1
|
Brasil FM, Oliveira DL, Melquíades MO, Nobre FX, Balestra CET, Ardisson JD, Fabris JD, Santana GP, Ramirez MA. Influence of kaolin and red clay on ceramic specimen properties when galvanic sludge is incorporated to encapsulate heavy metals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:176-187. [PMID: 38614039 DOI: 10.1016/j.wasman.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
This study presented the influence of two types of clay: kaolin (Kao) and red clay (RC) on the chemical and physical properties of ceramic specimens when galvanic sludge (GS) is incorporated to encapsulate heavy metals. Samples were obtained of GS from the industrial district of Manaus - Amazonas State, Brazil, and kaolin (Kao), and red clay (RC) from the Central Amazon. A fourth sample was prepared by mixing GS, Kao, and RC in the ratio 1:1:8 (GS + Kao + RC). This mixture was ground, and ceramic specimens were prepared, and heat treated at 950 °C and 1200 °C for three hours for phase detection, compressive strength, leaching of Fe, Ni and Cr metals and life cycle assessment. Galvanic sludge, Kao, and RC were also, and heat treated to at 950 °C and 1200 °C for three hours, obtaining GS950, GS1200, Kao950, Kao1200, RC950, and RC1200. The samples were submitted to XRF, XRD, Rietveld refinement, Mössbauer spectroscopy, TG/DTG/DSC, and SEM. The results show that the formation of nickel oxide and a spinel solid solution of the type Fe3+{Fe1-y3+,Fe1-x2+,Nix2+,Cry3+}O4 (in which [] = tetrahedral site, {} octahedral site) occurs in GS1200, which is caused by sulfate decomposition to SO2. At 1200 °C, heavy metals are encapsulated, forming other phases such as nickel silicate and hematite. Life cycle assessment was used to verify the sustainability and value of GS in clay for making bricks, and it indicated that the production of ceramics is feasible, reduces the use of clays, and is sustainable.
Collapse
Affiliation(s)
- F M Brasil
- School of Engineering and Sciences, Guaratinguetá, São Paulo State University - UNESP, Guaratinguetá, SP, Brazil; Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil.
| | - D L Oliveira
- Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil
| | - M O Melquíades
- Federal Institute of Education, Science and Technology of Amazonas (IFAM) - Unidade Centro, Manaus, Amazonas, Brazil
| | - F X Nobre
- Federal Institute of Education, Science and Technology of Amazonas (IFAM) - Unidade Centro, Manaus, Amazonas, Brazil
| | - C E T Balestra
- Federal Technological University of Paraná, UTFPR, Campus Toledo, PR, Brazil
| | - J D Ardisson
- Nuclear Technology Development Center/CDTN/CNEN, Pampulha, Belo Horizonte, MG, Brazil
| | - J D Fabris
- Federal University of Minas Gerais, UFMG, Pampulha, Belo Horizonte, MG, Brazil
| | - G P Santana
- Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil
| | - M A Ramirez
- School of Engineering and Sciences, Guaratinguetá, São Paulo State University - UNESP, Guaratinguetá, SP, Brazil
| |
Collapse
|
2
|
Kusano R, Kusano Y. Applications of Plasma Technologies in Recycling Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1687. [PMID: 38612199 PMCID: PMC11012531 DOI: 10.3390/ma17071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Plasmas are reactive ionised gases, which enable the creation of unique reaction fields. This allows plasmas to be widely used for a variety of chemical processes for materials, recycling among others. Because of the increase in urgency to find more sustainable methods of waste management, plasmas have been enthusiastically applied to recycling processes. This review presents recent developments of plasma technologies for recycling linked to economical models of circular economy and waste management hierarchies, exemplifying the thermal decomposition of organic components or substances, the recovery of inorganic materials like metals, the treatment of paper, wind turbine waste, and electronic waste. It is discovered that thermal plasmas are most applicable to thermal processes, whereas nonthermal plasmas are often applied in different contexts which utilise their chemical selectivity. Most applications of plasmas in recycling are successful, but there is room for advancements in applications. Additionally, further perspectives are discussed.
Collapse
Affiliation(s)
- Reinosuke Kusano
- School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK;
| | - Yukihiro Kusano
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
3
|
Yang J, Tian L, Meng L, Wang F, Die Q, Yu H, Yang Y, Huang Q. Thermal utilization techniques and strategies for secondary aluminum dross: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119939. [PMID: 38169267 DOI: 10.1016/j.jenvman.2023.119939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Secondary aluminum ash (SAD) disposal is challenging, particularly in developing countries, and presents severe eco-environmental risks. This paper presents the treatment techniques, mechanisms, and effects of SAD at the current technical-economic level based on aluminum ash's resource utilization and environmental properties. Five recovery techniques were summarized based on aluminum's recoverability in SAD. Four traditional utilization methods were outlined as per the utilization of alumina in SAD. Three new utilization methods of SAD were summarized based on the removability (or convertibility) of aluminum nitride in SAD. The R-U-R (recoverability, utilizability, and removability) theory of SAD was formed based on several studies that helped identify the fingerprint of SAD. Furthermore, the utilization strategies of SAD, which supported the recycling of aluminum ash, were proposed. To form a perfect fingerprint database and develop various relevant techniques, future research must focus on an extensive examination of the characteristics of aluminum ash. This research will be advantageous for addressing the resource and environmental challenges of aluminum ash.
Collapse
Affiliation(s)
- Jinzhong Yang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lu Tian
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lingyi Meng
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Wang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qingqi Die
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haibin Yu
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Yufei Yang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qifei Huang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Abstract
Production of metals stands for 40% of all industrial greenhouse gas emissions, 10% of the global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes of by-products every year. Therefore, metals must become more sustainable. A circular economy model does not work, because market demand exceeds the available scrap currently by about two-thirds. Even under optimal conditions, at least one-third of the metals will also in the future come from primary production, creating huge emissions. Although the influence of metals on global warming has been discussed with respect to mitigation strategies and socio-economic factors, the fundamental materials science to make the metallurgical sector more sustainable has been less addressed. This may be attributed to the fact that the field of sustainable metals describes a global challenge, but not yet a homogeneous research field. However, the sheer magnitude of this challenge and its huge environmental effects, caused by more than 2 billion tonnes of metals produced every year, make its sustainability an essential research topic not only from a technological point of view but also from a basic materials research perspective. Therefore, this paper aims to identify and discuss the most pressing scientific bottleneck questions and key mechanisms, considering metal synthesis from primary (minerals), secondary (scrap), and tertiary (re-mined) sources as well as the energy-intensive downstream processing. Focus is placed on materials science aspects, particularly on those that help reduce CO2 emissions, and less on process engineering or economy. The paper does not describe the devastating influence of metal-related greenhouse gas emissions on climate, but scientific approaches how to solve this problem, through research that can render metallurgy fossil-free. The content is considering only direct measures to metallurgical sustainability (production) and not indirect measures that materials leverage through their properties (strength, weight, longevity, functionality).
Collapse
Affiliation(s)
- Dierk Raabe
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| |
Collapse
|
5
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
6
|
Wang J, Zhang S, Qian C, Cui Y, Shi G, Cheng J, Li X, Xin B. Heat treatment-enhanced bioleaching of new electroplating sludge containing high concentration of CuS and its mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Pancholi KC, Sen N, Singh K, Vincent T, Kaushik C. Transient heat transfer during startup of a thermal plasma chamber: Numerical insights. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2022.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Singh A, Dhami HS, Sinha MK, Kumar R. Evaluation and comparison of mineralogical, micromeritics and rheological properties of waste machining chips, coal fly ash particulates with metal and ceramic powders. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Pancholi KC, Singh PJ, Bhattacharyya K, Tiwari M, Sahu SK, Vincent T, Udupa DV, Kaushik CP. Elemental analysis of residual ash generated during plasma incineration of cellulosic, rubber and plastic waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:665-675. [PMID: 34541977 DOI: 10.1177/0734242x211038201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Management of plastic, rubber and cellulosic waste from various industries is a challenging task. An engineering scale plasma pyrolysis based incinerator has been commissioned for incineration of combustible waste, including plastic, rubber and cellulose. Operational trials of wastes with simulated composition show a weight reduction factor of more than 18 and volume reduction factor of more than 30. The volume reduction factor is tenfold higher than the compaction process currently practised for rubber and plastic wastes. Representative residual ash samples derived from these runs are subjected to their elemental analysis using EDXRF technique and results are comparable with the published literature. Relative variation of individual elements is attributed to the type of waste and feed composition. Analysis is aided with the calculation of index of geoaccumulation, enrichment factor (EF), contamination factor (CF) and pollution load index (PLI). From this study, it is evident that S, Cr, Zn, As, Se, Hg and Pb are of concern for environment in residual ash from plasma incineration of combustible waste. The efficacy of the incineration process is evaluated; C, H and O reduction achieved is more than 98% and overall enrichment ratio (ER) for the inorganic elements is more than 4.5. This study highlights the importance of elemental composition for the performance analysis of the plasma based incineration as well as hazards evaluation of constituents in residual ash for its further management.
Collapse
Affiliation(s)
- Keyur C Pancholi
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Waste Management Division, BARC, Mumbai, Maharashtra, India
| | - Param Jeet Singh
- Atomic & Molecule Physics Division, BARC, Mumbai, Maharashtra, India
| | - Kaustava Bhattacharyya
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Chemistry Division, BARC, Mumbai, Maharashtra, India
| | - Mahesh Tiwari
- Environmental Monitoring and Assessment Division, BARC, Mumbai, Maharashtra, India
| | - Sanjay Kumar Sahu
- Environmental Monitoring and Assessment Division, BARC, Mumbai, Maharashtra, India
| | - Tessy Vincent
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Process Development Division, BARC, Mumbai, Maharashtra, India
| | - Dinesh Venkatesh Udupa
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Atomic & Molecule Physics Division, BARC, Mumbai, Maharashtra, India
| | - Chetan Prakash Kaushik
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Waste Management Division, BARC, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Investigations of Working Characteristics of Transferred Arc Plasma Torch Volume Reactor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A transferred arc plasma torch chemical rector was used to process waste formed from mixtures of dry clay powder and hydroquinone. Such reactors are best suited for the treatment of electrically conductive waste. In these types of reactors, the electric arc moves chaotically throughout the entire reactor volume, making it possible to ensure an even temperature distribution in the reaction zones. An analysis of the literature has shown that there are not many study results related to this type of reactor. The novelty of the work is that the behavior of the operating electric arc inside the reactor was recorded by using a high-speed camera. The distribution of the temperature profile at the cooled reactor wall was investigated. The electrical potential difference inside the reactor was also investigated. To better understand the behavioral properties of the electric arc when the reactor is filled with treated material, hydroquinone-contaminated clay was used. In this case, the movement of the electric arc, as well as the probability of its formation, is the greatest at the location where the thinnest layer of the material to be processed is located. In addition, it has been observed that the use of a graphite anode poses problems because, over time, the anode of such a design deforms due to interactions with the electric arc. While analyzing research results, it can be observed that these types of reactors are very suitable for the treatment of electrically conductive materials and for the treatment of small amounts of nonconductive materials when the material occupies a relatively small part of the reactor. A further development of these studies in the future is planned in order to make the reactors as versatile as possible and as suitable as possible for handling the widest range of materials possible.
Collapse
|
11
|
Bouallouch R, Kebir M, Nasrallah N, Saib F, El Jery A, Khezami L, Trari M. Synthesis, structural, and opto-electrochemical properties of cobalt aluminate type spinel and its use with ZnO for Cr(VI) photoreduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12237-12248. [PMID: 34562219 DOI: 10.1007/s11356-021-16625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The discovery of the occurrence of inorganic pollutants in surface waters is identified in the system assessment quality. The most harmful elements are pesticides, persistent organic pollutants, pharmaceuticals, personal care products, and heavy metals are still dangerous to the environment due to their general uses. Chromate has the largest concentration compared to the other metals in the wastewater industries. This work evaluates the application of the spinel p-CoAl2O4 as a photocatalyst prepared by the nitrate synthesis process to reduce Cr(VI), a hazardous metal for the environment. The photocatalyst was characterized using thermal analysis (TG), X-ray diffraction, UV-diffuse reflectance spectroscopy, scanning electron microscopy, fluorescent X-ray, Fourier transform infrared spectroscopy, electrical conductivity, and photoelectrochemically. The results showed that the efficiency of optimum reduction of Cr(Vl) to Cr(IIl) photoreduction is more effective (77%) for pH = 3.6 than that at high pH values up to 8 (7%). Moreover, the effect of the hetero-system CoAl2O4/ZnO on photocatalytic efficiency was investigated. The photocatalytic activity increases up to 99% with 1 g L-1, a total catalyst dosage over the hetero-system CoAl2O4/ZnO at a ratio of 75%/25%. This data is better relative to CoAl2O4 or ZnO alone. The Cr(VI) photoreduction activity improvement was caused by the best separation and the photogeneration of electron-hole on the CoAl2O4/ZnO surfaces. Finally, the Lagergren pseudo-first-order and the Langmuir-Hinshelwood models fit well the experimental kinetics.
Collapse
Affiliation(s)
- Rachida Bouallouch
- Faculty of Engineering, Univ. M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria
- Laboratory of Reaction Engineering, FGMPG/USTHB, BP 32, 16111, Algiers, Algeria
| | - Mohammed Kebir
- Faculty of Engineering, Univ. M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria
- Research Unit on Analysis and Technological Development in Environment, BP 384, RP 42004, Bou-Ismail, Tipaza, Algeria
| | - Noureddine Nasrallah
- Faculty of Engineering, Univ. M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria
| | - Faouzi Saib
- Laboratory of Storage and Valorization of Renewable Energies, USTHB, BP 32, 16111, Algiers, Algeria
- Research Center in Chemical and Physical Analysis (C.R.A.P.C), BP 384, RP 42004, Bou-Ismail, Tipaza, Algeria
| | - Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, College of Sciences, Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, USTHB, BP 32, 16111, Algiers, Algeria
| |
Collapse
|
12
|
Andrade DF, Castro JP, Garcia JA, Machado RC, Pereira-Filho ER, Amarasiriwardena D. Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones. CHEMOSPHERE 2022; 286:131739. [PMID: 34371353 DOI: 10.1016/j.chemosphere.2021.131739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Waste electrical and electronic equipment (WEEE) is one of the world's fastest-growing class of waste. WEEE contain a large amount of precious materials that have aroused the interest to develop new recycling technologies. Hence, effective recycling strategies are extremely necessary to promote the proper handling of these materials as well as for environmentally sound recovery of secondary raw resource. This paper reviews important existing methods and emerging technologies in WEEE management, with special emphasis in characterization, extraction and reclamation of precious materials from waste computer and mobile phones. Traditional pyrometallurgical and hydrometallurgical technologies still play a central role in the recovery of metals. More recently, emerging greener recycling technologies using microorganisms (i.e. biometallurgical), plasma arc fusion method and pretreatments (i.e. ultrasound and mechanochemical technologies) combined with other recycling methods (e.g. hydrometallurgical), and using less toxic solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs) have also been attempted to recycle metals from computer and mobile phone scrap. The role of analytical method development, especially using spectroanalytical methods for chemical inspection and e-waste sorting process at industrial applications is also discussed. This confirmed that most direct sampling techniques such as laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XFR) have several advantages over traditional sorting methods including rapid analytical response, without use of chemical reagents or waste generation, and greater reclamation of precious and critical materials in the WEEE stream.
Collapse
Affiliation(s)
- Daniel Fernandes Andrade
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565905, São Carlos, SP, Brazil; School of Natural Science, Hampshire College, 01002, Amherst, MA, USA
| | - Jeyne Pricylla Castro
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565905, São Carlos, SP, Brazil
| | - José Augusto Garcia
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565905, São Carlos, SP, Brazil; SG Soluções Científicas, 13560660, São Carlos, SP, Brazil
| | - Raquel Cardoso Machado
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565905, São Carlos, SP, Brazil
| | - Edenir Rodrigues Pereira-Filho
- Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565905, São Carlos, SP, Brazil
| | | |
Collapse
|
13
|
Rajalingam S, Kandasamy R, Pudugramam Vishwanathan A. Conversion of chromium-containing solid wastes into value-added products through a plasma-assisted aluminothermic process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63682-63689. [PMID: 33515410 DOI: 10.1007/s11356-021-12581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Chromium-containing solid wastes have been generated by chemical and leather/tanning industries, and the management and proper disposal of the same wastes have been challenging tasks. A significant fraction of these wastes contains chromium compounds with chromium present in the hexavalent (Cr+6) form, which is hazardous to human beings, animals, and ecosystems. Since these wastes are discarded largely without proper treatments, soil and groundwater get contaminated and they can cause several health issues to human beings. Conventional methods developed to convert hazardous Cr6+ to Cr3+/Cr metal either generate secondary toxic wastes and unwanted by-products and/or are time-consuming processes. In this work, a plasma-assisted aluminothermic process is developed to convert the toxic waste into non-toxic products. The waste was mixed with aluminium powder and subjected to transferred arc plasma treatment in a controlled air atmosphere. Chemical analysis and Cr leachability studies of the waste material prior to plasma treatment have shown that it is highly toxic. Analysis of the products obtained from the plasma treatment showed that Cr and Fe present in the waste could be recovered as a metallic mixture as well as oxide slag, which were found to be non-toxic. Easy separation of the metallic fraction and the slag from the treated product is one of the merits of this process. Besides converting chromium-containing toxic waste to non-toxic materials, the process is rapid and recovers the metals from the waste completely.
Collapse
|
14
|
Liu J, Jiang Q, Wang H, Li J, Zhang W. Catalytic effect and mechanism of in-situ metals on pyrolysis of FR4 printed circuit boards: Insights from kinetics and products. CHEMOSPHERE 2021; 280:130804. [PMID: 33965868 DOI: 10.1016/j.chemosphere.2021.130804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Pyrolysis is a promising method for the recovery of waste printed circuit boards (WPCBs), but few researches have noticed the influence of in-situ metals. This study conducted a series of comparisons between metal-free leftover pieces (LP) and intact boards (IB), including pyrolysis characteristics, volatile emission, kinetics, and thermodynamic parameters. The thermo-gravimetry (TG) analyses indicated that both the samples presented predominant mass loss in narrow temperature intervals, and characteristic pyrolysis temperatures of IB were approximately 15 °C lower than those of LP. Dominant constituents in evolved gases were detected by Fourier-transform infrared spectrometry as CO2, phenol, bromophenol, ethers, ketones, and aldehydes, and metals accelerated the generation of light hydrocarbons and aromatic compounds. The activation energy and thermodynamic parameters were calculated and compared, and the results verified the presence of in-situ metals led to a lower energy barrier and higher reaction extent. Moreover, conversion behaviors of Cu, Fe, Sn, and Pb manifested the formation of metal bromides and implied the reduction of brominated volatiles. The obtained results confirmed the catalytic effect of in-situ metals on PCBs pyrolysis and their bromine fixation abilities. This study contributes to fundamental knowledge that can be used to guide the pyrolysis of WPCBs.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Qihao Jiang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Hanlin Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Wenjuan Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Abstract
The need to drive towards sustainable metal resource recovery from end-of-cycle products cannot be overstated. This review attempts to investigate progress in the development of recycling strategies for the recovery of strategic metals, such as precious metals and base metals, from catalytic converters, e-waste, and batteries. Several methods for the recovery of metal resources have been explored for these waste streams, such as pyrometallurgy, hydrometallurgy, and biohydrometallurgy. The results are discussed, and the efficiency of the processes and the chemistry involved are detailed. The conversion of metal waste to high-value nanomaterials is also presented. Process flow diagrams are also presented, where possible, to represent simplified process steps. Despite concerns about environmental effects from processing the metal waste streams, the gains for driving towards a circular economy of these waste streams are enormous. Therefore, the development of greener processes is recommended. In addition, countries need to manage their metal waste streams appropriately and ensure that this becomes part of the formal economic activity and, therefore, becomes regulated.
Collapse
|
16
|
Sanito RC, You SJ, Wang YF. Application of plasma technology for treating e-waste: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112380. [PMID: 33831638 DOI: 10.1016/j.jenvman.2021.112380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
This review details the current information on e-waste treatment using plasma technology. The current status of e-waste treatment via plasma technology from the scientific literature is presented herein, namely, moist paste battery, galvanic sludge, resin, printed circuit board, and semiconductor industries. The concept of plasma technology, classification of e-waste, contaminants of e-waste (metals, metalloids, and VOCs), and vitrification of the final product are presented herein. This review paper focuses on fusing flux agents to vitrify e-waste. Furthermore, this paper covers laboratory-scale investigations, plasma technology benefits, and reuse of material from plasma post-treatment. The use of plasma technology combined with flux agents could be recommended to eliminate contaminants from e-waste. Materials from plasma post-treatment may also be applied in environmental reuse applications.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Civil Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 32023, Taiwan.
| |
Collapse
|
17
|
Wu L, Liu Z, Zhang W, Feng X. Plasma cleaning under low pressures based on the domestic microwave oven. JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY 2021. [DOI: 10.1080/08327823.2021.1916680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Li Wu
- Department of Electronics Science and Technology, Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
| | - Zhuang Liu
- Department of Electronics Science and Technology, Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
| | - Wencong Zhang
- Department of Electronics Science and Technology, School of Electronic and Communication Engineering, Guiyang University, Guiyang, China
| | - Xi Feng
- Department of Hepatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Abstract
The rapid separation and efficient recycling of catalysts after a catalytic reaction are considered important requirements along with the high catalytic performances. In this view, although heterogeneous catalysis is generally less efficient if compared to the homogeneous type, it is generally preferred since it benefits from the easy recovery of the catalyst. Recycling of heterogeneous catalysts using traditional methods of separation such as extraction, filtration, vacuum distillation, or centrifugation is tedious and time-consuming. They are uneconomic processes and, hence, they cannot be carried out in the industrial scale. For these limitations, today, the research is devoted to the development of new methods that allow a good separation and recycling of catalysts. The separation process should follow a procedure economically and technically feasible with a minimal loss of the solid catalyst. The aim of this work is to provide an overview about the current trends in the methods of separation/recycling used in the heterogeneous catalysis.
Collapse
|
19
|
Pinto FM, Pereira RA, Souza TM, Saczk AA, Magriotis ZM. Treatment, reuse, leaching characteristics and genotoxicity evaluation of electroplating sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111706. [PMID: 33277097 DOI: 10.1016/j.jenvman.2020.111706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Electroplating sludge (ES) is a waste that is generated by the galvanization industry and is highly toxic because it contains heavy metals. This study examined the physiochemical properties of ES residue, the recovery of the present metals, and the reuse of these metals to add value to this residue and avoid environmental contamination through its inadequate disposal. The potential for leaching of ES was investigated using various tests, and a decrease in the germination speed of Lactuca sativa seeds and the appearance of chromosomal aberrations in the cytotoxicity tests were observed. The reduction of the pH and dynamic leaching conditions favor the leaching of ES heavy metals. An increase in the ES concentration in soil decreases the speed of germination and increases the number of chromosomal aberrations that are related to aneugenic phenomena that promote tumor development. Metals were recovered through solubilization, followed by selective precipitation. The recovery of heavy metals from ES decreased its toxicity by eliminating toxic components. The reuse of the metals in the electroplating process may reduce the cost of disposal of ES, thereby rendering it an economically and environmentally friendly alternative. The products that were galvanized using the recovered solution showed the best results in the corrosion test, thereby demonstrating the viability of the use of this solution in industrial galvanization.
Collapse
Affiliation(s)
- Felipe M Pinto
- Departamento de Engenharia, Escola de Engenharia, Universidade Federal de Lavras, Lavras, Brazil.
| | - Robson A Pereira
- Departmento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil.
| | - Thallis M Souza
- Departmento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil.
| | - Adelir A Saczk
- Departmento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil.
| | - Zuy M Magriotis
- Departamento de Engenharia, Escola de Engenharia, Universidade Federal de Lavras, Lavras, Brazil.
| |
Collapse
|
20
|
Abstract
The harmless treatments of medical waste have significantly drawn people’s attention owing to their risks to health-care staff, the public, and the environment. The traditional thermal technology for processing medical waste may cause indispensable secondary pollution such as dioxin, furan, and heavy metals, and infectious materials that may remain in the solid residual. Thermal plasma technologies offer advantages of effectively treating medical waste due to its high temperature and energy density, lower pollutant emissions, rapid start-up and shut-down, and smaller size of the installation. These benefits play roles in the treatment of medical waste on-site or off-site, especially when somewhere encounters an abnormally sharp increase in medical waste. This paper mainly introduces the typical thermal plasma processes of medical waste and its central component, plasma furnace. Meanwhile, how process parameters influence the formed gaseous and solid products, the performances of mass and volume reduction, pathogen destruction, and energy recovery, are discussed in detail. Finally, the mechanism of the thermal plasma process is also analyzed.
Collapse
Affiliation(s)
- Xiaowei Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006 Guangdong China
| | - Changming Du
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006 Guangdong China
- Taizhou Institute of Zhejiang University, Taizhou, 317000 Zhejiang China
| |
Collapse
|
21
|
Sanito RC, You SJ, Chang TJ, Wang YF. Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110910. [PMID: 32721344 DOI: 10.1016/j.jenvman.2020.110910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Flux agents play an important role in the pyrolysis treatment of vitrifying hazardous wastes. Among these is plasma jets, a cost-less flux agent derived from shell powder which can be used to create vitrification. It is a promising option to be applied in the vitrification of elements and to remove the VOCs of hazardous waste, namely, resin from PCB scrap in an atmospheric-pressure microwave plasma reactor. In this study, a laboratory scale experiment was conducted. The experiment was performed in the pyrolysis of resin which was added with flux agents. The economic evaluation of the flux agents, and the circular economy concept of the final residue derived from the plasma pyrolysis was then analyzed post treatment. To test the strength and weakness of the experiment, the SWOT analysis was performed. The outcome helped in the understanding of the cost-less flux agent used in the pyrolysis treatment of hazardous waste. Results showed that fusing shell powder in resin was better for improving the removal efficiency of VOCs, such as benzene and toluene as well as toxic metals than compared to other flux agents such as limestone and quartz sand. Moreover, the final residue of resin was found to fulfil the concept of circular economy where it could be reused as an absorbent of methyl blue, thereby indicating good absorption performance, from 1 ppm-100 ppm. The twelve strategies that were derived from the SWOT analysis could be used as information outlining the current internal and external condition for the development and application of shell powder. Shell powder, as a cost-less flux agent, has the potential for enhancing waste management and circular economy when used in the pyrolysis treatment of future hazardous wastes.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Civil Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Tien-Jin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhong Xiao Road, Taipei, 106, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan.
| |
Collapse
|
22
|
Prado ESP, Miranda FS, de Araujo LG, Petraconi G, Baldan MR. Thermal plasma technology for radioactive waste treatment: a review. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07269-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Yousefzadeh S, Yaghmaeian K, Mahvi AH, Nasseri S, Alavi N, Nabizadeh R. Comparative analysis of hydrometallurgical methods for the recovery of Cu from circuit boards: Optimization using response surface and selection of the best technique by two-step fuzzy AHP-TOPSIS method. JOURNAL OF CLEANER PRODUCTION 2020. [DOI: 10.1016/j.jclepro.2019.119401] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Wang G, Ning XA, Lu X, Lai X, Cai H, Liu Y, Zhang T. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:112-121. [PMID: 31235047 DOI: 10.1016/j.wasman.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 05/25/2023]
Abstract
In this study, the mixing mechanism and phase transition process of different metals during the sintering of tailings bricks with four different metal oxides (CuO, PbO, ZnO, and CdO) at temperatures ranging from 700 to 1100 °C for 2 h were investigated. The properties of the sintered product was characterized and analyzed, and the results showed that the main crystalline phases are quartz, cristobalite, hematite, and mullite while the metal oxides are ascribed to copper ferrite spinel (CuFe2O4), gahnite (ZnAl2O4), zinc ferrite spinel (ZnFe2O4), lead feldspar (PbAl2Si2O8), and cadmium feldspar (CdAl2Si2O8). Further analysis indicates that the heavy metals were transited into spinel or silicate structures with favorable efficiency. This indicates a good heavy-metal fixation effect from the structural change after the sintering process. Finally, the leaching experiments of the sintered samples suggest that the metal leaching decreased to a low and stable value when the sintering temperature was higher than 950 °C, which meets the China standard (GB 5085.3-2007). The above results indicate that the sintering process facilitates the combination of Cu, Zn, Pb and Cd offering an effective and safe method for the application of materials that contain tailings.
Collapse
Affiliation(s)
- Guangwen Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xingwen Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojun Lai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haili Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Tingsong Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|