1
|
A G S Silva F, Schlapp-Hackl I, Nygren N, Heimala S, Leinonen A, Dourado F, Gama M, Hummel M. Upcycling of cellulosic textile waste with bacterial cellulose via Ioncell® technology. Int J Biol Macromol 2024; 271:132194. [PMID: 38821791 DOI: 10.1016/j.ijbiomac.2024.132194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Currently the textile industry relies strongly on synthetic fibres and cotton, which contribute to many environmental problems. Man-made cellulosic fibres (MMCF) can offer sustainable alternatives. Herein, the development of Lyocell-type MMCF using bacterial cellulose (BC) as alternative raw material in the Ioncell® spinning process was investigated. BC, known for its high degree of polymerization (DP), crystallinity and strength was successfully dissolved in the ionic liquid (IL) 1,5-diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] to produce solutions with excellent spinnability. BC staple fibres displayed good mechanical properties and crystallinity (CI) and were spun into a yarn which was knitted into garments, demonstrating the potential of BC as suitable cellulose source for textile production. BC is also a valuable additive when recycling waste cellulose textiles (viscose fibres). The high DP and Cl of BC enhanced the spinnability in a viscose/BC blend, consequently improving the mechanical performance of the resulting fibres, as compared to neat viscose fibres.
Collapse
Affiliation(s)
- Francisco A G S Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Inge Schlapp-Hackl
- Department of Bioproducts and Biosystems, Aalto University, P.O Box 16300, 00076 Aalto Espoo, Finland
| | - Nicole Nygren
- Department of Bioproducts and Biosystems, Aalto University, P.O Box 16300, 00076 Aalto Espoo, Finland
| | - Senni Heimala
- Department of Bioproducts and Biosystems, Aalto University, P.O Box 16300, 00076 Aalto Espoo, Finland
| | - Anna Leinonen
- School of Arts, Design and Architecture, Aalto University, Finland
| | - Fernando Dourado
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal.
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, P.O Box 16300, 00076 Aalto Espoo, Finland.
| |
Collapse
|
2
|
Zhang S, Xu W, Du R, Yan L, Liu X, Xu S, Wang YZ. Internal water circulation mediated synergistic co-hydrolysis of PET/cotton textile blends in gamma-valerolactone. Nat Commun 2024; 15:4498. [PMID: 38802467 PMCID: PMC11130221 DOI: 10.1038/s41467-024-48937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Recycling strategies for mixed plastics and textile blends currently aim for recycling only one of the components. Here, we demonstrate a water coupling strategy to co-hydrolyze polyester/cotton textile blends into polymer monomers and platform chemicals in gamma-valerolactone. The blends display a proclivity for achieving an augmented 5-hydroxymethylfurfural yield relative to the degradation of cotton alone. Controlled experiments and preliminary mechanistic studies underscore that the primary driver behind this heightened conversion rate lies in the internal water circulation. The swelling and dissolving effect of gamma-valerolactone on polyester enables a fast hydrolysis of polyester at much lower concentration of acid than the one in the traditional hydrolysis methods, effectively mitigating the excessive degradation of cotton-derived product and undesirable product formation. In addition, the system is also applicable to different kinds of blends and PET mixed plastics. This strategy develops an attractive path for managing end-of-life textiles in a sustainable and efficient way.
Collapse
Affiliation(s)
- Shun Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China
| | - Wenhao Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China
| | - Rongcheng Du
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China
| | - Lei Yan
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China
| | - Xuehui Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Baloyi RB, Sithole BB, Chunilall V. Physicochemical Properties of Cellulose Nanocrystals Extracted from Postconsumer Polyester/Cotton-Blended Fabrics and Their Effects on PVA Composite Films. Polymers (Basel) 2024; 16:1495. [PMID: 38891442 PMCID: PMC11174633 DOI: 10.3390/polym16111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The utilisation of cotton waste as precursors in the synthesis of nanocrystalline cellulose has gained significant attention. This approach suggests a sustainable solution to address the growing concern of textile waste accumulation while simultaneously producing a valuable material. The main aim of this study is to examine the properties of cellulose nanocrystals (CNCs) obtained from postconsumer polyester-cotton waste and assess the effect of different fabric structures on the extraction and these properties. To acquire nanocellulose, a thorough decolourisation pretreatment process was utilised, which involved the treatment of polyester-cotton waste with sodium dithionite and hydrogen peroxide. Consequently, the postconsumer material was then treated with an acid hydrolysis method employing a 64% (v/v) sulphuric acid solution at 50 °C for 75 min, resulting in the formation of CNCs with average yield percentages ranging from 38.1% to 69.9%. Separation of the acid from the CNC was facilitated by a centrifugation process followed by dialysis against deionised water. Uniform dispersion was then achieved using ultrasonication. A variety of analytical techniques were employed to investigate the morphological, chemical, thermal, and physical properties of the isolated CNCs. Among these techniques, attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR), energy-filtered transmission electron microscopy (EF-TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) were utilised to analyse the CNCs. The findings indicated that the separated CNCs exhibited a rod-shaped morphology, measuring between 78 and 358 nm in length and 5 and 16 nm in diameter, and also exhibited high crystallinity (75-89%) and good thermal stability. The extracted CNCs were mixed with polyvinyl alcohol (PVA) and glycerol to assess their reinforcing effect on plastic films. The prepared composite film exhibited improved mechanical properties and thermal stability. Incorporating CNCs led to a 31.9% increase in the tensile strength and a 42.33% rise in the modulus of elasticity. The results from this research proved that CNCs can be extracted from postconsumer mixed fabrics as a potential solution to effectively address the mounting concerns surrounding waste management in the textile industry and also provide avenues for enhancing the qualities of eco-friendly composite films.
Collapse
Affiliation(s)
- Rivalani Baloyi Baloyi
- Department of Chemical Engineering, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban 4000, South Africa; (B.B.S.); (V.C.)
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4000, South Africa
| | - Bruce Bishop Sithole
- Department of Chemical Engineering, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban 4000, South Africa; (B.B.S.); (V.C.)
| | - Viren Chunilall
- Department of Chemical Engineering, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban 4000, South Africa; (B.B.S.); (V.C.)
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4000, South Africa
| |
Collapse
|
4
|
Villar L, Schlapp-Hackl I, Sánchez PB, Hummel M. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste. Biomacromolecules 2024; 25:1942-1949. [PMID: 38385297 PMCID: PMC10934812 DOI: 10.1021/acs.biomac.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Even small amounts of elastane in cotton-elastane blended textiles can prevent fiber-to-fiber recycling strategies in textile recycling. Herein, the selective separation of elastane from cotton blends was addressed by the aminolytic degradation of the synthetic component. Polar aprotic solvents were tested as elastane solvents, but side reactions impeded aminolysis with some of them. Aminolysis of elastane succeeded under mild conditions using dimethyl sulfoxide in combination with diethylenetriamine and 1,5-diazabicyclo[4.3.0]non-5-ene as a cleaving agent and catalyst, respectively. The analysis of the nitrogen content in the recovered cellulose fraction demonstrated that 2 h of reaction at 80 °C reduced the elastane content to values lower than 0.08%. The characterization of the recovered cellulose showed that the applied conditions did not affect the macromolecular properties of cellulose and maintained a cellulose I crystal structure. Degraded elastane products were recovered through precipitation with water. Finally, the cellulosic component was turned into new fibers by dry-jet wet spinning with excellent tensile properties.
Collapse
Affiliation(s)
- Lorena Villar
- Department
of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - Inge Schlapp-Hackl
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Pablo B. Sánchez
- Department
of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
5
|
Soares Silva FAG, Meister F, Dourado F, Gama M. Regenerated bacterial cellulose fibres. Int J Biol Macromol 2023; 253:127310. [PMID: 37813214 DOI: 10.1016/j.ijbiomac.2023.127310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The global shortage of cotton for textile production, forces the exploitation of forests´ lignocellulosic biomass to produce man-made cellulosic fibres (MMCF). This has a considerable environmental impact, pressing the textile industry to search for new sustainable materials and to the development of sustainable recycling processes. Bacterial cellulose (BC), an exopolysaccharide produced by fermentation, could represent such an alternative. In particular, we tested the possibility of improving the mechanical properties of cellulose filaments with a low degree of polymerization (DP) by combining them with high DP from BC, so far exploited to little extent in the textile field. In this work, BC with different degrees of polymerization (DPcuaxam) (BCneat: 927; BCdep:634 and BCblend: 814) were dissolved in N-methylmorpholine-N-oxide (NMMO) and their spinnability was studied. The rheological behaviour of the dopes was assessed and all were found to be spinnable, at suitable concentrations (BCneat:9.0 %; BCdep:12.2 %; BCblend:10.5 %). A continuous spinning was obtained and the resulting filaments offered similar mechanical performance to those of Lyocell. Further, the blending of BC pulps with different DPs (BCblend, obtained by combining BCneat and BCdep) allowed the production of fibres with higher stiffness (breaking tenacity 56.4 CN.tex-1) and lower elongation (8.29 %), as compared to samples with more homogeneous size distribution (neat BC and depolymerized BC).
Collapse
Affiliation(s)
- Francisco A G Soares Silva
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Frank Meister
- Thuringian Institute for Textile and Plastics Research (TITK), Breitscheidstraße 97, 07407 Rudolstadt, Germany
| | - Fernando Dourado
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal.
| | - Miguel Gama
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Heng W, Weihua L, Bachagha K. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Carbohydr Polym 2023; 321:121306. [PMID: 37739536 DOI: 10.1016/j.carbpol.2023.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this review, we present advances in structural design strategies and various applications of cellulose-CNT composites. Firstly, the structural characteristics and corresponding treatments of cellulose and CNTs are analyzed, as are the potential interactions between the two to facilitate the formation of cellulose-CNT composites. Then, the design strategies and processing techniques of cellulose-CNT composites are discussed from the perspectives of cellulose fibers at the macroscopic scale (natural cotton, hemp, and other fibers; recycled cellulose fibers); nanocellulose at the micron scale (nanofibers, nanocrystals, etc.); and macromolecular chains at the molecular scale (cellulose solutions). Further, the applications of cellulose-CNT composites in various fields, such as flexible energy harvesting and storage devices, strain and humidity sensors, electrothermal devices, magnetic shielding, and photothermal conversion, are introduced. This review will help readers understand the design strategies of cellulose-CNT composites and develop potential high-performance applications.
Collapse
Affiliation(s)
- Wei Heng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Li Weihua
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Kareem Bachagha
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Xiao P, Wang Y, Du H, Yan Z, Xu B, Li G. Textile Waste-Derived Cobalt Nanoparticles Embedded in Active Carbon Fiber for Efficient Activation of Peroxymonosulfate to Remove Organic Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2724. [PMID: 37836365 PMCID: PMC10574149 DOI: 10.3390/nano13192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Burning and dumping textile wastes have caused serious damage to the environment and are a huge waste of resources. In this work, cobalt nanoparticles embedded in active carbon fiber (Co/ACF) were prepared from bio-based fabric wastes, including cotton, flax and viscose. The obtained Co/ACF was applied as a catalyst for the heterogeneous activation of peroxymonosulfate (PMS) to remove bisphenol A (BPA) from an aqueous solution. The results showed that cotton-, flax- and viscose-derived Co/ACF all exhibited excellent performance for BPA degradation; over ~97.0% of BPA was removed within 8 min. The Co/ACF/PMS system exhibited a wide operating pH range, with a low consumption of the catalyst (0.1 g L-1) and PMS (0.14 g L-1). The high specific surface area (342 m2/g) and mesoporous structure of Co/ACF allowed the efficient adsorption of pollutants as well as provided more accessible active sites for PMS activation. This study provided an example of using textile wastes to produce a valuable and recyclable catalyst for environmental remediation.
Collapse
Affiliation(s)
- Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (P.X.); (Y.W.); (Z.Y.); (B.X.)
- UNEP-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, China;
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (P.X.); (Y.W.); (Z.Y.); (B.X.)
- UNEP-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, China;
| | - Huanzheng Du
- UNEP-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, China;
| | - Zhiyong Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (P.X.); (Y.W.); (Z.Y.); (B.X.)
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (P.X.); (Y.W.); (Z.Y.); (B.X.)
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (P.X.); (Y.W.); (Z.Y.); (B.X.)
| |
Collapse
|
8
|
Harper R, Moody SC. Filamentous Fungi Are Potential Bioremediation Agents of Semi-Synthetic Textile Waste. J Fungi (Basel) 2023; 9:661. [PMID: 37367597 DOI: 10.3390/jof9060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Textile waste contributes to the pollution of both terrestrial and aquatic ecosystems. While natural textile fibres are known to be biodegraded by microbes, the vast majority of textiles now contain a mixture of processed plant-derived polymers and synthetic materials generated from petroleum and are commonly dyed with azo dyes. This presents a complex recycling problem as the separation of threads and removal of dye are challenging and costly. As a result, the majority of textile waste is sent to landfill or incinerated. This project sought to assess the potential of fungal bioremediation of textile-based dye as a step towards sustainable and environmentally-friendly means of disposal of textile waste. Successful development of an agar-independent microcosm enabled the assessment of the ability of two fungal species to grow on a range of textiles containing an increasing percentage of elastane. The white rot fungus Hypholoma fasciculare was shown to grow well on semi-synthetic textiles, and for the first time, bioremediation of dye from textiles was demonstrated. Volatile analysis enabled preliminary assessment of the safety profile of this process and showed that industrial scale-up may require consideration of volatile capture in the design process. This study is the first to address the potential of fungi as bioremediation agents for solid textile waste, and the results suggest this is an avenue worthy of further exploration.
Collapse
Affiliation(s)
- Rachel Harper
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Suzy Clare Moody
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
9
|
Singhal S, Agarwal S, Singhal N. Chemical recycling of waste clothes: a smarter approach to sustainable development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54448-54469. [PMID: 36973625 DOI: 10.1007/s11356-023-26438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
Amount of fabric waste has increased many folds in the past few years due to increasing population and rapidly changing fashiosn trends. Its larger portion being dumped in the landfills is creating a lot of problem in its management. This is causing problems to environmental components of earth, viz., air, water, and land. Chemically, cotton-based fabrics are made up of mainly cellulose with small components of other chemicals and contribute to a big segment of overall textiles. Along with donating the cloths for various purposes, scientific solutions are also feasible for valorizing waste fabrics to value-added products. This review article focuses on important strategies for addressing fabric waste for their possible conversion to significant products of varied applications. It emphasizes on chemical routes suitable for this purpose for producing cellulose, sugar, composites, etc. This will provide an insight to the readers for understanding the chemical significance of waste fabric and exploring the best possible ways for its efficient management, ensuring a step ahead towards sustainable development.
Collapse
Affiliation(s)
- Shailey Singhal
- Department of Chemistry, Cluster of Applied Science, School of Engineering, UPES, Energy Acres Building, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Shilpi Agarwal
- Department of Chemistry, Cluster of Applied Science, School of Engineering, UPES, Energy Acres Building, Bidholi, Uttarakhand, 248007, Dehradun, India.
| | - Naveen Singhal
- Department of Chemistry, DIT University, Dehradun, 248009, Uttarakhand, India
| |
Collapse
|
10
|
Kulkarni A, Quintens G, Pitet LM. Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amruta Kulkarni
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Greg Quintens
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Louis M. Pitet
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
11
|
Lu L, Fan W, Meng X, Xue L, Ge S, Wang C, Foong SY, Tan CSY, Sonne C, Aghbashlo M, Tabatabaei M, Lam SS. Current recycling strategies and high-value utilization of waste cotton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158798. [PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.
Collapse
Affiliation(s)
- Linlin Lu
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Wei Fan
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| | - Xue Meng
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Lili Xue
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chen Wang
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Cindy S Y Tan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
12
|
Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim. Polymers (Basel) 2022; 14:polym14235280. [PMID: 36501674 PMCID: PMC9738703 DOI: 10.3390/polym14235280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Circularity of cellulose-based pre- and post-consumer wastes requires an integrated approach which has to consider the characteristics of the fibre polymer and the presence of dyes and additives from textile chemical processing as well. Fibre-to-fibre recycling is a condition to avoid downcycling of recycled material. For cellulose fibres regeneration via production of regenerated cellulose fibres is the most promising approach. Textile wastes contain dyes and additives, thus a recycling technique has to be robust enough to process such material. In an ideal case the reuse of colorants can be achieved as well. At present nearly 80% of the regenerated cellulose fibre production utilises the viscose process, therefore this technique was chosen to investigate the recycling of dyed material including the reuse of the colorant. In this work, for the first time, a compilation of all required process steps to a complete circular concept is presented and discussed as a model. Indigo-dyed viscose fibres were used as a model to study cellulose recycling via production of regenerated cellulose fibres to avoid downcycling. Indigo was found compatible to the alkalisation and xanthogenation steps in the viscose process and blue coloured cellulose regenerates were recovered from indigo-dyed cellulose. A supplemental addition of reduced indigo to the cellulose solution was also found feasible to adjust colour depth in the regenerated cellulose to the level required for use as warp material in denim production. By combination of fibre recycling and indigo dyeing the conventional yarn dyeing in denim production can be omitted. Model calculations for the savings in water and chemical consumption demonstrate the potential of the process. The proportion of the substitution will depend on the collection rate of denim wastes and on the efficiency of the fibre regeneration process. Estimates indicate that a substitution of more than 70% of the cotton fibres by regenerated cellulose fibres could be achieved when 80% of the pre- and post-consumer denim wastes are collected. Therefore, the introduction of fibre recycling via regenerated cellulose fibres will also make a substantial impact on the cotton consumption for jeans production.
Collapse
|
13
|
Costa C, Viana A, Silva C, Marques EF, Azoia NG. Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:99-109. [PMID: 36067549 DOI: 10.1016/j.wasman.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/29/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Chemical recycling can be used to separate fibers that are constituents of different types of fabrics. This type of process can be considered one of the most effective forms of recycling, given that a large part of fabrics is made up of fiber mixtures. As part of an innovative circular strategy, the main goal of this work was to study the conditions for extracting cellulose from mixed textile wastes by acid hydrolysis and further transform it into cellulose derivatives, thus contributing to reduce such wastes and expanding the possible sources of cellulose. Our work covers a wide range of textile wastes and addresses the main technical challenges of this recycling methodology. The percentage of recovered cellulose powder varies between 65 and 88%. To evaluate the feasibility of using the extracted cellulose as raw material to produce cellulose derivatives, two strategies were applied: etherification to obtain sodium carboxymethylcellulose (with degree of substituion between 0.27 and 0.61) and esterification, to obtain cellulose acetate (with degree of substituion of 2.59). The cellulose derivatives obtained are very useful as additives in the textile industry, and hence the concept and practice of a circular economy are promoted.
Collapse
Affiliation(s)
- Catarina Costa
- CeNTI - Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal; CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - André Viana
- CeNTI - Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal; CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Carla Silva
- CeNTI - Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal
| | - Eduardo F Marques
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno G Azoia
- CeNTI - Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal.
| |
Collapse
|
14
|
Chemical Recycling of a Textile Blend from Polyester and Viscose, Part I: Process Description, Characterization, and Utilization of the Recycled Cellulose. SUSTAINABILITY 2022. [DOI: 10.3390/su14127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Material recycling requires solutions that are technically, as well as economically and ecologically, viable. In this work, the technical feasibility to separate textile blends of viscose and polyester using alkaline hydrolysis is demonstrated. Polyester is depolymerized into the monomer terephthalic acid at high yields, while viscose is recovered in a polymeric form. After the alkaline treatment, the intrinsic viscosity of cellulose is decreased by up to 35%, which means it may not be suitable for conventional fiber-to-fiber recycling; however, it might be attractive in other technologies, such as emerging fiber processes, or as raw material for sugar platforms. Further, we present an upscaled industrial process layout, which is used to pinpoint the areas of the proposed process that require further optimization. The NaOH economy is identified as the key to an economically viable process, and several recommendations are given to decrease the consumption of NaOH. To further enhance the ecological end economic feasibility of the process, an increased hydrolysis rate and integration with a pulp mill are suggested.
Collapse
|
15
|
GÜMÜŞ H, BÜYÜKKIDAN B. Pollution Removal Performance of Chemically Functionalized Textile Waste Biochar Anchored Poly(vinylidene fluoride) Adsorbent. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1026303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Preparation of adsorbent materials in powder and polymeric composite form was achieved by controlled carbonization of ZnCl2 pretreated textile waste at low temperatures. Structural and surface properties of carbonized textile waste samples (CTW) and polymeric composites were prepared by the addition of CTW to PVDF-DMF solution at 0, 5, 10, 15, 20, and 30 mass% ratios analyzed by FT-IR, XRD, SEM, and BET analysis. Adsorption performances of powder and composite adsorbents were investigated for MO dye removal from an aqueous solution. Zn-CTW obtained with carbonization of ZnCl2 treated textile waste at 350 °C presented 117.5 mg/g MO removal. Those were higher than CTW-350 and CTW-400. The presence of 1545 cm-1 band at the IR spectrum of Zn-CTW proved the formation of functional groups that increase dye adsorption performance with honeycomb-like pores on the surface. Zn-CTW reflected its properties onto the PVDF matrix. Improved porosity percentage, BET surface, and dye adsorption of Pz20 were recorded as 105.3, 15.22 m2/g, and 41 mg/g, respectively, compared with bare PVDF. Disposal of textile waste and preparation of functional activated carbon were achieved in a low-cost and easy way. Zn-CTW loaded PVDF composites are promising materials to use as a dye removal adsorbent from water or filtration membranes.
Collapse
Affiliation(s)
- Hüseyin GÜMÜŞ
- Bilecik Seyh Edebali University, Osmaneli Vocational School, , 11500, Osmaneli, Bilecik/Turkey
| | | |
Collapse
|
16
|
Wang M, Shi S, Li F, Hou W, Guo H, Wang S, Jia H, Dai J. Efficient recycling of polyester and microcrystalline cellulose through one-step extraction from waste polyester-cotton blended fabrics with deep eutectic solvents. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Assessment of the Eco-Efficiency of the Circular Economy in the Recovery of Cellulose from the Shredding of Textile Waste. Polymers (Basel) 2022; 14:polym14071317. [PMID: 35406193 PMCID: PMC9002361 DOI: 10.3390/polym14071317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
There is a growing demand for the adoption of cyclical processes in the fashion industry. The trends point to the reuse of cellulose from cotton fibres, obtained from industrial waste, as a substitute to the former linear processes of manufacturing, sale, use, and discarding. This study sets up to explore and assess the economic and environmental gains from the mechanical shredding of cellulose in cotton fabrics in a textile company, identifying the circularity associated with the adoption of such methods. The study resorted to a case study methodology building on interviews and observation. For the environmental estimations, the study employed the material intensity factor tool, and for the economic evaluation the study uses the return on investment. The study also offers an estimation of the circularity of the processes that were implemented. The adoption of the mechanical shredding for cotton cellulose generated economic gains of US$11,798,662.98 and a reduction in the environmental impact that amounts to 31,335,767,040.26 kg including the following different compartments: biotic, abiotic, water, air, and erosion. The findings suggest the existence of opportunities for the circular economy in the textile sector of about 99.69%, dissociated to the use of mechanical recycling, while limited by the consumption of electrical energy and lubricants in the recycling process, leading the way to a circular economy.
Collapse
|
18
|
Peng H, Li P, Yang Q. Investigation on the reaction kinetics, thermodynamics and synergistic effects in co-pyrolysis of polyester and viscose fibers. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
A Systematic Literature Review for the Recycling and Reuse of Wasted Clothing. SUSTAINABILITY 2021. [DOI: 10.3390/su132413732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the growing frequency and quantity of clothing purchases, the elimination rate of waste clothing is increasing. Many researchers have contributed to the topic of the recycling and reuse of waste clothing, and therefore many related literature reviews are emerging. The current reviews only focus on waste textile recycling and waste-clothing life-cycle evaluation. The topic of waste-clothing recycling itself is ignored. In this article, we propose a systematic review of the recycling and reuse of wasted clothes. Firstly, we summarize the existing methods of waste-clothing collection and recycling and the related recycling technology, and discuss their advantages and disadvantages. The involved literatures are journal articles, book chapters, and conference papers selected from Google Scholar and Web of Science. Citespace software, as a literature visualization tool is used for the analysis. Based on this review, the low efficiency of waste-clothes recycling can be attributed to poor organization from a management aspect. From a consumer perspective, because of the differences in understanding among consumers about waste-clothing recycling, the existing clothing-recycling system cannot be fully utilized. The results of this review provide reference for further research on waste-clothing recycling, and make suggestions for the relevant governmental/industrial development strategies.
Collapse
|
20
|
Cao W, Li Q, Wu C. The HDPE composites reinforced with waste hybrid PET/cotton fibers modified with the synthesized modifier. E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Large amounts of textile waste are generated every year and disposed of through landfill or incineration, leading to numerous environmental and social issues. In this study, waste hybrid polyethylene terephthalate (PET)/cotton fibers were used directly to reinforce high density polyethylene (HDPE) to prepare composites. In order to give full play to the fiber’s reinforcing characteristics, the PET/cotton fibers were further modified with the modifier using a novel synthesized tetraethyl orthosilicate/3-aminopropyl triethoxysilane (KH550)/polyethylene (PE)-g-MAH (MPE) hybrid (TMPE). Fourier transform infrared and scanning electron microscopy (SEM) confirmed that the TMPE was successfully coated on the surface of fibers. Furthermore, compared with the original and the MPE-modified fibers, the thermal stability of TMPE-modified fibers was significantly increased. SEM and mechanical test indicated that the compatibility of the modified fibers with HDPE had been significantly improved, which led to the improvement of mechanical properties. Compared with the original and MPE-modified fibers-reinforced HDPE composites, the bending strength, bending modulus, and impact strength of TMPE-modified fiber-reinforced HDPE composites were improved obviously by 31.7%, 25.7%, and 89.1%, respectively.
Collapse
Affiliation(s)
- Wei Cao
- Department of Polymer, Polymer Processing Laboratory, School of Material Science and Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Qiuying Li
- Department of Polymer, Polymer Processing Laboratory, School of Material Science and Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Chifei Wu
- Department of Polymer, Polymer Processing Laboratory, School of Material Science and Engineering, East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
21
|
Xia G, Zhou Q, Xu Z, Zhang J, Zhang J, Wang J, You J, Wang Y, Nawaz H. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohydr Polym 2021; 273:118569. [PMID: 34560980 DOI: 10.1016/j.carbpol.2021.118569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
Abstract
Cellulose films with biodegradability and intrinsically antistatic property have many applications. However, conventional cellulose films show poor toughness and UV-shielding property, and the major sources are high-grade cotton linter or wood pulp. Herein, by using low-cost waste cotton textiles as the raw materials, we successfully fabricated transparent cellulose/aramid nanofibers (ANFs) films, in which in-situ retained ANFs had a diameter of 20-30 nm and a length of several micrometers. Because ANFs and cellulose chains formed strong hydrogen bonding interactions, the tensile strength and elongation of the resultant cellulose/ANFs film with 1.0 wt% ANFs could reach 54.4 MPa and 15.8%, respectively, increased by 63.4% and 154% compared to those of pure cellulose film (33.3 MPa and 6.2%). Meanwhile, the cellulose/ANFs films show excellent UV-shielding properties and irradiation stability. Hence, the novel cellulose/ANFs films with improved mechanical and UV-shielding performance were in-situ prepared leading to enhance the valorization of waste cotton textiles.
Collapse
Affiliation(s)
- Guangmei Xia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Qiwen Zhou
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Zhen Xu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jie Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Jiuhao You
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yuanhang Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Haq Nawaz
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
22
|
Mendes ISF, Prates A, Evtuguin DV. Production of rayon fibres from cellulosic pulps: State of the art and current developments. Carbohydr Polym 2021; 273:118466. [PMID: 34560932 DOI: 10.1016/j.carbpol.2021.118466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
The increasing demand for cellulosic fibres is continuously driven by the growing earth population and requirements of the textile industry. The annual cotton production of ca. 25 million tons is no longer enough to meet the market demands. This market gap of cellulosic fibres is progressively filled by regenerated cellulosic fibres derived from the dissolving pulp. The conventional industrial process of viscose production is far from being environmentally friendly due to the use of hazardous reagents. Alternatively, new trends in the production of regenerated fibres are related to the direct dissolution of cellulose in appropriate environmentally sound recyclable solvents, allowing high quality rayon fibres. This article reviews the sources of dissolving pulps used for the production of viscose and its quality parameters related to the performance of viscose production. The prospective cellulose regeneration processes, both commercialized and under development, are reviewed regarding current and future developments in the area.
Collapse
Affiliation(s)
- Inês S F Mendes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - António Prates
- CAIMA-Indústria de Celulose S.A., P-2250 Constância, Portugal.
| | - Dmitry V Evtuguin
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Sarda P, Hanan JC, Lawrence JG, Allahkarami M. Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Parikshit Sarda
- Polymer Institute, Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Jay C. Hanan
- Mechanical and Aerospace Engineering Oklahoma State University Tulsa Oklahoma USA
| | - Joseph G. Lawrence
- Polymer Institute, Department of Chemical Engineering University of Toledo Toledo Ohio USA
| | - Masoud Allahkarami
- Mechanical and Aerospace Engineering Oklahoma State University Tulsa Oklahoma USA
| |
Collapse
|
24
|
Rietzler B, Manian AP, Rhomberg D, Bechtold T, Pham T. Investigation of the decomplexation of polyamide/
CaCl
2
complex toward a green, nondestructive recovery of polyamide from textile waste. J Appl Polym Sci 2021. [DOI: 10.1002/app.51170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barbara Rietzler
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Avinash P. Manian
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Dorian Rhomberg
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics University of Innsbruck Dornbirn Austria
| |
Collapse
|
25
|
Piribauer B, Bartl A, Ipsmiller W. Enzymatic textile recycling - best practices and outlook. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1277-1290. [PMID: 34238113 DOI: 10.1177/0734242x211029167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, textiles and their end-of-life management have become the focus of public and political attention. In the European Union the revised waste framework directive defines textiles as municipal waste and stipulates their separate collection by 2025. In the context of these developments, this paper summarises briefly the current state-of-the-art in textile recycling. It is evident that recycling methods are not yet fully developed. This is especially the case with multi-material textiles, which are composed of two or more polymers that are incompatible for recycling. In the practical part of the communication, results are presented which show that enzymatic hydrolysis is a suitable process for recycling textiles made of cotton and polyester. After a complete removal of cotton, the remaining pure polyester fibres undergo a re-granulation and post-condensation step. The so obtained recycled polyester is fed back into the textile processing chain and finally towels are obtained. The main steering parameters of the enzymatic hydrolysis process are described. The study proves that solutions in accordance with the Circular Economy in the textile sector are available but an industrial implementation has not yet been realised.
Collapse
Affiliation(s)
- Benjamin Piribauer
- Environmental and Bioscience Engineering, TU Wien, Institute of Chemical, Vienna, Austria
| | - Andreas Bartl
- Environmental and Bioscience Engineering, TU Wien, Institute of Chemical, Vienna, Austria
| | - Wolfgang Ipsmiller
- Environmental and Bioscience Engineering, TU Wien, Institute of Chemical, Vienna, Austria
| |
Collapse
|
26
|
Sitadewi D, Yudoko G, Okdinawati L. Bibliographic mapping of post-consumer plastic waste based on hierarchical circular principles across the system perspective. Heliyon 2021; 7:e07154. [PMID: 34141922 PMCID: PMC8187834 DOI: 10.1016/j.heliyon.2021.e07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
The current dominating production and consumption model is based on the linear economy (LE) model, within which raw materials are extracted-processed-consumed-discarded. A circular economy (CE) constitutes a regenerative systemic approach to economic development which views waste as a valuable resource to be reprocessed back into the economy. In order to understand the circular strategy for a systemic change from an LE to a CE as a means of resolving the issue of plastic waste, this research aims to map current circular strategy trends across the system perspective contained in the literature relating to plastic CE literature. The novelty of the research lies in the mapping and review of the distribution of comprehensive circular strategies within the 9R framework across the entire system perspective (e.g. micro-meso-macro) down to its sub-levels in the literature on a plastic CE. The bibliographic mapping and systematic literature review iindicateed that the majority of the research focused on recycle (R8), followed by refuse (R0), reuse (R3), and reduce (R2). Certain circular strategies are more appropriate to handling certain plastic materials, despite CE's favoring of prevention and recycling over incineration. Recover (R9) is often used to process mixed and contaminated plastic. Recycling (R8) is the most popular circular strategy and the most applicable to plastic material with three recycle trends, namely; mechanical recycling, chemical recycling and DRAM (Distributed-Recycling-and-Additive-Manufacturing). Prolonging the product life through refurbishing (R5) is not applicable to plastic due to its material limitations. Reduce (R2) popularity as circular strategy reflects the preference to reduce consumption, either by launching campaigns to prevent waste or increasing production efficiency. Research on Rethink (R1) has largely focused on rethinking product design, consumer and organization behavior and perceptions of CE. Refuse (R0) strategy is an adoption of bio-based plastics which have a similar function to fossil-based plastics.
Collapse
Affiliation(s)
- Dania Sitadewi
- School of Business and Management, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Gatot Yudoko
- School of Business and Management, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Liane Okdinawati
- School of Business and Management, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| |
Collapse
|
27
|
Guizani C, Trogen M, Zahra H, Pitkänen L, Moriam K, Rissanen M, Mäkelä M, Sixta H, Hummel M. Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometrics. CELLULOSE (LONDON, ENGLAND) 2021; 28:6797-6812. [PMID: 34720464 PMCID: PMC8550718 DOI: 10.1007/s10570-021-03923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cellulose can be dissolved with another biopolymer in a protic ionic liquid and spun into a bicomponent hybrid cellulose fiber using the Ioncell® technology. Inside the hybrid fibers, the biopolymers are mixed at the nanoscale, and the second biopolymer provides the produced hybrid fiber new functional properties that can be fine-tuned by controlling its share in the fiber. In the present work, we present a fast and quantitative thermoanalytical method for the compositional analysis of man-made hybrid cellulose fibers by using thermogravimetric analysis (TGA) in combination with chemometrics. First, we incorporated 0-46 wt.% of lignin or chitosan in the hybrid fibers. Then, we analyzed their thermal decomposition behavior in a TGA device following a simple, one-hour thermal treatment protocol. With an analogy to spectroscopy, we show that the derivative thermogram can be used as a predictor in a multivariate regression model for determining the share of lignin or chitosan in the cellulose hybrid fibers. The method generated cross validation errors in the range 1.5-2.1 wt.% for lignin and chitosan. In addition, we discuss how the multivariate regression outperforms more common modeling methods such as those based on thermogram deconvolution or on linear superposition of reference thermograms. Moreover, we highlight the versatility of this thermoanalytical method-which could be applied to a wide range of composite materials, provided that their components can be thermally resolved-and illustrate it with an additional example on the measurement of polyester content in cellulose and polyester fiber blends. The method could predict the polyester content in the cellulose-polyester fiber blends with a cross validation error of 1.94 wt.% in the range of 0-100 wt.%. Finally, we give a list of recommendations on good experimental and modeling practices for the readers who want to extend the application of this thermoanalytical method to other composite materials. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-021-03923-6.
Collapse
Affiliation(s)
- Chamseddine Guizani
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Mikaela Trogen
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Hilda Zahra
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Leena Pitkänen
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Kaniz Moriam
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Marja Rissanen
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Mikko Mäkelä
- VTT Technical Research Centre of Finland, Ltd, PO Box 1000, 02044 Espoo, Finland
| | - Herbert Sixta
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16300, 00076 Espoo, Finland
| |
Collapse
|
28
|
Bulota M, Sriubaite S, Michud A, Nieminen K, Hughes M, Sixta H, Hummel M. The fiber‐matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.50306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mindaugas Bulota
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
- Department of Polymer Chemistry and Technology Kaunas University of Technology Kaunas Lithuania
| | - Simona Sriubaite
- Department of Polymer Chemistry and Technology Kaunas University of Technology Kaunas Lithuania
| | - Anne Michud
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
| | - Kaarlo Nieminen
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
| | - Mark Hughes
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
| | - Herbert Sixta
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, School of Chemical Engineering Aalto University Aalto Finland
| |
Collapse
|
29
|
Stanescu MD. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14253-14270. [PMID: 33515405 DOI: 10.1007/s11356-021-12416-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The textile industry is a large source of pollution due to the production of raw materials (natural and synthetic fibers), preparation and finishing processes, as well as due to textile waste, especially the post-consumer waste. This paper is an attempt to change the perception concerning such waste. In the context of circular economy, textile waste has to be conceived as a source for carbon and energy. A new attitude is compulsory due to the increase of post-consumer waste quantity since the volume of textile consumption has lately increased. Fast fashion cycle and cheaper textile products having a shorter lifetime led to an increase of the quantity of post-consumer textile waste. Demands for pollution reduction generated the concern to upcycle the textile waste in order to recover, at least partially, the materials as well as the energy consumed for their manufacture, reducing accordingly the carbon and water footprints of these products,. The scarcity of raw materials and of fossil fuels, the high environmental impact of the simple disposal of waste, imposed a new policy regarding the transformation of the linear economy which characterizes today's textile industry into a circular one, leading to a lower environmental impact. This involves the valorization of post-consumer waste by recycling or at least by a partial recovery of the materials and energy spent for the manufacture of these products. A good management of post-consumer textile waste is mandatory for attaining a zero waste target. Some good practices in the field are presented by this paper.
Collapse
Affiliation(s)
- Michaela Dina Stanescu
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University, Elena Dragoi str. 2-4, 310330, Arad, Romania.
| |
Collapse
|
30
|
Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres. Carbohydr Polym 2020; 252:117133. [PMID: 33183592 DOI: 10.1016/j.carbpol.2020.117133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022]
Abstract
Cellulose-lignin composite fibres were spun from ionic liquid (IL) solutions by dry-jet wet spinning. Birch pre-hydrolysed Kraft (PHK) pulp and organosolv beech (BL) or spruce lignin (SL) were dissolved in the IL 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to prepare spinning dopes. Fibres with lignin concentrations of up to 50 % were spun successfully. The fibres were analysed focusing on important properties for the production of carbon fibres (CF). Due to the higher molar mass of the SL compared to the BL, SL showed higher stability in the spinning process, giving higher lignin content in the final fibres. The CF yield after carbonization increased with increasing lignin content. The higher carbon content of SL compared to BL, resulted in moderately higher CF yield of the SL fibres, compared to fibres with BL. Overall, the produced cellulose-lignin composite fibres show great potential as precursors for CF production.
Collapse
|
31
|
Sharma K, Khilari V, Chaudhary BU, Jogi AB, Pandit AB, Kale RD. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:227-234. [PMID: 32311640 DOI: 10.1016/j.wasman.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 05/23/2023]
Abstract
With the focus of industries shifting towards sustainable processing methods and the use of sustainable raw materials, reuse and recycling of polyester have gained a lot of momentum. In spite of considerable efforts, the utilization of polyester fiber waste has not yet found a strong foundation in textile processing. In this paper, waste polyester fibers obtained during the melt spinning process has been utilized by first dissolving it in an m-cresol solvent and later by chemical route polyester is regenerated on cotton leading to the preparation of cotton based composite fabric. The presence of polyester was confirmed using XRD, FTIR, and percent add on and SEM. Percent add on of 9.7% along with the doubling of tensile strength and enhanced thermal stability was observed. The results can make a way as one of the possibilities of utilizing polyester fiber waste.
Collapse
Affiliation(s)
- Kartikeya Sharma
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vishal Khilari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Babita U Chaudhary
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Arun B Jogi
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - A B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Ravindra D Kale
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
32
|
Teixeira MA, Paiva MC, Amorim MTP, Felgueiras HP. Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E557. [PMID: 32204521 PMCID: PMC7153368 DOI: 10.3390/nano10030557] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. Renewable, natural-origin compounds are gaining more relevance each day as potential alternatives to synthetic materials, since the former undesirable footprints in biomedicine, the environment, and the ecosystems are reaching concerning levels. Therefore, cellulose and its derivatives have been the object of numerous biomedical studies, in which their biocompatibility, biodegradability, and, most importantly, sustainability and abundance, have been determinant. A complete overview of the recently produced cellulose-containing nanofibrous meshes for wound healing applications was provided. Moreover, the current challenges that are faced by cellulose acetate- and nanocellulose-containing wound dressing formulations, processed by electrospinning, were also enumerated.
Collapse
Affiliation(s)
- Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal;
| | - M. Teresa P. Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| |
Collapse
|