1
|
Yang J, Wu Y, Shi J, Liu H, Liu Z, You Q, Li X, Cong L, Liu D, Liu F, Jiang Y, Lin N, Zhang W, Lin H. Correlative Effects of Carbon Support Structures and Surface Properties on ORR Catalytic Activities of Loaded Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49236-49248. [PMID: 39239667 DOI: 10.1021/acsami.4c07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
As a complex three-phase heterogeneous catalyst, the oxygen reduction reaction (ORR) catalyst activity is determined by the interfacial and surface structures and chemical state of the catalyst support. As a typical biomass carbon-based support, rice husk-based porous carbon (RHPC) has natural unique hierarchical porous structures, which easily regulate the microstructure and surface properties. This study explored the correlative effects of RHPC structure and surface properties on ORR catalytic activity through the typical modification methods, namely, alkali etching, high temperature, oxidation, and ball milling. The various factors for the joint effects are defined as the specific surface area, oxygen-containing functional groups, graphite edge defects, resistivity, and contact angle. The analysis of such joint influences is difficult to quantitatively evaluate due to the large number of experimental factors and small sample sizes. Partial least-squares (PLS) can better deal with such problems. Therefore, a PLS regression model was established to evaluate the relative weight of each factor on the catalytic activity for the RHPC-based support catalysts. The results reveal that the regression coefficients of four factors yield similar magnitude for the effect of the half-wave potential (E1/2). However, graphite edge defects had a more significant impact on the limiting diffusion current density (J) and electron transfer number (n). Furthermore, an optimal support named BM-RHPC-3 was prepared with more defects and oxygen-containing functional groups, which prepared Fe-NS/BM-RHPC-3 presenting the best ORR catalytic activity (E1/2 = 0.880 V, J of 5.15 mA cm-2), superior to Pt/C (E1/2 = 0.844 V, J of 4.99 mA cm-2). The statistical regression model is validated with a relative error of less than 5% between predicted and true values for analyzing RHPC-based ORR catalysts' catalytic performance. It shows the feasibility of experiment-informed learning for data-driven material discovery and design.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yupeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Shi
- School of Chemical Engineering & New Energy Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Huimin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiqiang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qinwen You
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinxin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linchuan Cong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Debo Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fangbing Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Nan Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenli Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering & Light Industry, Guangdong University of Technology GDUT, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Arrieta A, Nuñez de la Rosa YE, Pestana S. Cashew Nut Shell Waste Derived Graphene Oxide. Molecules 2024; 29:4168. [PMID: 39275016 PMCID: PMC11397352 DOI: 10.3390/molecules29174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The particular properties of graphene oxide (GO) make it a material with great technological potential, so it is of great interest to find renewable and eco-friendly sources to satisfy its future demand sustainably. Recently, agricultural waste has been identified as a potential raw material source for producing carbonaceous materials. This study explores the potential of cashew nut shell (CNS), a typically discarded by-product, as a renewable source for graphene oxide synthesis. Initially, deoiled cashew nut shells (DCNS) were submitted to pyrolysis to produce a carbonaceous material (Py-DCNS), with process optimization conducted through response surface methodology. Optimal conditions were identified as a pyrolysis temperature of 950 °C and a time of 1.8 h, yielding 29.09% Py-DCNS with an estimated purity of 82.55%, which increased to 91.9% post-washing. Using a modified Hummers method, the Py-DCNS was subsequently transformed into graphene oxide (GO-DCNS). Structural and functional analyses were carried out using FTIR spectroscopy, revealing the successful generation of GO-DCNS with characteristic oxygen-containing functional groups. Raman spectroscopy confirmed the formation of defects and layer separations in GO-DCNS compared to Py-DCNS, indicative of effective oxidation. The thermogravimetric analysis demonstrated distinct thermal decomposition stages for GO-DCNS, aligning with the expected behavior for graphene oxide. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) further corroborated the morphological and compositional transformation from DCNS to GO-DCNS, showcasing reduced particle size, increased porosity, and significant oxygen functional groups. The results underscore the viability of cashew nut shells as a sustainable precursor for graphene oxide production, offering an environmentally friendly alternative to conventional methods. This innovative approach addresses the waste management issue associated with cashew nut shells and contributes to developing high-value carbon materials with broad technological applications.
Collapse
Affiliation(s)
- Alvaro Arrieta
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| | - Yamid E Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia
| | - Samuel Pestana
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| |
Collapse
|
3
|
Zhang H, Liu X, Han J, Niu W, Wang B, Wu Z, Wei Z, Zhu Y, Guo Q, Wang X. Acid-resistant chitosan/graphene oxide adsorbent for Cu 2+ removal: The role of mixed cross-linking and amino-functionalized. Int J Biol Macromol 2024; 273:133096. [PMID: 38866267 DOI: 10.1016/j.ijbiomac.2024.133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Copper ions in wastewater pose a significant threat to human and ecological safety. Therefore, preparing macroscopic adsorbents with reusable and high adsorption performance is paramount. This paper used graphene oxide as the adsorbent and chitosan as the thickener. Additionally, a silane coupling agent was employed to enhance the acid resistance of chitosan, and amino-modification of graphene oxide was performed. Macroscopic adsorbents with high adsorption capacity were fabricated using 3D printing technology. The results show that all five proportions of inks exhibit good printability. Dissolution experiments revealed that all materials maintained structural integrity after 180 days across pH values. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) confirmed the successful preparation of the materials. Adsorption experiments showed that the best performing material ratio was 8 wt% graphene oxide and 7 wt% chitosan. Adsorption kinetics and isothermal adsorption experiments demonstrated that the adsorption process occurred via monolayer chemisorption. The adsorption process was attributed to strong electrostatic forces, van der Waals forces, and nitrogen/oxygen-containing functional group coordination. Cycling experiments showed that the material retained good adsorption performance after 6 cycles, suggesting its potential for practical heavy metal treatment applications.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou 730030, China.
| | - Xingmao Liu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianping Han
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Wenhui Niu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Baixiang Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhiguo Wu
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou 730030, China
| | - Zhiqiang Wei
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730030, China
| | - Qi Guo
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730030, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Liou TH, Huang JJ. Efficient Removal of Hazardous P-Nitroaniline from Wastewater by Using Surface-Activated and Modified Multiwalled Carbon Nanotubes with Mesostructure. TOXICS 2024; 12:88. [PMID: 38276723 PMCID: PMC10821441 DOI: 10.3390/toxics12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
P-nitroaniline (PNA) is an aniline compound with high toxicity and can cause serious harm to aquatic animals and plants. Multiwalled carbon nanotubes (MWCNTs) are a multifunctional carbon-based material that can be applied in energy storage and biochemistry applications and semiconductors as well as for various environmental purposes. In the present study, MWCNTs (CO2-MWCNTs and KOH-MWCNTs) were obtained through CO2 and KOH activation. ACID-MWCNTs were obtained through surface treatment with an H2SO4-HNO3 mixture. Herein, we report, for the first time, the various MWCNTs that were employed as nanoadsorbents to remove PNA from aqueous solution. The MWCNTs had nanowire-like features and different tube lengths. The nanotubular structures were not destroyed after being activated. The KOH-MWCNTs, CO2-MWCNTs, and ACID-MWCNTs had surface areas of 487, 484, and 80 m2/g, respectively, and pore volumes of 1.432, 1.321, and 0.871 cm3/g, respectively. The activated MWCNTs contained C-O functional groups, which facilitate PNA adsorption. To determine the maximum adsorption capacity of the MWCNTs, the influences of several adsorption factors-contact time, solution pH, stirring speed, and amount of adsorbent-on PNA adsorption were investigated. The KOH-MWCNTs had the highest adsorption capacity, followed by the CO2-MWCNTs, pristine MWCNTs, and ACID-MWCNTs. The KOH-MWCNTs exhibited rapid PNA adsorption (>85% within the first 5 min) and high adsorption capacity (171.3 mg/g). Adsorption isotherms and kinetics models were employed to investigate the adsorption mechanism. The results of reutilization experiments revealed that the MWCNTs retained high adsorption capacity after five cycles. The surface-activated and modified MWCNTs synthesized in this study can effectively remove hazardous pollutants from wastewater and may have additional uses.
Collapse
Affiliation(s)
- Tzong-Horng Liou
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan District, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
| | - Jyun-Jie Huang
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan District, New Taipei City 24301, Taiwan
| |
Collapse
|
5
|
Aizudin M, Fu W, Pottammel RP, Dai Z, Wang H, Rui X, Zhu J, Li CC, Wu XL, Ang EH. Recent Advancements of Graphene-Based Materials for Zinc-Based Batteries: Beyond Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305217. [PMID: 37661581 DOI: 10.1002/smll.202305217] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Graphene-based materials (GBMs) possess a unique set of properties including tunable interlayer channels, high specific surface area, and good electrical conductivity characteristics, making it a promising material of choice for making electrode in rechargeable batteries. Lithium-ion batteries (LIBs) currently dominate the commercial rechargeable battery market, but their further development has been hampered by limited lithium resources, high lithium costs, and organic electrolyte safety concerns. From the performance, safety, and cost aspects, zinc-based rechargeable batteries have become a promising alternative of rechargeable batteries. This review highlights recent advancements and development of a variety of graphene derivative-based materials and its composites, with a focus on their potential applications in rechargeable batteries such as LIBs, zinc-air batteries (ZABs), zinc-ion batteries (ZIBs), and zinc-iodine batteries (Zn-I2 Bs). Finally, there is an outlook on the challenges and future directions of this great potential research field.
Collapse
Affiliation(s)
- Marliyana Aizudin
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Wangqin Fu
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Rafeeque Poolamuri Pottammel
- Department of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, India, 695551, India
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230001, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| |
Collapse
|
6
|
Castro-Ladino JR, Cuy-Hoyos CA, Prías-Barragán JJ. Basic physical properties and potential application of graphene oxide fibers synthesized from rice husk. Sci Rep 2023; 13:17967. [PMID: 37864095 PMCID: PMC10589357 DOI: 10.1038/s41598-023-45251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
The synthesis method and correlation between compositional, vibrational, and electrical properties in graphene oxide fibers (GOF) are presented and discussed here, as well as a potential application through the development of a heater device based on GOF. The GOF samples were synthesized from rice husk (RH), via a thermal decomposition method, employing an automated pyrolysis system with a controlled nitrogen atmosphere, varying carbonization temperature (TCA) from 773 to 1273 K. The compositional analysis shows peaks in the XPS spectrum associated with C1s and O1s, with presence of hydroxyl and epoxy bridges; the oxide concentration (OC) of samples varied from 0.21 to 0.28, influenced by TCA. The GOF samples exhibit fiber morphology, vibrational characteristics which are typical of graphene oxide multilayers, and electrical behavior that scales with OC. The electrical response shows that OC decreases and increases electrical conductivity at the polycrystalline phase, possibly attributed to the desorption of some oxides and organic compounds. In addition, physical correlations between OC and its vibrational response showed that decreasing OC increases edge defect density and decreases crystal size as a result of thermal decomposition processes. The correlation between OC and physical properties suggests that by controlling the OC in GOF, it was possible to modify vibrational and electrical properties of great interest in fabrication of advanced electronics; consequently, we show a potential application of GOF samples by developing an electrically controlled heater device.
Collapse
Affiliation(s)
- J R Castro-Ladino
- Grupo de Investigación en Tecnologías Emergentes (GITEM), Universidad de los Llanos, Villavicencio, 500001, Colombia
- Interdisciplinary Institute of Sciences, Doctoral Program in Physical Sciences and Electronic Instrumentation Technology Program at Universidad del Quindío, Armenia, 630004, Colombia
| | - C A Cuy-Hoyos
- Grupo de Investigación en Tecnologías Emergentes (GITEM), Universidad de los Llanos, Villavicencio, 500001, Colombia
| | - J J Prías-Barragán
- Interdisciplinary Institute of Sciences, Doctoral Program in Physical Sciences and Electronic Instrumentation Technology Program at Universidad del Quindío, Armenia, 630004, Colombia.
| |
Collapse
|
7
|
Bhattacharya N, Cahill DM, Yang W, Kochar M. Graphene as a nano-delivery vehicle in agriculture - current knowledge and future prospects. Crit Rev Biotechnol 2023; 43:851-869. [PMID: 35815813 DOI: 10.1080/07388551.2022.2090315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Graphene has triggered enormous interest in, and exploration of, its applications in diverse areas of science and technology due to its unique properties. While graphene has displayed great potential as a nano-delivery system for drugs and biomolecules in biomedicine, its application as a nanocarrier in agriculture has only begun to be explored. Conventional fertilizers and agricultural delivery systems have a number of disadvantages, such as: fast release of the active ingredient, low delivery efficiency, rapid degradation and low stability that often leads to their over-application and consequent environmental problems. Advanced nano fertilizers with high carrier efficiency and slow and controlled release are now considered the gold standard for promoting agricultural sustainability while protecting the environment. Graphene's attractive properties include large surface area, chemical stability, mechanical stability, tunable surface chemistry and low toxicity making it a promising material on which to base agricultural delivery systems. Recent research has demonstrated considerable success in the use of graphene for agricultural applications, including its utilization as a delivery vehicle for plant nutrients and crop protection agents, as well as in post-harvest management of crops. This review, therefore, presents a comprehensive overview of the current status of graphene-based nanocarriers in agriculture. Additionally, the review outlines the surface functionalization methods used for effective molecular delivery, various strategies for nano-vehicle design and the underlying features necessary for a graphene-based agro-delivery system. Finally, the review discusses directions for further research in optimization of graphene-based nanocarriers.
Collapse
Affiliation(s)
- Nandini Bhattacharya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gual Pahari, Haryana, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mandira Kochar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gual Pahari, Haryana, India
| |
Collapse
|
8
|
Roy C, Chowdhury D, Sanfui MDH, Roy JSD, Mitra M, Dutta A, Chattopadhyay PK, Singha NR. Solid waste collagen-associated fabrication of magnetic hematite nanoparticle@collagen nanobiocomposite for emission-adsorption of dyes. Int J Biol Macromol 2023; 242:124774. [PMID: 37196727 DOI: 10.1016/j.ijbiomac.2023.124774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The strategic utilization of hazardous particulate waste in eliminating environmental pollution is an important research hotspot. Herein, abundantly available hazardous solid collagenic waste of leather industry is converted into stable hybrid nanobiocomposite (HNP@SWDC) comprising magnetic hematite nanoparticles (HNP) and solid waste derived collagen (SWDC) via co-precipitation method. The structural, spectroscopic, surface, thermal, and magnetic properties; fluorescence quenching; dye selectivity; and adsorption are explored via microstructural analyzes of HNP@SWDC and dye adsorbed-HNP@SWDC using 1H nuclear magnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared (FTIR), X-ray photoelectron, and fluorescence spectroscopies; thermogravimetry; field-emission scanning electron microscopy; and vibrating-sample magnetometry (VSM). The intimate interaction of SWDC with HNP and elevated magnetic properties of HNP@SWDC are apprehended via amide-imidol tautomerism associated nonconventional hydrogen bondings, disappearance of goethite specific -OH def. in HNP@SWDC, and VSM. The as-fabricated reusable HNP@SWDC is employed for removing methylene blue (MB) and rhodamine B (RhB). Chemisorption of RhB/MB in HNP@SWDC via ionic, electrostatic, and hydrogen bonding interactions alongside dimerization of dyes are realized by ultraviolet-visible, FTIR, and fluorescence studies; pseudosecond order fitting; and activation energies. The adsorption capacity = 46.98-56.14/22.89-27.57 mg g-1 for RhB/MB is noted using 0.01 g HNP@SWDC within 5-20 ppm dyes and 288-318 K.
Collapse
Affiliation(s)
- Chandan Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India; Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - M D Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
9
|
Li Z, Zheng Z, Li H, Xu D, Li X, Xiang L, Tu S. Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1524. [PMID: 37050150 PMCID: PMC10096505 DOI: 10.3390/plants12071524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Rice husk biochar (RHB) is a low-cost and renewable resource that has been found to be highly effective for the remediation of water and soil environments. Its yield, structure, composition, and physicochemical properties can be modified by changing the parameters of the preparation process, such as the heating rate, pyrolysis temperature, and carrier gas flow rate. Additionally, its specific surface area and functional groups can be modified through physical, chemical, and biological means. Compared to biochar from other feedstocks, RHB performs poorly in solutions with coexisting metal, but can be modified for improved adsorption. In contaminated soils, RHB has been found to be effective in adsorbing heavy metals and organic matter, as well as reducing pollutant availability and enhancing crop growth by regulating soil properties and releasing beneficial elements. However, its effectiveness in complex environments remains uncertain, and further research is needed to fully understand its mechanisms and effectiveness in environmental remediation.
Collapse
Affiliation(s)
- Zheyong Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Zhiwei Zheng
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Xing Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Research Centre for Environment Pollution and Remediation, Wuhan 430070, China
| |
Collapse
|
10
|
Ndagijimana P, Liu X, Xu Q, Li Z, Pan B, Liao X, Wang Y. Nanoscale zero-valent iron/silver@activated carbon-reduced graphene oxide: Efficient removal of trihalomethanes from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156228. [PMID: 35643141 DOI: 10.1016/j.scitotenv.2022.156228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
AC-supported nanoscale zero-valent iron composites (nZVI/AC) exhibit significant environmental implications for trihalomethanes (THMs)-contaminated water remediation. To improve the adsorption and degradation capability of AC, herein, a composite (nZVI/Ag@AC-RGO) consisting of AC, reduced graphene oxide (RGO), nanoscale zero-valent iron (nZVI), and silver (Ag) was synthesized and characterized using several techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, and X-ray photoelectron spectroscopy (XPS). The analysis of textural and morphological structures showed that a tightly-attached RGO film, amorphous iron, and weak crystal silver nanoparticles with a size of 20-30 nm were evenly immobilized on the support. Specific surface area increased by 19.12% after supporting RGO, while it decreased after supporting nZVI and Ag due to the partial blockage of micropores. The Fe surface was concurrently coated by iron oxides (Fe2O3, FeOOH) and Ag. THMs were eliminated through multilayer reaction processes. The values of the adsorption constant (KF) of chloroform (CHCl3), dichlorobromoethane (CHBrCl2), dibromochloroethane (CHBr2Cl), and tribromomethane (CHBr3) adsorbed by nZVI/Ag@AC-RGO increased by 34.4, 33.7, 81.6, and 67.3%, respectively, compared to pristine AC. THMs with more Br atoms exhibited better removal efficiency and adsorption capacity, along with a higher oxidation degree of the Fe surface. CHBrCl2 and CHBr2Cl mainly decomposed into chloromethane (CH3Cl) and dichloromethane (CH2Cl2), and CHBr3 and CHCl3 primarily degraded into dibromomethane (CH2Br2) and CH2Cl2, respectively, along with generating Cl- and Br-. Conclusively, THMs-contaminated water could be remediated by coupling AC pre-enrichment and the reactivity of nZVI/Ag.
Collapse
Affiliation(s)
- Pamphile Ndagijimana
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xuejiao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qingxin Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Beibei Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Liao
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Manpetch P, Singhapong W, Jaroenworaluck A. Synthesis and characterization of a novel composite of rice husk-derived graphene oxide with titania microspheres (GO-RH/TiO 2) for effective treatment of cationic dye methylene blue in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63917-63935. [PMID: 35467189 DOI: 10.1007/s11356-022-20176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) was synthesized utilizing rice husk (RH) as the starting raw material via a modified Hummers' method. Ground pencil leads were used as a control powder of the starting raw material to monitor the consistency of the synthesis method. TiO2 microspheres were synthesized via a precipitated method using the pluronic F127 solution as the pore template. GO derived from RH (GO-RH) was composited with TiO2 microspheres as GO-RH/TiO2 composites by an impregnation method with weight ratios of 3:1, 2:2, and 1:3. Characterized results revealed GO-RH formed a ternary phase material of graphene oxide, graphite oxide, and silica. A typical microstructure of the calcined TiO2 microspheres was found as the agglomerated anatase nanoparticles. Furthermore, the composites belong to large surface areas and numerous oxygen-containing functionalities on their surfaces. Removal efficiencies of cationic dye methylene blue (MB) from aqueous solutions by the composites, GO-RH and TiO2, were studied under UV illumination for 180 min. Due to the effective combination of adsorption and photodegradation for the MB removal, the composites provided the higher efficiencies (99-100%) faster than those of GO-RH and TiO2 and could be reused at least 4 times. Finally, a mechanism of the MB removal by the composites was proposed.
Collapse
Affiliation(s)
- Panlekha Manpetch
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wadwan Singhapong
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Angkhana Jaroenworaluck
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
12
|
Highly Sensitive, Cost‐Effective, and Flexible SERS Substrate Based on Green Synthesized GO/rGO for Pesticide Detection**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Liou TH, Wang SY, Lin YT, Yang S. Sustainable utilization of rice husk waste for preparation of ordered nanostructured mesoporous silica and mesoporous carbon: Characterization and adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Koyuncu DDE, Okur M. Investigation of dye removal ability and reusability of green and sustainable silica and carbon-silica hybrid aerogels prepared from paddy waste ash. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Isosteric Enthalpy Behavior of CO2 Adsorption on Micro-Mesoporous Materials: Carbon Microfibers (CMFs), SBA-15, and Amine-Functionalized SBA-15. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The isosteric enthalpy of adsorption (Δadsh˙) of CO2 in three different micro and mesoporous materials was evaluated in this work. These materials were a microporous material with functional groups of nitrogen and oxygen (CMFs, carbon microfibers), a mesoporous material with silanol groups (SBA-15, Santa Barbara Amorphous), and a mesoporous material with amine groups (SBA-15_APTES, SBA-15 amine-functionalized with (3-Aminopropyl)-triethoxysilane). The temperature interval explored was between 263 K and 303 K, with a separation of 5 K between each one, so a total of nine CO2 isotherms were obtained. Using the nine isotherms and the Clausius–Clapeyron equation, the reference value for Δadsh˙ was found. The reference value was compared with those Δadsh˙ obtained, considering some arrangement of three or five CO2 isotherms. Finally, it was found that at 298 K and 1 bar, the total amount of CO2 adsorbed is 2.32, 0.53, and 1.37 mmol g−1 for CMF, SBA-15, and SBA-15_APTES, respectively. However, at a coverage of 0.38 mmol g−1, Δadsh˙ is worth 38, 30, and 29 KJ mol−1 for SBA-15_APTES, CMFs, and SBA-15, respectively. So, physisorption predominates in the case of CMF and SBA-15 materials, and the Δadsh˙ values significantly coincide regardless of whether the isotherms arrangement used was three or five. Meanwhile, in SBA-15_APTES, chemisorption predominates as a consequence of the arrangements used to obtain Δadsh˙. This happens in such a way that the use of low temperatures (263–283 K) tends to produce higher Δadsh˙ values, while the use of high temperatures (283–303 K) decreases the Δadsh˙ values.
Collapse
|
16
|
Utilization of Rice Husk Ash in the Preparation of Graphene-Oxide-Based Mesoporous Nanocomposites with Excellent Adsorption Performance. MATERIALS 2021; 14:ma14051214. [PMID: 33806672 PMCID: PMC7961793 DOI: 10.3390/ma14051214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Rice husk is an agricultural biomass waste. Burning rice husks in an oxygenic atmosphere releases thermal energy and produces ash that is rich in silica. Rice husk ash (RHA) can be used as a sustainable source of silica for producing high-value-added products. In this study, mesostructural graphene oxide (GO)/SBA-15, a graphene-based hybrid material, was synthesized from RHA. The materials are inspected by Fourier transform infrared spectrometer, Raman spectrometer, field-emission scanning electron microscopy, transmission electron microscopy, surface area analyzer, and X-ray diffraction analyzer. Studies have revealed that GO/SBA-15 possesses various oxygen functional groups that are helpful for dye adsorption. The material consisted of high pore volume of 0.901 cm3/g, wide pores of diameter 11.67 nm, and high surface area of 499 m2/g. Analysis of the methylene blue (MB) adsorption behavior of GO/SBA-15 composites revealed that their adsorption capacity depended on the gelation pH, GO content, adsorbent dosage, and initial dye (MB) concentration. The highest adsorption capacity of GO/SBA-15 was 632.9 mg/g. Furthermore, the adsorption isotherms and kinetics of GO/SBA-15 were investigated. This study demonstrated the great advantage of treated RHA and the potential of this material for use in organic dye adsorption.
Collapse
|