO), EKO mice overexpressing human apoA-I (EKO/hA-I) and double Apoe/Apoa1 knockout mice (DKO) mice were fed either a standard rodent diet or a Western-type diet for 22 weeks. Atherosclerosis was quantified, and the aortic transcriptome was analyzed by RNAseq. Western-type diet administration deeply modified the aortic transcriptome. In the genetically modified atherosclerosis-prone mouse lines, an upregulated expression of genes associated with the immunomodulatory response was observed, paralleled by a downregulated expression of the genes related to sympathetic nervous system. Functional enrichment analysis indicated that the presence of advanced atherosclerosis was accompanied by reduced neuronal generation, modulation of synapse chemical transmission, and catecholamine biosynthesis, supporting a relationship between atherosclerosis, dyslipidemia, and sympathetic neurotransmission.
Collapse
Affiliation(s)
| | | | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| |
Collapse
|
2
|
Ganzetti GS, Parolini C. Microarray analysis identifies human apoA-I Milano and apoA-II as determinants of the liver gene expression related to lipid and energy metabolism. Exp Cell Res 2023; 433:113826. [PMID: 37858836 DOI: 10.1016/j.yexcr.2023.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.
Collapse
Affiliation(s)
- Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
3
|
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic Nervous System and Atherosclerosis. Int J Mol Sci 2023; 24:13132. [PMID: 37685939 PMCID: PMC10487841 DOI: 10.3390/ijms241713132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, β1, β2, and β3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of β blockers and β3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michelle C. Maier
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Mark A. Myers
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3216, Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Zhou T, Yang K, Huang J, Fu W, Yan C, Wang Y. Effect of Short-Chain Fatty Acids and Polyunsaturated Fatty Acids on Metabolites in H460 Lung Cancer Cells. Molecules 2023; 28:molecules28052357. [PMID: 36903601 PMCID: PMC10005177 DOI: 10.3390/molecules28052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Lung cancer is the most common primary malignant lung tumor. However, the etiology of lung cancer is still unclear. Fatty acids include short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) as essential components of lipids. SCFAs can enter the nucleus of cancer cells, inhibit histone deacetylase activity, and upregulate histone acetylation and crotonylation. Meanwhile, PUFAs can inhibit lung cancer cells. Moreover, they also play an essential role in inhibiting migration and invasion. However, the mechanisms and different effects of SCFAs and PUFAs on lung cancer remain unclear. Sodium acetate, butyrate, linoleic acid, and linolenic acid were selected to treat H460 lung cancer cells. Through untargeted metabonomics, it was observed that the differential metabolites were concentrated in energy metabolites, phospholipids, and bile acids. Then, targeted metabonomics was conducted for these three target types. Three LC-MS/MS methods were established for 71 compounds, including energy metabolites, phospholipids, and bile acids. The subsequent methodology validation results were used to verify the validity of the method. The targeted metabonomics results show that, in H460 lung cancer cells incubated with linolenic acid and linoleic acid, while the content of PCs increased significantly, the content of Lyso PCs decreased significantly. This demonstrates that there are significant changes in LCAT content before and after administration. Through subsequent WB and RT-PCR experiments, the result was verified. We demonstrated a substantial metabolic disparity between the dosing and control groups, further verifying the reliability of the method.
Collapse
Affiliation(s)
| | | | | | | | - Chao Yan
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| | - Yan Wang
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| |
Collapse
|
5
|
Busnelli M, Manzini S, Colombo A, Franchi E, Bonacina F, Chiara M, Arnaboldi F, Donetti E, Ambrogi F, Oleari R, Lettieri A, Horner D, Scanziani E, Norata GD, Chiesa G. Lack of ApoA-I in ApoEKO Mice Causes Skin Xanthomas, Worsening of Inflammation, and Increased Coronary Atherosclerosis in the Absence of Hyperlipidemia. Arterioscler Thromb Vasc Biol 2022; 42:839-856. [PMID: 35587694 PMCID: PMC9205301 DOI: 10.1161/atvbaha.122.317790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. Methods: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. Results: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. Conclusions: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health (F. Ambrogi), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Eugenio Scanziani
- Department of Veterinary Medicine (E.S.), Università degli Studi di Milano, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy (E.S.)
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy.,Centro per lo Studio dell'Aterosclerosi, Bassini Hospital, Cinisello B, Milan, Italy (G.D.N.)
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
6
|
Manzini S, Busnelli M, Colombo A, Franchi E, Grossano P, Chiesa G. reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization. Sci Rep 2021; 11:23458. [PMID: 34873191 PMCID: PMC8648753 DOI: 10.1038/s41598-021-02528-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Functional enrichment analysis is an analytical method to extract biological insights from gene expression data, popularized by the ever-growing application of high-throughput techniques. Typically, expression profiles are generated for hundreds to thousands of genes/proteins from samples belonging to two experimental groups, and after ad-hoc statistical tests, researchers are left with lists of statistically significant entities, possibly lacking any unifying biological theme. Functional enrichment tackles the problem of putting overall gene expression changes into a broader biological context, based on pre-existing knowledge bases of reference: database collections of known expression regulation, relationships and molecular interactions. STRING is among the most popular tools, providing both protein-protein interaction networks and functional enrichment analysis for any given set of identifiers. For complex experimental designs, manually retrieving, interpreting, analyzing and abridging functional enrichment results is a daunting task, usually performed by hand by the average wet-biology researcher. We have developed reString, a cross-platform software that seamlessly retrieves from STRING functional enrichments from multiple user-supplied gene sets, with just a few clicks, without any need for specific bioinformatics skills. Further, it aggregates all findings into human-readable table summaries, with built-in features to easily produce user-customizable publication-grade clustermaps and bubble plots. Herein, we outline a complete reString protocol, showcasing its features on a real use-case.
Collapse
Affiliation(s)
- Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Pasquale Grossano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
7
|
Busnelli M, Manzini S, Chiara M, Colombo A, Fontana F, Oleari R, Potì F, Horner D, Bellosta S, Chiesa G. Aortic Gene Expression Profiles Show How ApoA-I Levels Modulate Inflammation, Lysosomal Activity, and Sphingolipid Metabolism in Murine Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:651-667. [PMID: 33327742 PMCID: PMC7837693 DOI: 10.1161/atvbaha.120.315669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. CONCLUSIONS ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Francesco Potì
- Department of Medicine and Surgery—Unit of Neurosciences, University of Parma, Italy (F.P.)
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
8
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
9
|
Busnelli M, Manzini S, Jablaoui A, Bruneau A, Kriaa A, Philippe C, Arnaboldi F, Colombo A, Ferrari B, Ambrogi F, Maguin E, Rhimi M, Chiesa G, Gérard P. Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. Mol Nutr Food Res 2020; 64:e1900835. [PMID: 32579743 DOI: 10.1002/mnfr.201900835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/20/2020] [Indexed: 12/19/2022]
Abstract
SCOPE Protein malnutrition is characterized by stunted growth, hepatic steatosis and a damaged gut mucosal architecture. Since high-fat shaped gut microbiota (HFM) has an increased ability in providing nutrients and energy from food to the host, the aim of this study is to determine whether such a microbiota could beneficially impact on the consequences of malnutrition. METHODS AND RESULTS The cecal content of specific pathogen free C57Bl/6J mice fed a high-fat diet or a low-protein diet is transplanted in two groups of germ-free C57Bl/6J recipient mice, which are subsequently fed a low-protein diet for 8 weeks. Body weight gain is comparable between the two groups of microbiota-recipient mice. The HFM led to a worsening of microvesicular steatosis and a decrease of plasma lipids compared to the low-protein shaped microbiota. In the small intestine of mice receiving the HFM, although significant histological differences are not observed, the expression of antimicrobial genes promoting oxidative stress and immune response at the ileal epithelium (Duox2, Duoxa2, Saa1, Ang4, Defa5) is increased. CONCLUSION The transplant of HFM in mice fed a low-protein diet represents a noxious stimulus for the ileal mucosa and impairs hepatic lipoprotein secretion, favoring the occurrence of hepatic microvesicular steatosis.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Amin Jablaoui
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Aurélia Bruneau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Aïcha Kriaa
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Catherine Philippe
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20133, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Benedetta Ferrari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, 20133, Italy
| | - Emmanuelle Maguin
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Moez Rhimi
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| |
Collapse
|
10
|
Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients 2019; 12:E79. [PMID: 31892152 PMCID: PMC7019666 DOI: 10.3390/nu12010079] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.
Collapse
Affiliation(s)
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
11
|
Busnelli M, Manzini S, Bonacina F, Soldati S, Barbieri SS, Amadio P, Sandrini L, Arnaboldi F, Donetti E, Laaksonen R, Paltrinieri S, Scanziani E, Chiesa G. Fenretinide treatment accelerates atherosclerosis development in apoE-deficient mice in spite of beneficial metabolic effects. Br J Pharmacol 2019; 177:328-345. [PMID: 31621898 DOI: 10.1111/bph.14869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Fenretinide, a synthetic retinoid derivative first investigated for cancer prevention and treatment, has been shown to ameliorate glucose tolerance, improve plasma lipid profile and reduce body fat mass. These effects, together with its ability to inhibit ceramide synthesis, suggest that fenretinide may have an anti-atherosclerotic action. EXPERIMENTAL APPROACH To this aim, nine-week-old apoE-knockout (EKO) female mice were fed for twelve weeks a Western diet, without (control) or with (0.1% w/w) fenretinide. As a reference, wild-type (WT) mice were treated similarly. Growth and metabolic parameters were monitored throughout the study. Atherosclerosis development was evaluated in the aorta and at the aortic sinus. Blood and lymphoid organs were further characterized with thorough cytological/histological and immunocytofluorimetric analyses. KEY RESULTS Fenretinide treatment significantly lowered body weight, glucose levels and plasma levels of total cholesterol, triglycerides, and phospholipids. In the liver, fenretinide remarkably reduced hepatic glycogenosis and steatosis driven by the Western diet. Treated spleens were abnormally enlarged, with severe follicular atrophy and massive extramedullary haematopoiesis. Severe renal hemosiderin deposition was observed in treated EKO mice. Treatment resulted in a threefold increase of total leukocytes (WT and EKO) and raised the activated/resting monocyte ratio in EKO mice. Finally, atherosclerosis development was markedly increased at the aortic arch, thoracic and abdominal aorta of fenretinide-treated mice. CONCLUSIONS AND IMPLICATIONS We provide the first evidence that, despite beneficial metabolic effects, fenretinide treatment may enhance the development of atherosclerosis.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sabina Soldati
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | - Leonardo Sandrini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,IRCCS, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Reijo Laaksonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Sirtori CR, Ruscica M, Calabresi L, Chiesa G, Giovannoni R, Badimon JJ. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure. Ann Med 2019; 51:345-359. [PMID: 31729238 PMCID: PMC7877888 DOI: 10.1080/07853890.2019.1694695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health.Key messagesHigh-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries).Knowledge on the activity of high-density lipoproteins on health have however significantly widened.HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.
Collapse
Affiliation(s)
- C R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Chiesa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Giovannoni
- Department of Biology, University of Pisa, Pisa, Italy
| | - J J Badimon
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Parolini C. A Compendium of the Biological Effects of Apolipoprotein A-IMilano. J Pharmacol Exp Ther 2019; 372:54-62. [DOI: 10.1124/jpet.119.261719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
|
14
|
Parolini C. Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Mar Drugs 2019; 17:E374. [PMID: 31234533 PMCID: PMC6627897 DOI: 10.3390/md17060374] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Studies over several decades have documented the beneficial actions of n-3 polyunsaturated fatty acids (PUFAs), which are plentiful in fish oil, in different disease states. Mechanisms responsible for the efficacy of n-3 PUFAs include: (1) Reduction of triglyceride levels; (2) anti-arrhythmic and antithrombotic effects, and (3) resolution of inflammatory processes. The human microbiota project and subsequent studies using next-generation sequencing technology have highlighted that thousands of different microbial species are present in the human gut, and that there has been a significant variability of taxa in the microbiota composition among people. Several factors (gestational age, mode of delivery, diet, sanitation and antibiotic treatment) influence the bacterial community in the human gastrointestinal tract, and among these diet habits play a crucial role. The disturbances in the gut microbiota composition, i.e., gut dysbiosis, have been associated with diseases ranging from localized gastrointestinal disorders to neurologic, respiratory, metabolic, ocular, and cardiovascular illnesses. Many studies have been published about the effects of probiotics and prebiotics on the gut microbiota/microbioma. On the contrary, PUFAs in the gut microbiota have been less well defined. However, experimental studies suggested that gut microbiota, n-3 PUFAs, and host immune cells work together to ensure the intestinal wall integrity. This review discussed current evidence concerning the links among gut microbiota, n-3 PUFAs intake, and human inflammatory disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122 Milano, Italy.
| |
Collapse
|
15
|
Manzini S, Busnelli M, Parolini C, Minoli L, Ossoli A, Brambilla E, Simonelli S, Lekka E, Persidis A, Scanziani E, Chiesa G. Topiramate protects apoE-deficient mice from kidney damage without affecting plasma lipids. Pharmacol Res 2018; 141:189-200. [PMID: 30593851 DOI: 10.1016/j.phrs.2018.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022]
Abstract
Topiramate is an anticonvulsant drug also prescribed for migraine prophylaxis that acts through several mechanisms of action. Several studies indicate that topiramate induces weight loss and a moderate reduction of plasma lipids and glucose. Based on these favourable metabolic effects, aim of this study was to evaluate if topiramate could modulate atherosclerosis development and protect target organs of dysmetabolic conditions. Thirty apoE-deficient mice were divided into three groups and fed for 12 weeks a high fat diet (Control) or the same diet containing topiramate at 0.125% and 0.250%. Body weight, water and food intake were monitored throughout the study. Plasma lipids and glucose levels were measured and a glucose tolerance test was performed. Atherosclerosis development was evaluated in the whole aorta and at the aortic sinus. Histological analysis of liver, kidney and adipose tissue was performed. Topiramate did not affect weight gain and food intake. Glucose tolerance and plasma lipids were not changed and, in turn, atherosclerosis development was not different among groups. Topiramate did not modify liver and adipose tissue histology. Conversely, in the kidneys, the treatment reduced the occurrence of glomerular lipidosis by decreasing foam cells accumulation and reducing the expression of inflammatory markers. Blood urea nitrogen levels were also reduced by treatment. Our results indicate that topiramate does not affect atherosclerosis development, but preserves kidney structure and function. The study suggests that topiramate could be investigated in drug repurposing studies for the treatment of glomerular lipidosis.
Collapse
Affiliation(s)
- Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy; Mouse & Animal Pathology Laboratory (MAPLab), Fondazione UniMi, viale Ortles 22/4, 20139 Milano, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Elena Brambilla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Eftychia Lekka
- Biovista, 34 Rodopoleos Street Ellinikon, Athens 16777, Greece
| | | | - Eugenio Scanziani
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133 Milano, Italy; Mouse & Animal Pathology Laboratory (MAPLab), Fondazione UniMi, viale Ortles 22/4, 20139 Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
16
|
Busnelli M, Manzini S, Sirtori CR, Chiesa G, Parolini C. Effects of Vegetable Proteins on Hypercholesterolemia and Gut Microbiota Modulation. Nutrients 2018; 10:E1249. [PMID: 30200592 PMCID: PMC6164761 DOI: 10.3390/nu10091249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Risk assessment tools, i.e., validated risk prediction algorithms, to estimate the patient's 10-year risk of developing cardiovascular disease (CVD) should be used to identify high-risk people for primary prevention. Current evidence confirms that appropriate monitoring and control of risk factors either reduces the likelihood of CVD or slows down its progression. It is thus crucial that all health professionals make appropriate use of all the available intervention strategies to control risk factors: from dietary improvement and adequate physical activity to the use of functional foods, food supplements, and drugs. The gut microbiota, which encompasses 1 × 1014 resident microorganisms, has been recently recognized as a contributing factor in the development of human disease. This review examines the effect of both some vegetable food components belong to the "protein food group" and the underexploited protein-rich hempseed on cholesterolemia and gut microbiota composition.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Cesare R Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, 220162 Milano, Italy.
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
17
|
Parolini C, Bjorndal B, Busnelli M, Manzini S, Ganzetti GS, Dellera F, Ramsvik M, Bruheim I, Berge RK, Chiesa G. Effect of Dietary Components from Antarctic Krill on Atherosclerosis in apoE-Deficient Mice. Mol Nutr Food Res 2017; 61. [PMID: 28812326 DOI: 10.1002/mnfr.201700098] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/25/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Antarctic krill is a great source of n-3 fatty acids and high-quality proteins. Aim of the study was to evaluate the effect of Antarctic krill components on plasma lipids and atherosclerosis development. METHODS AND RESULTS Sixty apoEKO mice were divided into four groups and fed Western diet (CONTROL) or Western-like diets, differing for protein or fat content. Specifically, casein or fat in CONTROL was partially replaced by krill proteins (PRO), krill oil (KRILL OIL), or both (KRILL OIL+PRO). In KRILL OIL+PRO and KRILL OIL, cholesterol levels were significantly lower than in CONTROL group. Atherosclerosis in aorta of PRO, KRILL OIL and KRILL OIL+PRO was lower than in CONTROL, whereas, at the aortic sinus, atherosclerosis reduction was only observed in KRILL OIL. Liver steatosis, commonly present in CONTROL and PRO animals, was sporadic in KRILL OIL+PRO and KRILL OIL mice. Krill oil containing diets affected the expression of genes involved in cholesterol metabolism, mainly HMG-CoA reductase. No reduced systemic inflammation was found in all groups. CONCLUSION Krill oil containing diets were able to reduce cholesterol levels, inhibit plaque development and prevent liver damage. Krill proteins also reduced atherosclerosis development through mechanisms not involving lipid metabolism.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Bodil Bjorndal
- Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Dellera
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marie Ramsvik
- Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Rimfrost AS, N-6099, Fosnavaag, Norway
| | | | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|