1
|
Piadeh F, Offie I, Behzadian K, Rizzuto JP, Bywater A, Córdoba-Pachón JR, Walker M. A critical review for the impact of anaerobic digestion on the sustainable development goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119458. [PMID: 37918233 DOI: 10.1016/j.jenvman.2023.119458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Anaerobic Digestion (AD) technology emerges as a viable solution for managing municipal organic waste, offering pollution reduction and the generation of biogas and fertilisers. This study reviews the research works for the advancements in AD implementation to effectively impact the UN Sustainable Development Goals (SDGs). Furthermore, the study critically analyses responsible waste management that contributes to health and safety, elevating quality of life in both rural and urban areas and, finally, creates a map of AD outputs onto all 17 SDGs. Finally, the assessment employs the three sustainability pillars (i.e., economic, environmental, and social perspectives) to examine the direct and indirect links between AD and all 17 UN SDGs. The findings reveal substantial progress, such as poverty reduction through job creation, bolstering economic growth (SDGs 1, 8, 10, 12), enhancing agricultural productivity (SDG 2), advancing renewable energy usage and diminishing reliance on fossil fuels (SDG 7), fostering inclusive education and gender equality (SDGs 4, 5, 9), combating climate change (SDG 13), transforming cities into sustainable and harmonious environments (SDGs 11, 16, 17), and curbing environmental pollution (SDGs 3, 6, 12, 14, 15). Nonetheless, the study highlights the need for further efforts to achieve the SDG targets, particularly in part of liquid and solid fertilisers as the AD outputs.
Collapse
Affiliation(s)
- Farzad Piadeh
- School of Computing and Engineering, University of West London, Ealing, London, W5 5RF, UK; School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ikechukwu Offie
- School of Computing and Engineering, University of West London, Ealing, London, W5 5RF, UK
| | - Kourosh Behzadian
- School of Computing and Engineering, University of West London, Ealing, London, W5 5RF, UK.
| | - Joseph P Rizzuto
- School of Computing and Engineering, University of West London, Ealing, London, W5 5RF, UK
| | - Angela Bywater
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 iBJ, UK
| | | | - Mark Walker
- Department of Engineering University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
2
|
Mo R, Guo W, Batstone D, Makinia J, Li Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes - A comprehensive review. WATER RESEARCH 2023; 244:120504. [PMID: 37634455 DOI: 10.1016/j.watres.2023.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Anaerobic digestion (AD) is a promising method for the recovery of resources and energy from organic wastes. Correspondingly, AD modelling has also been developed in recent years. The International Water Association (IWA) Anaerobic Digestion Model No. 1 (ADM1) is currently the most commonly used structured AD model. However, as substrates become more complex and our understanding of the AD mechanism grows, both systematic and specific modifications have been applied to the ADM1. Modified models have provided a diverse range of application besides AD processes, such as fermentation and biogas upgrading processes. This paper reviews research on the modification of the ADM1, with a particular focus on processes, kinetics, stoichiometry and parameters, which are the major elements of the model. The paper begins with a brief introduction to the ADM1, followed by a summary of modifications, including extensions to the model structure, modifications to kinetics (including inhibition functions) and stoichiometry, as well as simplifications to the model. The paper also covers kinetic parameter estimation and validation of the model, as well as practical applications of the model to a variety of scenarios. The review highlights the need for improvements in simulating AD and biogas upgrading processes, as well as the lack of full-scale applications to other substrates besides sludge (such as food waste and agricultural waste). Future research directions are suggested for model development based on detailed understanding of the anaerobic treatment mechanisms, and the need to recover of valuable products.
Collapse
Affiliation(s)
- Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, Gdansk 80-233, Poland
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
S R, Sabumon PC. A critical review on slaughterhouse waste management and framing sustainable practices in managing slaughterhouse waste in India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116823. [PMID: 36455438 DOI: 10.1016/j.jenvman.2022.116823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Global meat consumption is on a rise with around 253 million metric tons of meat produced globally in the year 2020. Because of the rise in population and change in food preferences, meat consumption trend is likely to continue. Meat production by animal slaughtering increases the slaughterhouse wastes in the form of both solid and liquid wastes. Although various technologies for slaughterhouse waste management are available in developed countries, the effective utilization of slaughterhouse waste management is still missing in developing countries like India. India plays an active role in the meat export business globally and stood 2nd in the world with a total export valuation of 2.89 billion US $ in the year 2020. In this context, this study presents a critical overview of the current technological advancements in the global slaughterhouse waste management including utilization of by-products and further, the prevailing slaughterhouse waste management of India is discussed. Finally, a sustainable slaughterhouse waste management strategy emphasizing circular economy and regulations improvements have been suggested for India to compete in this sector at global scale.
Collapse
Affiliation(s)
- Ragasri S
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India
| | - P C Sabumon
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India.
| |
Collapse
|
4
|
Liang J, Luo L, Wong JWC, He D. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application. BIORESOURCE TECHNOLOGY 2022; 360:127613. [PMID: 35840024 DOI: 10.1016/j.biortech.2022.127613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recently, conductive materials (i.e., carbon-based and iron-based materials) as a feasible and attractive approach have been introduced to anaerobic co-digestion (ACoD) system for promoting its performance and stability through direct interspecies electron transfer. Owing to the key roles of conductive materials in ACoD process, it is imperative to gain a profound understanding of their specific functions and mechanisms. Here, this review critically examined the state of the art of conductive materials assisted ACoD of food waste and common municipal organic solid waste. Then, the fundamental roles of conductive materials on ACoD enhancement and the relevant mechanisms were discussed. Last, the perspectives for co-digestate treatment, reutilization, and disposal were summarized. Moreover, the main challenges to conductive materials amended ACoD in on-site application were proposed and the future remarks were put forward. Collectively, this review poses a scientific basis for the potential application of conductive materials in ACoD process in the future.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Chen L, Meng X, Zhou G, Zhou Z, Zheng T, Bai Y, Yuan H, Huhe T. Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Lamolinara B, Pérez-Martínez A, Guardado-Yordi E, Guillén Fiallos C, Diéguez-Santana K, Ruiz-Mercado GJ. Anaerobic digestate management, environmental impacts, and techno-economic challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:14-30. [PMID: 35032793 PMCID: PMC10466263 DOI: 10.1016/j.wasman.2021.12.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Digestate is a nutrient-rich by-product from organic waste anaerobic digestion but can contribute to nutrient pollution without comprehensive management strategies. Some nutrient pollution impacts include harmful algal blooms, hypoxia, and eutrophication. This contribution explores current productive uses of digestate by analyzing its feedstocks, processing technologies, economics, product quality, impurities, incentive policies, and regulations. The analyzed studies found that feedstock, processing technology, and process operating conditions highly influence the digestate product characteristics. Also, incentive policies and regulations for managing organic waste by anaerobic digestion and producing digestate as a valuable product promote economic benefits. However, there are not many governmental and industry-led quality assurance certification systems for supporting commercializing digestate products. The sustainable and safe use of digestate in different applications needs further development of technologies and processes. Also, incentives for digestate use, quality regulation, and social awareness are essential to promote digestate product commercialization as part of the organic waste circular economy paradigm. Therefore, future studies about circular business models and standardized international regulations for digestate products are needed.
Collapse
Affiliation(s)
- Barbara Lamolinara
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal - Zona Industrial, Marinha Grande 2430-028, Portugal
| | - Amaury Pérez-Martínez
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Estela Guardado-Yordi
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Christian Guillén Fiallos
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Karel Diéguez-Santana
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Gerardo J Ruiz-Mercado
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin L. King Dr. Cincinnati, OH 45268, USA; Chemical Engineering Graduate Program, University of Atlántico, Puerto Colombia 080007, Colombia.
| |
Collapse
|
7
|
Wang Z, Wang S, Xie S, Jiang Y, Meng J, Wu G, Hu Y, Zhan X. Stimulatory effects of biochar addition on dry anaerobic co-digestion of pig manure and food waste under mesophilic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19212-19223. [PMID: 34714478 DOI: 10.1007/s11356-021-17129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
The stimulatory effect of biochar addition on dry anaerobic digestion (AD) has been rarely investigated. In this study, the effects of commonly used biochars (bamboo, rice husk, and pecan shell) on dry co-AD were investigated using mesophilic batch digesters fed with pig manure and food waste as substrates. The results show that the specific methane yield was mildly elevated with the addition of biochars by 7.9%, 9.4%, and 12.0% for bamboo, rice husk, and pecan shell-derived biochar additions, respectively. Biochar did facilitate the degradation of poorly biodegradable organics. In comparison, there was no significant effect on the peak methane production rate by the supplementation of the selected biochars. Among the three mechanisms of enhancing methanogenesis by biochar (buffering, providing supporting surface, and enhancing electron transfer), the first two mechanisms did not function significantly in dry co-AD, while the third mechanism (i.e., enhancing electron transfer) might play an important part in dry AD process. It is recommended that the utilization of biochar for the enhancement of biomethanation in dry AD should be more focused on mono digestion in future studies.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Sihuang Xie
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yan Jiang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Yuansheng Hu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Simultaneous Synergy in CH4 Yield and Kinetics: Criteria for Selecting the Best Mixtures during Co-Digestion of Wastewater and Manure from a Bovine Slaughterhouse. ENERGIES 2021. [DOI: 10.3390/en14020384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Usually, slaughterhouse wastewater has been considered as a single substrate whose anaerobic digestion can lead to inhibition problems and low biodegradability. However, the bovine slaughter process generates different wastewater streams with particular physicochemical characteristics: slaughter wastewater (SWW), offal wastewater (OWW) and paunch wastewater (PWW). Therefore, this research aims to assess the anaerobic co-digestion (AcoD) of SWW, OWW, PWW and bovine manure (BM) through biochemical methane potential tests in order to reduce inhibition risk and increase biodegradability. A model-based methodology was developed to assess the synergistic effects considering CH4 yield and kinetics simultaneously. The AcoD of PWW and BM with OWW and SWW enhanced the extent of degradation (0.64–0.77) above both PWW (0.34) and BM (0.46) mono-digestion. SWW Mono-digestion showed inhibition risk by NH3, which was reduced by AcoD with PWW and OWW. The combination of low CH4 potential streams (PWW and BM) with high potential streams (OWW and SWW) presented stronger synergistic effects than BM-PWW and SWW-OWW mixtures. Likewise, the multicomponent mixtures performed overall better than binary mixtures. Furthermore, the methodology developed allowed to select the best mixtures, which also demonstrated energy and economic advantages compared to mono-digestions.
Collapse
|
9
|
Hu Y, Kumar M, Wang Z, Zhan X, Stengel DB. Filamentous microalgae as an advantageous co-substrate for enhanced methane production and digestate dewaterability in anaerobic co-digestion of pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:399-407. [PMID: 33191051 DOI: 10.1016/j.wasman.2020.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 05/16/2023]
Abstract
This study aimed at exploring filamentous microalgae (Tribonema sp.) as an advantageous co-substrate for anaerobic digestion (AD) of pig manure. Its impacts on the AD performance were assessed in terms of methane yield, energy conversion efficiency, digestion kinetics, and digestate dewaterability. The microalgae substantially improved methane yield, AD kinetics, and digestate dewaterability of the AD process. The enhancement in methane yield ranged from 2 to 27.4%, with the maximum enhancement (corresponding to an energy conversion efficiency of 81%) occurring at a mixing ratio of 1:1 (VS basis). The AD kinetics was improved as indicated by the increased hydrolysis rate constants and diminished lag time. The specific resistance to filtration (SRF) of the digestate decreased significantly with the increasing proportion of the microalgae in the co-substrates, which would facilitate digestate processing and valorisation. Subsequently, the high biomass productivity of the microalgae (441 mg/L/d) in liquid digestate would enable sustainable bioenergy production through nutrient recycling.
Collapse
Affiliation(s)
- Yuansheng Hu
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Manoj Kumar
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Zhongzhong Wang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Research Centre, National University of Ireland, Galway, Ireland.
| | - Dagmar B Stengel
- Ryan Institute, National University of Ireland, Galway, Ireland; Botany and Plant Science, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
10
|
Lian T, Zhang W, Cao Q, Wang S, Dong H. Enhanced lactic acid production from the anaerobic co-digestion of swine manure with apple or potato waste via ratio adjustment. BIORESOURCE TECHNOLOGY 2020; 318:124237. [PMID: 33091690 DOI: 10.1016/j.biortech.2020.124237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The valorization of organic waste into lactic acid (LA) via co-digestion has attracted tremendous research interests in recent years. This study investigated the feasibility of intensifying the LA accumulation from anaerobic digestion (AD) of swine manure (SM) by adding apple waste (AW) or potato waste (PW). Results indicated that AW or PW obviously enhanced the accumulation of LA, and when the optimal mixing ratio of AW or PW to SM of 75:25, the maximum concentrations of LA were 27.61 and 8.91 g COD/L, which were around 3.53- and 1.14-folds of that of the mono-digestion of SM, respectively. Meanwhile, the co-digestion of SM and AW showed significantly higher LA production than that of SM and PW (p < 0.05). High reducing sugar content of AW contributed to LA accumulation in AD process. In addition, AW increased the relative abundance of Lactobacillus and Clostridium, thus benefited the production of LA.
Collapse
Affiliation(s)
- Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Wang Z, Jiang Y, Wang S, Zhang Y, Hu Y, Hu ZH, Wu G, Zhan X. Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:96-106. [PMID: 32659692 DOI: 10.1016/j.wasman.2020.06.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Dry anaerobic digestion (AD) has advantages over wet AD in treating high-solid organic wastes like livestock and food wastes, but an elevated total solids (TS) content would affect the AD performances. In this study, methane production of digesters co-digesting pig manure (PM) and food waste (FW) at different TS contents (R1, TS 5%; R2, TS 10%; R3, TS 15%; and R4, TS 20%) was assessed. The results showed the specific methane yield had no significant difference with the increase of TS contents from 5% to 15% (278.8-291.7 NmL/g VSadded), while it was reduced at a 20% TS content (259.8 NmL/g VSadded). Two peaks of total volatile fatty acids and daily methane production were observed in the high-solid digesters (R2-R4), while only one peak occurred in wet AD (R1). A new kinetics model was developed to describe the two-peak methane production behavior at high TS contents. The analysis on the microbial community structure clearly showed the different evolutions of methanogenic pathways in low and high solids content systems. In dry AD (R4), there was a general shifting from the acetoclastic pathway, to mixotrophic pathway and hydrogenotrophic pathway, with the dominance of mixotrophic and hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Shun Wang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Yizhen Zhang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, China
| | - Yuansheng Hu
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- Department of Municipal Engineering, College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guangxue Wu
- Institute of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Ma G, Ndegwa P, Harrison JH, Chen Y. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138224. [PMID: 32361106 DOI: 10.1016/j.scitotenv.2020.138224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic co-digestion of animal manure with other feedstocks (aka co-digestion) is increasingly being used to enhance methane yield and organic waste management. The benefits accruing from co-digestions compared to mono-digestions, however, vary greatly in the literature. The goal of this research was to use meta-analysis to critically compare methane yields between mono- and co-digestions and identify relevant factors (co-substrate type, substrate dose, carbon to nitrogen (C/N) ratio, volatile solids (VS), substrate pH, organic loading rate (OLR), and hydraulic retention time (HRT)) contributing to methane yield. Published studies (n = 64 representing 384 case-studies) with sufficient detail on methane yield were identified for the meta-analysis. Analysis indicated that co-digestion of animal manure with other feedstocks significantly increased methane yield (249 L kg-1[VS]), compared with anaerobic mono-digestion of animal manure (171 L kg-1[VS]). Similar methane yields increases (47-57 L kg-1[VS]) were obtained from co-digestions in batch reactors of swine (238-287 L kg-1[VS]), poultry (213-260 L kg-1[VS]), and cattle manure (147-204 L kg-1[VS]). In continuous digesters of cattle manure (175-299 L kg-1[VS]) co-digestion had the greatest methane yield improvement of 124 L kg-1[VS], swine manure (212-322 L kg-1[VS]) co-digestion ranked second with 110 L kg-1[VS], and poultry manure ranked third with 70 L kg-1[VS]. Improved methane yield were obtained at optimum C/N ratio ranging from 26 to 34. The respective optimum OLR for co-digestion of swine, poultry, and cattle manure were 1.2, 1.4 and 3.4 kg VS m-3 d-1, while the recommended HRT was 30-40 d. Taken together, anaerobic co-digestion of animal manure with other feedstock significantly improved anaerobic digestion. Factors contributing to methane yields included: substrate-type and dose, VS, C/N, OLR, and HRT.
Collapse
Affiliation(s)
- Guiling Ma
- Department of Animal Sciences, WSU-Pullman, 116 ASLB, Pullman, WA 99164, USA
| | - Pius Ndegwa
- Department of Biological Systems Engineering, WSU-Pullman, PO Box 646120, Pullman, WA 99164-6120, USA
| | - Joseph H Harrison
- Department of Animal Sciences, WSU-Puyallup, 2606 W Pioneer, Puyallup, WA 98371, USA.
| | - Yanting Chen
- Department of Animal Sciences, WSU-Pullman, 116 ASLB, Pullman, WA 99164, USA
| |
Collapse
|
13
|
Baek G, Kim D, Kim J, Kim H, Lee C. Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134737. [PMID: 32630263 PMCID: PMC7370025 DOI: 10.3390/ijerph17134737] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
The management of cattle manure (CM) has become increasingly challenging because its production continues to rise, while the regulations on manure management have become increasingly stringent. In Korea, most farms produce CM as a dry mixture with lignocellulosic bedding materials (mainly sawdust), making it impractical to treat CM by anaerobic digestion. To address this problem, this study examined whether anaerobic co-digestion with food waste (FW) and pig manure (PM) could be an effective approach for the treatment of CM. The batch anaerobic digestion tests at different CM: FW: PM mixing ratios showed that more methane was produced as the FW fraction increased, and as the CM fraction decreased. The response surface models describing how the substrate mixing ratio affects the methane yield and synergistic effect (methane yield basis) were successfully generated. The models proved that the methane yield and synergistic effect respond differently to changes in the substrate mixing ratio. The maximum 30-day methane yield was predicted at 100% FW, whereas the maximum 30-day synergy index was estimated for the mixture of 47% CM, 6% FW, and 47% PM (total solids basis). The synergy index model showed that CM, FW, and PM could be co-digested without a substantial loss of their methane potential at any mixing ratio (30-day synergy index, 0.89-1.22), and that a possible antagonistic effect could be avoided by keeping the FW proportion less than 50%. The results suggest that co-digestion with PM and FW could be flexibly applied for the treatment and valorization of CM in existing anaerobic digestion plants treating FW and PM.
Collapse
Affiliation(s)
| | | | | | | | - Changsoo Lee
- Correspondence: ; Tel.: +82-52-217-2822; Fax: +82-52-217-2819
| |
Collapse
|
14
|
Abunde Neba F, Tornyeviadzi HM, Addo A, Asiedu NY, Morken J, Østerhus SW, Seidu R. Geometry, kinetics and reactor network synthesis: Attainable limits for minimizing residence time in biomethane digesters. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Abunde Neba F, Asiedu NY, Morken J, Addo A, Seidu R. A novel simulation model, BK_BiogaSim for design of onsite anaerobic digesters using two-stage biochemical kinetics: Codigestion of blackwater and organic waste. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Fan Y, Lei Z, Guo Z, Huang W, Wang D, Wang X, Zhang Z, Shimizu K. Enhanced solubilization of solid organics and methane production by anaerobic digestion of swine manure under nano-bubble water addition. BIORESOURCE TECHNOLOGY 2020; 299:122512. [PMID: 31855661 DOI: 10.1016/j.biortech.2019.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Nano-bubble water (NBW) refers to water with a large number of nanoscale particle bubbles. The aim of this work was to study the mechanism of NBW addition into the anaerobic digestion (AD) of swine manure (SM). The results showed that the cumulative methane production from the NBW added reactor was 192-225 mL/g-VS and 19-39% higher than the control group (without NBW addition). Based on the analysis of soluble organics, NBW addition not only accelerated hydrolysis rates of proteins and carbohydrates, but also enhanced the production of VFAs. Moreover, mechanism analysis reveals that NBW with higher spin-spin relaxation time and absolute value of zeta potential might promote enzyme activity and the hydrolysis of organic solids. Simultaneously, the electron transport system activity of the methanogenic communities and electric conductivity were enhanced by NBW addition. This work implies that NBW addition is promising for enhancing AD for enhancement of methane production.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zitao Guo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- College of Environmental Science and Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Di Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuezhi Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
17
|
Chu L, Chen D, Wang J, Yang Z, Yang Q, Shen Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121058. [PMID: 31450213 DOI: 10.1016/j.jhazmat.2019.121058] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
In present work, the degradation of antibiotic and inactivation of antibiotic resistance genes (ARGs) in cephalosporin C fermentation (CEPF) residues were performed using ionizing radiation, ozonation and thermal treatment. The results showed that the three treatment methods could degrade cephalosporin C effectively, with the removal efficiency of 85.5% for radiation at dose of 100 kGy, 79.9% for ozonation at dosage of 5.2 g O3/L, and 71.9% and 87.3% for thermal treatment at 60 °C and 90 °C for 4 h. The cephalosporin resistance gene tolC was detected in the raw CEPF residues, and its abundance was decrease 74.2% by radiation, 64.6% by ozonation and 26.9%-37.1% by thermal treatment respectively. The presence of protein, glucose and acetate in the CEPF residues had inhibitive influence on the degradation of cephalosporin C by ionizing radiation, and the effect was more significant when the antibiotic concentration was lower. The total content of COD, polysaccharides and protein changed slightly after radiation and thermal treatment, while they were decreased greatly by ozonation. The primary techno-economic analysis showed that the operational cost of ionizing radiation by electron beam at 50 kGy ($5.2/m3) was comparable to thermal treatment ($4.3-7.9/m3), which was more economical than ozonation ($14.6/m3).
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhilin Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
18
|
González JF, Parralejo AI, Bolívar HM, González J. Study of optimal conditions in semi-continuous anaerobic co-digestion of table olive effluents and pig manure in a perfectly stirred reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36922-36932. [PMID: 31745785 DOI: 10.1007/s11356-019-06830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Brines from table olive elaboration were co-digested with pig manure, obtaining high methane productions. In particular, the methane yields obtained for pig manure total solid (TS) initial concentrations of 2%, 7%, 9% (wet basis, wt.) were 106, 213 and 247 mL CH4 gVS-1add, respectively, using mixtures of two types of brine (acid (A) and basic (B)) generated in the elaboration process. Moreover, an experiment with only basic brine was made, using a pig manure TS concentration of 7% wt. In this case, a methane yield of 224 mL CH4 gVS-1add was obtained. The methane production rate was calculated in experiments of 7% pig manure TS concentration and a high kinetic constant of 0.31 d-1 was obtained for the mixture of residual brine. Finally, the effect of Na+ cation concentration was evaluated in the mixture A:B during co-digestion processes with a 7% wt. pig manure TS concentration and inhibition was detected in this process with a [Na+] of 0.56% wt. of the total sample. An energy and economical study on the treatment of these wastewaters by means of anaerobic co-digestion demonstrated a great economic benefit for the producer industry, a reduction in the diesel consumption used to produce its energetic demand and a reduction cost of 3.63 €/m3 generated of A:B brines mixture with ratio 2:1.
Collapse
Affiliation(s)
- Juan F González
- Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avda. Elvas, s/n, 06071, Badajoz, Spain.
| | - Ana I Parralejo
- Departamento de cultivos extensivos: Biocombustibles, Cicytex, Consejería de Empleo, Empresa e Innovación, Junta de Extremadura, Finca La Orden, Guadajira, 06187, Badajoz, Spain
| | - Heidi M Bolívar
- Departamento de cultivos extensivos: Biocombustibles, Cicytex, Consejería de Empleo, Empresa e Innovación, Junta de Extremadura, Finca La Orden, Guadajira, 06187, Badajoz, Spain
| | - Jerónimo González
- Departamento de cultivos extensivos: Biocombustibles, Cicytex, Consejería de Empleo, Empresa e Innovación, Junta de Extremadura, Finca La Orden, Guadajira, 06187, Badajoz, Spain
| |
Collapse
|
19
|
Yang G, Wang J, Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 292:122012. [PMID: 31442834 DOI: 10.1016/j.biortech.2019.122012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residue produced from pharmaceutical plants has been listed as a "Hazardous Waste", however it contains various substrates which can be used for biofuel production. In this study, the possibility of biohydrogen production from antibiotic fermentation residue was evaluated, the process efficiency and microbial community dynamics with five different inoculum pretreatments (alkaline, γ-radiation, heat-shock, aeration and acid) were assessed. Results showed that alkaline pretreatment was most efficient for hydrogen fermentation, and the hydrogen yield, volatile solids (VS) removal and maximal hydrogen production rate reached 17.8 mL/g-VSadded, 17.8% and 3.79 mL/h, respectively. Different inoculum pretreatments led to a obvious variation in the fermentation pathway and microbial community structure. The highest content of hydrogen-producing bacteria, especially Clostridium, essentially contributed to the highest hydrogen fermentation efficiency for the system with alkaline pretreatment. This investigation suggested that antibiotic fermentation residue is a potential feedstock for hydrogen production through dark fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
20
|
Yin Y, Wang J. Mechanisms of enhanced biohydrogen production from macroalgae by ferrous ion: Insights into correlations of microbes and metabolites. BIORESOURCE TECHNOLOGY 2019; 291:121808. [PMID: 31326684 DOI: 10.1016/j.biortech.2019.121808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
This study explored the mechanisms of the enhanced hydrogen production from macroalgae by Fe2+ supplementation. Highest hydrogen yield of 19.47 mL/g VSadded was achieved at Fe2+ supplementation of 400 mg/L, which was 6.25 times of the control test. In depth analysis of substrate degradation, microbial distribution and metabolites formation was conducted. The results showed that Fe2+-supplemented group was dominated by Clostridium butyricum (67.2%) and Ruminococcus gnavus (24.2%), which stimulated hydrogen generation and volatile organic acids accumulation. In contrast, Fe2+-deficient group had a microbial community dominated by Exiguobacterium sp. (29.0%), Acinetobacter lwoffii (24.5%) and Clostridium stricto 13 (23.4%), which induced higher efficiency of both biomass hydrolysis and mineralization. Microbes from a single system were mutually cooperative, while microbes from Fe2+-deficient and those from Fe2+-supplemented systems were mutually exclusive. This study suggested that Fe2+ is critical in macroalgae fermentation system to affect the microbial community structure and subsequently switch the metabolic pathways.
Collapse
Affiliation(s)
- Yanan Yin
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Hassanat F, Benchaar C. Methane emissions of manure from dairy cows fed red clover- or corn silage-based diets supplemented with linseed oil. J Dairy Sci 2019; 102:11766-11776. [PMID: 31587906 DOI: 10.3168/jds.2018-16014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effects of forage source (red clover silage: RCS vs. corn silage: CS) and diet supplementation with linseed oil (LO) on CH4 emissions of manure from dairy cows. For this purpose, 12 lactating cows were used in a 2 × 2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets (forage:concentrate ratio 60:40; dry matter basis) without or with LO addition (4% dry matter). Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the entire incubation period. The total amount of feces and urine excreted by cows was not affected by dietary treatments and averaged 6.6 kg/d of volatile solids (VS). Compared with manure from cows fed RCS-based diets, maximum CH4 production potential of manure from cows fed CS-based diets was 54% higher (182 vs. 118 L/kg of VS) throughout the incubation period. Maximum CH4 production potential from manure also increased (by 17%) when cows were fed LO-supplemented diets compared with those fed nonsupplemented diets. Similar to maximum CH4 production potential, VS degraded during incubation (i.e., VS loss) was higher from manure from cows fed CS-based diets versus cows fed RCS-based diets (30.6 vs. 22.5%), and increased (+3 percentage units, on average) with the addition of LO to the diets. Ammonia concentration in manure was higher when cows were fed CS-based diets compared with RCS-based diets, and declined with LO supplementation to CS and RCS diets. It is concluded that both dietary forage source and fat supplementation affect maximum CH4 production potential from manure and this should be taken into account when such dietary options are recommended to mitigate enteric CH4 emissions from dairy cows.
Collapse
Affiliation(s)
- F Hassanat
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8
| | - C Benchaar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
22
|
Montecchio D, Astals S, Di Castro V, Gallipoli A, Gianico A, Pagliaccia P, Piemonte V, Rossetti S, Tonanzi B, Braguglia CM. Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates' synergistic effects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:27-37. [PMID: 31447024 DOI: 10.1016/j.wasman.2019.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The reasons for the acidification problem affecting Food Waste (FW) anaerobic digestion were explored, combining the outcomes of microbiological data (FISH and CARD-FISH) and process modelling, based on the Anaerobic Digestion Model n°1 (ADM1). Long term semi continuous experiments were carried out, both with sole FW and with Waste Activated Sludge (WAS) as a co-substrate, at varying operational conditions (0.8-2.2 g VS L-1 d-1) and FW / WAS ratios. Acidification was observed along FW mono-digestion, making it necessary to buffer the digesters; ADM1 modelling and experimental results suggested that this phenomenon was due to the methanogenic activity decline, most likely related to a deficiency in trace elements. WAS addition, even at proportions as low as 10% of the organic load, settled the acidification issue; this ability was related to the promotion of the methanogenic activity and the consequent enhancement of acetate consumption, rather than to WAS buffering capacity. The ability of the ADM1 to model processes affected by low microbial activity, such as FW mono-digestion, was also assessed. It was observed that the ADM1 was only adequate for digestions with a high activity level for both bacteria and methanogens (FISH/CARD-FISH ratio preferably >0.8) and, under these conditions, the model was able to correctly predict the relative abundance of both microbial populations, extrapolated from FISH analysis.
Collapse
Affiliation(s)
- Daniele Montecchio
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy.
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Vasco Di Castro
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy; Department of Engineering, University "Campus Bio-medico" of Rome, 00128 Roma, Italy
| | - Agata Gallipoli
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| | - Andrea Gianico
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| | - Pamela Pagliaccia
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| | - Vincenzo Piemonte
- Department of Engineering, University "Campus Bio-medico" of Rome, 00128 Roma, Italy
| | - Simona Rossetti
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| | - Barbara Tonanzi
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| | - Camilla M Braguglia
- Istituto di Ricerca sulle Acque-CNR, Area della Ricerca RM1, 00015 Monterotondo (Roma), Italy
| |
Collapse
|
23
|
Chu L, Chen D, Wang J, Yang Z, Shen Y. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:190-197. [PMID: 31376964 DOI: 10.1016/j.wasman.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation coupled with peroxymonosulfate (PMS) oxidation was developed to degrade antibiotics and antibiotic resistance genes (ARGs) from the erythromycin fermentation (EryF) residual wastes. The experimental results showed that the ERY content and ARGs abundance decreased with increase of the absorbed dose and PMS dosage and gamma irradiation was more effective to abate ARGs from the EryF wastes. The removal efficiency of ERY reached 49-55% and more than 96-99% of ARGs (1.32-2.55 log) was eliminated with the absorbed dose of 25-50 kGy and PMS dosage of 50-100 mM. Illumina pyrosequencing revealed that 3 bacterial phyla, Proteobacteria, Firmicutes and Fusobacteria were highly enriched and the ARGs-linked hosts were affiliated to the genera Aeromonas, Enterobacteriaceae and Enterobacter in the phylum Proteobacteria. The abundance of the ARGs-linked bacteria decreased by gamma/PMS treatment. Ionizing radiation/PMS treatment with the doses of 25 kGy and 50 mM PMS is proposed for potential practical application.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhiling Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- Yili Chuanning Biotechnology Company, Ltd., Xinjiang 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
24
|
Zhi S, Li Q, Yang F, Yang Z, Zhang K. How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 283:286-296. [PMID: 30921581 DOI: 10.1016/j.biortech.2019.03.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/22/2023]
Abstract
To comprehensively understand how antibiotics affect anaerobic digestion, their stimulating effects on methane production cannot be ignored; however, few studies have evaluated these effects. This study investigated the stimulating effects of three typical antibiotics (oxytetracycline, sulfadimethoxine, and norfloxacin) on high solid anaerobic digestion. The results showed that 100 mg/L antibiotics exhibited a strong stimulating effect on CH4 yield; while other external carbon sources had no obvious effects. The stimulating effect was more obvious under low inoculation ratios, which could improve the system processing capacity of feed sludge. Lower lag phases were given by the modified Gompertz model when stimulating effects occurred. The variations of physicochemical parameters and microbial Venn maps both showed that day 5 was a critical point for digestion time. The relative abundance of Methanosarcina was enhanced when the stimulating effect occurred, whereas Methanoculleus decreased. Different microbial characteristics were obtained for different samples from the heat maps.
Collapse
Affiliation(s)
- Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zengjun Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
25
|
Nguyen DD, Jeon BH, Jeung JH, Rene ER, Banu JR, Ravindran B, Vu CM, Ngo HH, Guo W, Chang SW. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. BIORESOURCE TECHNOLOGY 2019; 280:269-276. [PMID: 30776653 DOI: 10.1016/j.biortech.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this work was to test various organic wastes, i.e. from a livestock farm, a cattle slaughterhouse and agricultural waste streams, for its ability to produce methane under thermophilic anaerobic digestion (AD) conditions. The stability of the digestion, potential biomethane production and biomethane production rate for each waste were assessed. The highest methane yield (110.83 mL CH4/g VSadded day) was found in the AD of crushed animal carcasses on day 4. The experimental results were analyzed using four kinetic models and it was observed that the Cone model described the biomethane yield as well as the methane production rate of each substrate. The results from this study showed the good potential of model organic wastes to produce biomethane.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Hoon Jeung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli Region, Tamil Nadu 627007, India
| | | | - Cuong Manh Vu
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea.
| |
Collapse
|
26
|
Optimization of Hydrogen Yield from the Anaerobic Digestion of Crude Glycerol and Swine Manure. Catalysts 2019. [DOI: 10.3390/catal9040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Crude glycerol and swine manure are residues with exponential production in Mexico, nonetheless, they have the potential to generate hydrogen from the fermentation process. For this reason, this study has evaluated the optimization of hydrogen yield from crude glycerol and swine manure, using the response surface methodology. The response surface methodology helps in the compression of the mixture of crude glycerol/ swine manure, with the production of hydrogen as a result, which improves the yields of the process, reducing variability and time of development. A central composite design was employed with two factors, six axial points and four central points. The two factors evaluated were crude glycerol and swine manure concentrations, which were examined over a range of 4 to 10 g L−1 and 5 to 15 g L−1, respectively. This study demonstrated that the thermal pretreatment method is still the most suitable method to be applied, mainly in the preparation of hydrogen-producing inoculum. The maximum hydrogen yield was 142.46 mL per gram of volatile solid added. It used up 21.56% of the crude glycerol (2.75 g L−1) and 78.44% (10 g L−1) of the swine manure, maintaining a carbon/nitrogen ratio of 18.06, with a fermentation time of 21 days. The response surface methodology was employed to maximize the hydrogen production of crude glycerol/swine manure ratios by the optimization of factors with few assays and less operational cost.
Collapse
|
27
|
Kouas M, Torrijos M, Sousbie P, Harmand J, Sayadi S. Modeling the anaerobic co-digestion of solid waste: From batch to semi-continuous simulation. BIORESOURCE TECHNOLOGY 2019; 274:33-42. [PMID: 30500761 DOI: 10.1016/j.biortech.2018.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The main purpose of this study was to validate the use of a simple model for forecasting methane production in co-digestion reactors run semi-continuously using substrate data acquired in batch mode. Firstly, seven solid substrates were characterized individually in successive batches to assess their Biochemical Methane Potential (BMP) and kinetic parameters. Afterwards, eight mixtures of two, three or five substrates were processed in semi-continuous mode at an organic loading rate of 1 g VS L-1 d-1. The experimental methane production was always greater than that calculated from the BMP of each substrate. This result suggested that, endogenous activity needs to be taken into consideration in order to predict total methane production accurately. Near equivalence between experimental and modeled methane production was found after integration in the model of the endogenous activity. The results confirmed the possibility for use of substrate batch data (BMP and kinetics) to predict methane production in semi-continuous operations.
Collapse
Affiliation(s)
- Mokhles Kouas
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| | - Michel Torrijos
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France.
| | - Philippe Sousbie
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France
| | - Jérôme Harmand
- LBE, INRA, Univ Montpellier, 102 avenue des Etangs, 11100 Narbonne, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| |
Collapse
|
28
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, McCabe M, Cormican P, Zhan X, Gardiner GE. Exploring the roles of and interactions among microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:5. [PMID: 30622647 PMCID: PMC6318937 DOI: 10.1186/s13068-018-1344-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 12/20/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND With the increasing global population and increasing demand for food, the generation of food waste and animal manure increases. Anaerobic digestion is one of the best available technologies for food waste and pig manure management by producing methane-rich biogas. Dry co-digestion of food waste and pig manure can significantly reduce the reactor volume, capital cost, heating energy consumption and the cost of digestate liquid management. It is advantageous over mono-digestion of food waste or pig manure due to the balanced carbon/nitrogen ratio, high pH buffering capacity, and provision of trace elements. However, few studies have been carried out to study the roles of and interactions among microbes in dry anaerobic co-digestion systems. Therefore, this study aimed to assess the effects of different inocula (finished digestate and anaerobic sludge taken from wastewater treatment plants) and substrate compositions (food waste to pig manure ratios of 50:50 and 75:25 in terms of volatile solids) on the microbial community structure in food waste and pig manure dry co-digestion systems, and to examine the possible roles of the previously poorly described bacteria and the interactions among dry co-digestion-associated microbes. RESULTS The dry co-digestion experiment lasted for 120 days. The microbial profile during different anaerobic digestion stages was explored using high-throughput 16S rRNA gene amplicon sequencing. It was found that the inoculum factor was more significant in determining the microbial community structure than the substrate composition factor. Significant correlation was observed between the relative abundance of specific microbial taxa and digesters' physicochemical parameters. Hydrogenotrophic methanogens dominated in dry co-digestion systems. CONCLUSIONS The possible roles of specific microbial taxa were explored by correlation analysis, which were consistent with the literature. Based on this, the anaerobic digestion-associated roles of 11 bacteria, which were previously poorly understood, were estimated here for the first time. The inoculum played a more important role in determining the microbial community structure than substrate composition in dry co-digestion systems. Hydrogenotrophic methanogenesis was a significant methane production pathway in dry co-digestion systems.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Peadar G. Lawlor
- Pig Development Department, Animal & Grassland Research and Innovation Centre, Moorepark, Teagasc, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009 Anhui China
| | - Matthew McCabe
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055 People’s Republic of China
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
29
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, Yang Q, McCarthy G, Tan SP, Zhan X, Gardiner GE. Inactivation of Salmonella during dry co-digestion of food waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 82:231-240. [PMID: 30509585 DOI: 10.1016/j.wasman.2018.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Extremely high volatile fatty acids (VFAs) and ammonia concentrations can accumulate during dry co-digestion of organic wastes, which may inactivate pathogenic microorganisms. In this study, inactivation of Salmonella during dry co-digestion of pig manure (PM) and food waste (FW), which are both reservoirs of zoonotic pathogens, was examined. The effects of pH, VFAs, ammonia and their interactions were assessed on three inoculated Salmonella serotypes. The results show that dry co-digestion significantly decreased the Salmonella inactivation time from several months (in wet digestion) to as short as 6-7 days. A modified Weibull distribution was proposed to simulate Salmonella reduction and to calculate or predict the minimum inhibitory concentrations (MIC) of VFAs and ammonia. Statistical analysis showed that all the factors (pH, VFA type, VFA/ammonia concentration and Salmonella serotype) significantly impacted Salmonella inactivation (P < 0.01). The inhibitory effect sequence was pH > VFA concentration > VFA type > Salmonella serotype in VFA MIC tests, and ammonia concentration > pH > Salmonella serotype in ammonia MIC tests. The toxicity of VFAs was much greater than that of ammonia, and an antagonistic effect was found between VFAs and ammonia on Salmonella inactivation. Apart from the toxicity of free VFAs and free ammonia, the inhibitory effects of pH alone, ionized VFAs and ammonium were also observed.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Qingfeng Yang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Gemma McCarthy
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Shiau Pin Tan
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
30
|
Zhao Y, Sun F, Yu J, Cai Y, Luo X, Cui Z, Hu Y, Wang X. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation. BIORESOURCE TECHNOLOGY 2018; 269:143-152. [PMID: 30172177 DOI: 10.1016/j.biortech.2018.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 05/16/2023]
Abstract
Impacts of adding different amounts of cow manure (CM) on the anaerobic digestion (AD) of oat straw (OS) with total solids content (TS) values of 4%, 6%, 8% and 10% was assessed over 50 days using batch experiments. A modified Gompertz model was introduced to predict the methane yield and determine the kinetic parameters. The optimum addition was a 1:2 ratio of CM to the OS added, which resulted in a suitable C/N ratio of 27 and a higher degradation rate of lignocellulose. The best cumulative methane yield of 841.77 mL/g volatile solids added (VSadded) was 26.64% greater than that of digesting OS alone. In addition, the amount of CM added produced larger effects than that of changes in the TS. However, higher CM concentrations were found to be inhibitory. Clustering analysis could provide significant guidance for demonstrating project process and combining farming and animal husbandry.
Collapse
Affiliation(s)
- Yubin Zhao
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Fanrong Sun
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Jiadong Yu
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Yafan Cai
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Xiaosha Luo
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Yuegao Hu
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, McCabe M, Cormican P, Zhan X, Gardiner GE. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:302-311. [PMID: 30343759 DOI: 10.1016/j.wasman.2018.07.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 05/16/2023]
Abstract
Compared with wet digestion, dry digestion of organic wastes reduces reactor volume and requires less energy for heating, but it is easily inhibited by high volatile fatty acid (VFA) or ammonia concentration. The inhibition on methane production kinetics during dry co-digestion of food waste and pig manure is rarely reported. The aim of this study was to explore the inhibition mechanisms and the microbial interactions in food waste and pig manure dry co-digestion systems at different inoculum rates (25% and 50% based on volatile solids) and food waste/pig manure ratios (0:100, 25:75, 50:50, 75:25 and 100:0 based on volatile solids). The results showed that the preferable operation conditions were obtained at the inoculum rate of 50% and food waste/pig manure ratio of 50:50, with a specific methane yield of 263 mL/g VSadded. High VFA concentration was the main inhibition factor on methane production, and the threshold VFA inhibition concentrations ranged 16.5-18.0 g/L. Syntrophic oxidation with hydrogenotrophic methanogenesis might be the main methane production pathway in dry co-digestion systems due to the dominance of hydrogenotrophic methanogens in the archaeal community. In conclusion, dry co-digestion of food waste and pig manure is feasible for methane production without pH adjustment and can be operated stably by choosing proper operation conditions.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Matthew McCabe
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
32
|
Nolan S, Waters NR, Brennan F, Auer A, Fenton O, Richards K, Bolton DJ, Pritchard L, O'Flaherty V, Abram F. Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation With Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Ma J, Lei Y, Rehman KU, Yu Z, Zhang J, Li W, Li Q, Tomberlin JK, Zheng L. Dynamic Effects of Initial pH of Substrate on Biological Growth and Metamorphosis of Black Soldier Fly (Diptera: Stratiomyidae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:159-165. [PMID: 29325020 DOI: 10.1093/ee/nvx186] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 05/12/2023]
Abstract
Edible insects have become a recognized alternative and sustainable source of high-quality proteins and fats for livestock or human consumption. In the production process of black soldier fly (BSF), (Hermetia illucens L. [Diptera: Stratiomyidae]), initial substrate pH is a critical parameter to ensure the best value of insect biomass, life history traits, and quality bio-fertilizer. This study examined the impact of initial pH values on BSF larvae production, development time, and adult longevity. The BSF were reared on artificial diet with initial pH of 2.0, 4.0, 6.0, 8.0, and 10.0; the control was set at 7.0. Final BSF larval weight was significantly greater in substrates having initial pH 6.0 (0.21 g), control 7.0 (0.20 g), and 10.0 (0.20 g) with no significant difference among them, whereas larval weight reared with initial pH 2.0 and 4.0 were lowest at 0.16 g (-23%). Prepupal weight was greatest when larvae were reared on substrates with initial pH 6.0 (0.18 g), control 7.0 (0.19 g), 8.0 (0.18 g), and 10.0 (0.18 g). In contrast, the prepupal weight of larvae reared on diets with initial pH 2.0 was lowest at 0.15 g (-22%). Larval development time was 21.19 d at pH 8.0, about 3 d (12.5%) shorter than that of those reared on diets with initial pH 6.0, 7.0 control, and 10.0. In all treatments, pH shifted to 5.7 after 3-4 d and 8.5 after 16-17 d except for two groups (2.0 and 4.0) where the pH remained slightly acidic 5.0 and 6.5, respectively.
Collapse
Affiliation(s)
- Junhua Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yanyan Lei
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Livestock and dairy development department, Government of Punjab, Pakistan
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan, P. R. China
| | | | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
34
|
Surra E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota JP. Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:193-205. [PMID: 29169860 DOI: 10.1016/j.wasman.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above 66% v/v. These results show that pre-treatment with H2O2, at room temperature, is a promising low cost way to valorize MCW through co-digestion with hOFMSW.
Collapse
Affiliation(s)
- Elena Surra
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Isabel Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Paulo Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
35
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, Zhan X, Gardiner GE. Inactivation of enteric indicator bacteria and system stability during dry co-digestion of food waste and pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:293-302. [PMID: 28850849 DOI: 10.1016/j.scitotenv.2017.08.214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Provision of digestate with satisfactory biosafety is critical to land application of digestate and to the anaerobic digestion approach to treating manure and food waste (FW). No studies have been conducted on digestate biosafety in dry co-digestion systems. The aim of this study was to assess the inactivation efficiency and possible inactivation mechanism for three enteric indicator bacteria and the system stability during dry mesophilic anaerobic co-digestion of FW and pig manure (PM). The effects of two different inocula were examined at a rate of 50% based on volatile solids (VS): digestate taken from existing dry co-digestion digesters and dewatered anaerobic sludge from a local wastewater treatment plant. The FW/PM ratios of 50:50 and 75:25 on a VS basis were also assessed. The results showed that using digestate as the inoculum and a FW/PM ratio of 50:50 led to stable dry co-digestion, with the specific methane yield (SMY) of 252mL/gVSadded. Total volatile fatty acid (VFA) concentration was a significant inhibition factor for methane production during dry co-digestion (P<0.001). The data also showed that dry co-digestion of FW and PM effectively inactivated enteric indicator bacteria. E. coli and total coliforms counts decreased below the limit of detection (LOD, 102CFU/g) within 4-7days, with free VFA identified as a significant inactivation factor. Enterococci were more resistant but nonetheless the counts decreased below the LOD within 12days in the digestate inoculum systems and 26-31days in the sludge inoculum systems. The residence time was the most significant inactivation factor for enterococci, with the free VFA concentration playing a secondary role at high FW/PM ratio in the sludge inoculum system. In conclusion, digestate as inoculum and the FW/PM ratio of 50:50 were preferable operation conditions to realize system stability, methane production and enteric indicator bacteria inactivation.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland Galway, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
36
|
Dennehy C, Lawlor PG, McCabe MS, Cormican P, Sheahan J, Jiang Y, Zhan X, Gardiner GE. Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:532-541. [PMID: 29113838 DOI: 10.1016/j.wasman.2017.10.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
This study assessed the effect of varying pig manure (PM)/food waste (FW) mixing ratio and hydraulic retention time (HRT) on methane yields, digestate dewaterability, enteric indicator bacteria and microbial communities during anaerobic co-digestion. Three 10 L digesters were operated at 39 °C, each with a PM/FW feedstock composition of 85%/15%, 63%/37% and 40%/60% (volatile solids basis). While the PM/FW ratio was different among reactors, the organic loading rate applied was equal, and increased stepwise with reducing HRT. The effects of three different HRTs were studied: 41, 29, and 21 days. Increasing the proportion of FW in the feedstock significantly increased methane yields, but had no significant effect on counts of enteric indicator bacteria in the digestate or specific resistance to filtration, suggesting that varying the PM/FW feedstock composition at the mixing ratios studied should not have major consequences for digestate disposal. Decreasing HRT significantly increased volumetric methane yields, increased digestate volatile solids concentrations and increased the proportion of particles >500 µm in the digestate, indicating that decreasing HRT to 21 days reduced methane conversion efficiency High throughput 16S rRNA sequencing data revealed that microbial communities were just slightly affected by changes in digester operating conditions. These results would provide information useful when optimizing the start-up and operation of biogas plants treating these substrates.
Collapse
Affiliation(s)
- C Dennehy
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - P G Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - M S McCabe
- Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - P Cormican
- Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - J Sheahan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Y Jiang
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - X Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - G E Gardiner
- Department of Science, Waterford Institute of Technology, Ireland
| |
Collapse
|
37
|
Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: A critical review. BIORESOURCE TECHNOLOGY 2018; 248:37-56. [PMID: 28697976 DOI: 10.1016/j.biortech.2017.06.145] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 05/24/2023]
Affiliation(s)
- Camilla M Braguglia
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy.
| | - Agata Gallipoli
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Andrea Gianico
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Pamela Pagliaccia
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| |
Collapse
|
38
|
Li R, Duan N, Zhang Y, Liu Z, Li B, Zhang D, Lu H, Dong T. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:247-254. [PMID: 28939246 DOI: 10.1016/j.wasman.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The present investigation targeted on a sustainable co-digestion system: microalgae Chlorella 1067 (Ch. 1067) was cultivated in chicken manure (CM) based digestate and then algae biomass was used as co-substrate for anaerobic digestion with CM. About 91% of the total nitrogen and 86% of the soluble organics in the digestate were recycled after the microalgae cultivation. The methane potential of co-digestion was evaluated by varying CM to Ch. 1067 ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10:0 based on the volatile solids (VS)). All the co-digestion trials showed higher methane production than the calculated values, indicating synergy between the two substrates. Modified Gompertz model showed that co-digestion had more effective methane production rate and shorter lag phase. Co-digestion (8:2) achieved the highest methane production of 238.71mL⋅(g VS)-1 and the most significant synergistic effect. The co-digestion (e.g. 8:2) presented higher and balanced content of dominant acidogenic bacteria (Firmicutes, Bacteroidetes, Proteobacterias and Spirochaetae). In addition, the archaea community Methanosaeta presented higher content than Methanosarcina, which accounted for the higher methane production. These findings indicated that the system could provide a practicable strategy for effectively recycling digestate and enhancing biogas production simultaneously.
Collapse
Affiliation(s)
- Ruirui Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuanhui Zhang
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Baoming Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Dongming Zhang
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| | - Haifeng Lu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Taili Dong
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| |
Collapse
|
39
|
Experimental and kinetics study for phytoremediation of sugar mill effluent using water lettuce ( Pistia stratiotes L.) and its end use for biogas production. 3 Biotech 2017; 7:330. [PMID: 28955627 DOI: 10.1007/s13205-017-0963-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
In present study, the performance of phytoremediation by Pistia stratiotes on sugar mill effluent (SME) and its end use for biogas production are investigated. The objectives of the study are to determine the nutrient and pollution reduction efficiency of P. stratiotes from SME and evaluation of its biomass as a feedstock for biogas production. Various concentrations of SME (25, 50, 75, and 100%) were remediated by Pistia stratiotes (initial weight; 150 g) outdoor for 60 days under batch mode experimental setup. The results showed that P. stratiotes achieved marked reduction in nutrient (TKN, 72.86%; TP, 71.49%) and pollutant load (EC, 25.69%; TDS, 57.26%; BOD, 69.40%; COD, 61.80%; Ca2+, 56.79%; Mg2+, 55.01%; Na+, 42.86%; K+, 54.38%; MPN, 78.13%; SPC, 60.13%) from 75% SME at the end of the experiment. The highest biomass (328.48 ± 2.04 g) and chlorophyll content (3.62 ± 3.04 mg/g) were also achieved with 75% SME. The dried biomass of P. stratiotes (from 75% SME) was inoculated with cow dung (10% w/v) and diluted with distilled water (1:10). The whole content was used as a substrate for the biogas production within hydraulic retention time (HRT) of 30 days at room temperature. Substrate parameters such as pH, TS (%), COD (mg/L), TKN (%), TOC (%), VS (%), and C/N ratio were reduced from 7.85 to 6.0, 66.65 to 28.65%, 12,900 to 2800 mg/L, 0.95 to 0.75%, 45.54 to 19.5%, 76.87 to 28.78%, and 47.94 to 26.00, respectively, in 30 days of HRT. About 8478.6 mL of cumulative biogas production was evaluated by modified Gompertz equation. Thus, the present investigation not only achieved efficient nutrient and pollution reduction from SME but also proved the potential of P. stratiotes for biogas production.
Collapse
|
40
|
Li R, Duan N, Zhang Y, Liu Z, Li B, Zhang D, Dong T. Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017. [PMID: 28648747 DOI: 10.1016/j.wasman.2017.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion (AD) is a promising alternative for livestock manure management. This paper presents the experimental results obtained through a batch experiment by using chicken manure (CM) and microalgae Chlorella sp. as co-substrates. The effect of co-digestion was evaluated by varying CM to Chlorella sp. ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10: 0 based on the volatile solids (VS)). The major objective of this study is to evaluate the feasibility and synergistic impact of co-digestion of CM and Chlorella sp. Enhanced 14.20% and 76.86% methane production than CM and Chlorella sp. mono-digestion respectively was achieved in co-digestion at the ratio 8:2. In addition, the co-digestion at the ratio 8:2 showed significantly higher methane yield than the weighted average of the individual substrates' specific methane yield (WSMY), indicating strong synergy effect. The Illumina Miseq sequencing analysis showed that the AD process suppressed the acetoclastic methanogenesis Methanosaeta content; but partly enhanced hydrogenotrophic methanogenesis Methanosarcina, Methanospirillum and Methanobacterium, which was responsible for the methane production. The pre-treated microalgae was then introduced at the optimal ratio 8:2 to estimate the effect of pre-treatment of microalgae on AD process. However, the pre-treatment exhibited no positive effect.
Collapse
Affiliation(s)
- Ruirui Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuanhui Zhang
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Baoming Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Dongming Zhang
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| | - Taili Dong
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| |
Collapse
|
41
|
Muscolo A, Settineri G, Papalia T, Attinà E, Basile C, Panuccio MR. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:746-752. [PMID: 28214122 DOI: 10.1016/j.scitotenv.2017.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion (AD) of organic wastes is a promising alternative to landfilling for reducing Greenhouse Gas Emission (GHG) and it is encouraged by current regulation in Europe. Biogas-AD produced, represents a useful source of green energy, while its by-product (digestate) is a waste, that needs to be safely disposal. The sustainability of anaerobic digestion plants partly depends on the management of their digestion residues. This study has been focused on the environmental and economic benefits of co-digest recalcitrant agricultural wastes such olive wastes and citrus pulp, in combination with livestock wastes, straw and cheese whey for biogas production. The aim of this work was to investigate the effects of two different bioenergy by-products on soil carbon stock, enzymes involved in nutrient cycling and microbial content. The two digestates were obtained from two plants differently fed: the first plant (Uliva) was powered with 60% of recalcitrant agricultural wastes, and 40% of livestock manure milk serum and maize silage. The second one (Fattoria) was fed with 40% of recalcitrant agricultural wastes and 60% of livestock manure, milk serum and maize silage. Each digestate, separated in liquid and solid fractions, was added to the soil at different concentrations. Our results evidenced that mixing and type of input feedstock affected the composition of digestates. Three months after treatments, our results showed that changes in soil chemical and biochemical characteristics depended on the source of digestate, the type of fraction and the concentration used. The mainly affected soil parameters were: Soil Organic Matter (SOM), Microbial Biomass Carbon (MBC), Fluorescein Diacetate Hydrolysis (FDA), Water Soluble Phenol (WSP) and Catalase (CAT) that can be used to assess the digestate agronomical feasibility. These results show that the agronomic quality of a digestate is strictly dependent on percentage and type of feedstocks that will be used to power the digester.
Collapse
Affiliation(s)
- Adele Muscolo
- Department of Agriculture, "Mediterranea" University, Feo di Vito, 89122 Reggio Calabria, Italy.
| | - Giovanna Settineri
- Department of Agriculture, "Mediterranea" University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Teresa Papalia
- Department of Agriculture, "Mediterranea" University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Emilio Attinà
- Department of Agriculture, "Mediterranea" University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Carmelo Basile
- Coop. Fattoria della Piana Soc. Agr., C.da Sovereto, Candidoni (RC), Italy
| | - Maria Rosaria Panuccio
- Department of Agriculture, "Mediterranea" University, Feo di Vito, 89122 Reggio Calabria, Italy
| |
Collapse
|
42
|
Wu J, Hu YY, Wang SF, Cao ZP, Li HZ, Fu XM, Wang KJ, Zuo JE. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 62:69-75. [PMID: 28283224 DOI: 10.1016/j.wasman.2017.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components.
Collapse
Affiliation(s)
- Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-Ying Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shi-Feng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhi-Ping Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huai-Zhi Li
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Xin-Mei Fu
- Southwest University of Science and Technology, Mianyang 621010, China
| | - Kai-Jun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Rodríguez-Abalde Á, Flotats X, Fernández B. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:521-528. [PMID: 28024897 DOI: 10.1016/j.wasman.2016.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490days, with a hydraulic retention time of 21-33days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2kgCODm-3d-1. The best methane production rate (0.64Nm3CH4m-3d-1) represented an increment of 2.9-fold the initial one (0.22Nm3CH4m-3d-1 with pig manure solely). It was attained with a ternary mixture composed, in terms of inlet volatile solids, by 35% pig slurry, 47% pasteurized slaughterhouse waste and 18% glycerine. This blend was obtained through a stepwise C/N adjustment: this strategy led to a more balanced biodegradation due to unstressed bacterial populations through the performance, showed by the VFA-related indicators. Besides this, an improved methane yield (+153%) and an organic matter removal efficiency (+83%), regarding the digestion of solely pig slurry, were attained when the C/N ratio was adjusted to 10.3.
Collapse
Affiliation(s)
- Ángela Rodríguez-Abalde
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain; EnergyLab, Edificio CITEXVI - Local 1, Fonte das Abelleiras, s/n, Campus Universitario de Vigo, E-36310 Vigo, Spain
| | - Xavier Flotats
- GIRO Joint Research Unit IRTA-UPC, Department of Agrifood Engineering and Biotechnology, Universitat Politècnica de Catalunya - BarcelonaTECH, Parc Mediterrani de la Tecnologia, Building D-4, E-08860, Castelldefels, Barcelona, Spain
| | - Belén Fernández
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
44
|
Pavi S, Kramer LE, Gomes LP, Miranda LAS. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. BIORESOURCE TECHNOLOGY 2017; 228:362-367. [PMID: 28094090 DOI: 10.1016/j.biortech.2017.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
The anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) and fruit and vegetable waste (FVW) was evaluated in terms of biogas and methane yield, volatile solids (VS) removal rate and stability of the process. The batch experiment was conducted in mesophilic conditions (35°C), with four different OFMSW/FVW ratios (VS basis) of 1/0, 1/1, 1/3, and 0/1. The methane yield from the co-digestion was higher than the mono-digestion for OFMSW and FVW. The optimal mixing ratio of OFMSW/FVW was found to be 1/3. The average cumulative biogas and methane yield in this condition was 493.8NmL/gVS and 396.6NmL/gVS, respectively, and the VS removal rate was 54.6%. Compared with the mono-digestion of OFMSW and FVW, the average increase in methane yield was 141% and 43.8%, respectively.
Collapse
Affiliation(s)
- Suelen Pavi
- Universidade do Vale do Rio dos Sinos, Civil Engineering Post-Graduation Program, Av. Unisinos, 950, Bairro Cristo Rei, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil; University of the Sinos Valley, Post-Graduation Program in Civil Engineering, Environmental Sanitation Laboratory, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
| | - Luis Eduardo Kramer
- Universidade do Vale do Rio dos Sinos, Civil Engineering Post-Graduation Program, Av. Unisinos, 950, Bairro Cristo Rei, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil; University of the Sinos Valley, Post-Graduation Program in Civil Engineering, Environmental Sanitation Laboratory, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
| | - Luciana Paulo Gomes
- Universidade do Vale do Rio dos Sinos, Civil Engineering Post-Graduation Program, Av. Unisinos, 950, Bairro Cristo Rei, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil; University of the Sinos Valley, Post-Graduation Program in Civil Engineering, Environmental Sanitation Laboratory, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
| | - Luis Alcides Schiavo Miranda
- Universidade do Vale do Rio dos Sinos, Civil Engineering Post-Graduation Program, Av. Unisinos, 950, Bairro Cristo Rei, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil; University of the Sinos Valley, Post-Graduation Program in Civil Engineering, Environmental Sanitation Laboratory, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
| |
Collapse
|
45
|
Xie S, Hai FI, Zhan X, Guo W, Ngo HH, Price WE, Nghiem LD. Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization. BIORESOURCE TECHNOLOGY 2016; 222:498-512. [PMID: 27745967 DOI: 10.1016/j.biortech.2016.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic co-digestion (AcoD) is a pragmatic approach to simultaneously manage organic wastes and produce renewable energy. This review demonstrates the need for improving AcoD modelling capacities to simulate the complex physicochemical and biochemical processes. Compared to mono-digestion, AcoD is more susceptible to process instability, as it operates at a higher organic loading and significant variation in substrate composition. Data corroborated here reveal that it is essential to model the transient variation in pH and inhibitory intermediates (e.g. ammonia and organic acids) for AcoD optimization. Mechanistic models (based on the ADM1 framework) have become the norm for AcoD modelling. However, key features in current AcoD models, especially relationships between system performance and co-substrates' properties, organic loading, and inhibition mechanisms, remain underdeveloped. It is also necessary to predict biogas quantity and composition as well as biosolids quality by considering the conversion and distribution of sulfur, phosphorus, and nitrogen during AcoD.
Collapse
Affiliation(s)
- Sihuang Xie
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Wenshan Guo
- Centre for Technologies in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hao H Ngo
- Centre for Technologies in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|