1
|
Feng K, Wang Q, Tao K, Zhang Y, Wang Y, Yuan J, Li Z, Hugueny B, Erős T. Ecological threshold responses of fish communities to lake eutrophication. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125599. [PMID: 40306206 DOI: 10.1016/j.jenvman.2025.125599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Identifying ecological thresholds, which are critical points at which ecosystems undergo abrupt shifts in structure and function, has become a cornerstone of conservation and management strategies. This study introduces a novel framework, the "ecological threshold spectrum", by integrating exploration, inference, and validation approaches, to address the limitations of existing methods. The effectiveness of this analytical framework is demonstrated through a case study on fish communities in shallow eutrophic lakes located in the middle and lower reaches of the Yangtze River. We analyzed phosphorus loading as a key driver of fish community and identified three critical ranges of total phosphorus (TP) using Gradient Forest, Threshold Indicator Taxa Analysis and Boosted Regression Trees. The first range, TP < 0.08 mg L-1, is characterized by submerged macrophyte dominance and high fish biodiversity. The second range, TP between 0.08 and 0.12 mg L-1, represents a transitional phase with significant species and diversity loss. The third range, TP between 0.12 and 0.17 mg L-1, is dominated by pollution-tolerant species and associated with severe turbidity. We illustrate how the different analytical methods complement one another by capturing both species-specific and community-level responses to environmental gradients, thereby enabling more robust threshold identifications based on multiple response variables. Our framework addresses uncertainties in ecological threshold detection by combining the strengths of multiple methods while accounting for data quality, noise, and species-specific masking effects. The findings emphasize the importance of TP control in maintaining ecological stability and inform targeted restoration strategies at different eutrophication stages. Overall, the ecological threshold spectrum framework offers new insights into state transitions and provides a robust, practical approach to sustainable management.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China; HUN-REN Balaton Limnological Research Institute, Klebelsberg K. u. 3, Tihany, H-8237, Hungary; National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Tihany, Hungary
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China.
| | - Kun Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China
| | - Yahan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China
| | - Yuedong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China
| | - Jing Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China
| | - Zhongjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan, 430072, Hubei, China
| | - Bernard Hugueny
- Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, CNRS 5174, IRD 253, Toulouse, France
| | - Tibor Erős
- HUN-REN Balaton Limnological Research Institute, Klebelsberg K. u. 3, Tihany, H-8237, Hungary; National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
2
|
Wang P, Wang J, Zhang S, Fan J, Bai X, Zhang P, Jiao Z, Zhao B, Ren X. Study on the mechanism of Phoslock's impact on nitrogen migration at the sediment-water interface. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1253-1265. [PMID: 40293365 DOI: 10.1039/d5em00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Phoslock has a wide range of applications in regulating the release of endogenous phosphorus. Nevertheless, the knowledge regarding its influence on the nitrogen migration process at the sediment-water interface (SWI) remains rather limited. Therefore, this study explores Phoslock's impact on NO3--N and NH4+-N migration at the SWI in Lake Xuanwu and Lake Li using DGT and Rhizon samplers. The results revealed that at 30 °C, Phoslock increased bioavailable NO3--N concentrations in the overlying water compared to the control group in both lakes. However, there were no significant differences in bioavailable NH4+-N concentrations between experimental and control groups in the overlying water at different temperatures. At 30 °C, the downward diffusion intensity of bioavailable NO3--N in the overlying waters of Lake Xuanwu was about 41.59% and 45.76% higher under aerobic and anaerobic conditions (p < 0.05), respectively, and 10.64% and 184.33% higher in Lake Li, compared to the control group. At 15 °C, compared to the control groups, the overall diffusion intensity in the experimental groups of both lakes showed an increasing trend, but the differences were not significant. Phoslock reduced the upward diffusion flux of bioavailable NH4+-N at the SWI of Lake Xuanwu and Lake Li. The inhibitory effect on the release flux of bioavailable NH4+-N increased as the temperature decreased, but the impact on dissolved oxygen (DO) was minimal. For example, at 30 °C, the addition of Phoslock in Lake Xuanwu reduced the upward diffusion flux of bioavailable NH4+-N by approximately 23.4% and 22.01% under aerobic and anaerobic conditions, respectively. At 15 °C, the reduction was approximately 33.52% and 36.25%, respectively. Phoslock also decreased the abundance of sediment nitrification functional genes (AOA and AOB) and enhanced the ability of sediments to replenish bioavailable NO3--N into interstitial water, while the ability to replenish bioavailable NH4+-N decreased. According to the diffusion direction and intensity of bioavailable NO3--N and NH4+-N at the SWI, the addition of Phoslock makes more bioavailable nitrogen in the overlying water accumulate in the sediments.
Collapse
Affiliation(s)
- Penglong Wang
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Jiehua Wang
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Songwei Zhang
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Jinyue Fan
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Xiuling Bai
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Pingping Zhang
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Zhiqiang Jiao
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Bing Zhao
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Xiubo Ren
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Kalra I, Stewart BP, Florea KM, Smith J, Webb EA, Caron DA. Temporal and spatial dynamics of harmful algal bloom-associated microbial communities in eutrophic Clear Lake, California. Appl Environ Microbiol 2025; 91:e0001125. [PMID: 40152608 PMCID: PMC12016506 DOI: 10.1128/aem.00011-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Clear Lake is a large, natural eutrophic lake located in northern California, United States. Persistent, toxic cyanobacterial blooms have been reported in the lake since 2011. However, our understanding of the spatiotemporal distribution of toxin-producing genera and their interaction with the biotic and abiotic environment is limited. Moreover, few studies have addressed how the co-occurring microbial communities respond to these toxic cyanobacterial blooms. Using multi-domain 16S/18S rRNA gene amplicon sequencing, a strong seasonal succession within the cyanobacterial and co-occurring eukaryotic assemblage was identified, which was primarily explained by variation in total phosphorus (~30%, P < 0.001) and temperature (~15%, P < 0.01). Cyanobacterial seasonal succession was often initiated by proliferation of diazotrophs (Dolichospermum and Nodularia) with concomitant increases in total nitrogen, followed by blooms of non-diazotrophs, such as Microcystis, Limnothrix, and Planktothrix. The picocyanobacterium Cyanobium, previously undocumented in the lake, was a dominant summer taxon in the western part of Clear Lake, accounting for ~45%-80% relative abundance of the cyanobacterial reads. Seasonal succession within the eukaryotic assemblage was influenced by photosynthetic chlorophytes and diatoms, as well as mixotrophic ciliates and cryptophytes. Among all toxin-producing cyanobacterial genera, Microcystis abundance was most strongly correlated with microcystin concentrations (P < 0.001), both of which appeared to influence co-occurring eukaryotes. Finally, using putative relationships based on correlation of sequence abundance and environmental variables, several potential grazers of Microcystis were identified, including cyclopoid copepods and Cryptomonas. These correlations need further confirmation and experimental work to validate the nature of the relationships.IMPORTANCEClear Lake is an important habitat for fish and wildlife, which also provides a myriad of human benefits, such as recreation, irrigation, and drinking water. Moreover, the lake is vital for tribal tradition and cultural practices. However, since the last decade, the lake has experienced recurring harmful algal blooms with toxin levels that frequently exceed California voluntary guidance levels. These high toxin concentrations pose a substantial threat to the residents, visitors, and tribal sustenance fishing and beneficial uses. However, significant gaps remain in our understanding of these toxic algal bloom dynamics and their interaction with the abiotic and biotic environments. This study characterized the seasonal and spatial patterns in the distribution of bloom-causing cyanobacteria and identified Microcystis as the major toxin producer in Clear Lake. Additionally, the co-occurring bacterial and eukaryotic microbial communities were also characterized, and their potential interactions with the cyanobacterial assemblage were identified and discussed.
Collapse
Affiliation(s)
- Isha Kalra
- University of Southern California, Los Angeles, California, USA
| | | | - Kyra M. Florea
- University of Southern California, Los Angeles, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Eric A. Webb
- University of Southern California, Los Angeles, California, USA
| | - David A. Caron
- University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Zhang J, Jiang H, Li W, Li Y, Zhang W, Pan K. Understanding nitrate dynamics in urbanized and forested river ecosystems: A study integrating natural-abundance and paired isotopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125073. [PMID: 40120453 DOI: 10.1016/j.jenvman.2025.125073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Nitrate pollution in river ecosystems poses significant global environmental and public health challenges. However, the underlying drivers behind the elevated nitrate concentrations within river systems remain unclear. This study employed natural abundance isotopes combined with 15N-pairing techniques to elucidate the origins and transformation pathways of nitrate in two contrasting river ecosystems: a heavily urbanized river and a minimally disturbed forested river. Results revealed that domestic sewage was the dominant nitrate source in both rivers, contributing 56.9 % in the urban river and 37.8 % in the forested river. Denitrification was identified as the primary nitrate removal process, although its efficiency was constrained in the urban river due to excessive nitrate inputs and limited in-stream removal capacity. Furthermore, soil denitrification was largely regulated by moisture. The elevated nitrate loadings within urban river were attributed to substantial domestic sewage inputs coupled with limited nitrate removal capabilities. These findings highlight the impact of urbanization on nitrate dynamics and underscore the urgent need for integrated management strategies. Effective measures, such as upgrading wastewater treatment infrastructure, preserving riparian vegetation, and implementing nutrient reduction programs, are critical for mitigating nitrate pollution and enhancing water quality in both urban and natural river systems. This study provides insights applicable to riverine nitrogen management globally, contributing to the sustainable development of aquatic ecosystems.
Collapse
Affiliation(s)
- Jian Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wentao Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Lawson GM, Young JL, Aanderud ZT, Jones EF, Bratsman S, Daniels J, Malmfeldt MP, Baker MA, Abbott BW, Daly S, Paerl HW, Carling G, Brown B, Lee R, Wood RL. Nutrient limitation and seasonality associated with phytoplankton communities and cyanotoxin production in a large, hypereutrophic lake. HARMFUL ALGAE 2025; 143:102809. [PMID: 40032438 DOI: 10.1016/j.hal.2025.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Though freshwater harmful algal blooms have been described and studied for decades, several important dynamics remain uncertain, including the relationships among nutrient concentrations, phytoplankton growth, and cyanotoxin production. To identify when and where nutrients limit phytoplankton, cyanobacteria, and cyanotoxins, we conducted in situ bioassay studies. We added nitrogen (N), phosphorus (P), or N + P across various seasons in water collected from three locations across Utah Lake, one of the largest freshwater lakes in the western U.S. This shallow, hypereutrophic lake provides a powerful testbed for quantifying nutrient-growth-toxin interactions. We assessed a range of parameters over time, including photopigment concentrations, phytoplankton abundance (cell counts), cyanotoxins, and nutrient concentrations. Despite high background nutrient concentrations in lake water, phytoplankton abundance and composition were strongly affected by nutrient addition. Phosphorus limitation was more common in the spring, with N limitation and N + P limitation becoming more common in the fall. Nutrient additions were positively associated with cyanobacteria (Microcystis, Aphanocapsa, Dolichospermum, Merismopedia, Aphanizomenon spp.), eukaryotes (Aulacoseira, Desmodesmus spp.), and two taxonomical categories of phytoplankton (i.e., unicellular and colonial green algae). When detected, anatoxin-a was positively associated with Aphanizomenon and negatively associated with Microcystis spp. However, overall cyanotoxin concentrations were not associated with cyanobacterial cell density but varied seasonally. These findings highlight the importance of considering seasonal nutrient availability dynamics and provide insights into specific nutrient targets, species, and cyanotoxins that play a significant role in the health and management of similar eutrophic lake environments around the world.
Collapse
Affiliation(s)
- Gabriella M Lawson
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Jakob L Young
- Brigham Young University, Department of Biology, Provo, UT, USA
| | - Zachary T Aanderud
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Erin F Jones
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Samuel Bratsman
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Jonathan Daniels
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | | | - Michelle A Baker
- Utah State University, Department of Biology and the Ecology Center, Logan, UT, USA
| | - Benjamin W Abbott
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Scott Daly
- Utah Division of Water Quality, Utah Department of Environmental Quality, Salt Lake, UT, USA
| | - Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences Morehead City, NC, USA
| | - Greg Carling
- Brigham Young University, Department of Geological Sciences, Provo, UT, USA
| | - Brian Brown
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Raymond Lee
- University of Wisconsin-Superior, Department of Natural Sciences, Superior, WI, USA
| | - Rachel L Wood
- Brigham Young University, Department of Biology, Provo, UT, USA.
| |
Collapse
|
6
|
Nath P, Borah D, Paul P, Rout J. Integrated biorefinery approach for sustainable production of biodiesel, bioplastics and high value bioproducts from a bloom forming alga, Botryococcus braunii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178599. [PMID: 39855116 DOI: 10.1016/j.scitotenv.2025.178599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study. The study envisages the utilisation of algal blooms in freshwater ecosystems for the production of biodiesel and high value bioproducts through an integrated biorefinery approach. During the peak bloom, the algal cell densities reached up to 3.3 × 106 colonies L-1 with significant shift in water quality due to high nutrient uptake. Gas chromatography-mass spectroscopic analysis revealed high concentration of saturated and monounsaturated fatty acids, particularly hexadecanoic acid (C16:0) and 9-octadecenoic acid (C18:1) which are essential for stable, energy-rich biodiesel production. Hydrocarbons including squalene, botryococcenes, and botryococcane, produced by this alga have significant industrial applications. The high polyhydroxybutyrate (PHB) content in the alga emphasises its potential for sustainable bioplastic production. Growth conditions, lipid content, and biochemical composition of B. braunii were investigated. Algal blooms can provide a sustainable and economically viable source of biofuel with high value co-products. This approach not only contributes to renewable energy solutions through valorising a waste bioresource but in combination with other mass cultivation strategies can also offer a means to sustainably manage the impact of algal blooms on aquatic ecosystems.
Collapse
Affiliation(s)
- Pushpita Nath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Dharitri Borah
- Department of Environmental Science, Arunachal University of Studies, Namsai 792103, Arunachal Pradesh, India
| | - Puja Paul
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
7
|
Kong J, Zhou Z, Xie R, Cao W. Tracing the source and behaviour of sulphate in karst reservoirs, using stable isotopes and Bayesian isotopic-mixing models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177994. [PMID: 39675293 DOI: 10.1016/j.scitotenv.2024.177994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Increases in sulphate concentrations in natural water bodies can lead to the deterioration of water quality. Human activities, such as coal mining and agricultural fertilisation, can generate sulphate, which can enter water bodies through surface runoff or underground pipelines. Owing to the widespread distribution of coal-bearing strata and an intensification of industrial and agricultural activities, the Pingzhai Reservoir is increasingly at risk of sulphate pollution. In this study, 42 water samples were collected from the Pingzhai Reservoir in April (normal season), July (wet season), and December (dry season) of 2022. Additionally, two precipitation samples, two sewage samples, and two acidic mine drainage samples were collected. Using hydrochemistry, multiple isotopes (δ34SSO4, δ18OSO4, δ13CDIC, and δ18OH2O) and Bayesian isotopic-mixing model methods, we qualitatively and quantitatively determined the source, contribution proportion, and behaviour of SO42- in the Pingzhai Reservoir watershed and evaluated the uncertainty of the estimated results. Isotope analysis and the Bayesian isotope-mixing model results indicated that the sources of SO42- in the Pingzhai Reservoir were coal sulphides and organic sulphur oxidation (64.2 %), soil organic sulphur (18.7 %), sewage (9.9 %), and agricultural sulphur fertiliser (7.2 %). The characteristics of karst landforms (thin soil that is easily eroded), combined with periodic fluctuations in water level (hydrofluctuation belts) in reservoirs, resulted in the release of organic matter from soil to water. The proportion of SO42- sources of coal sulphide and organic sulphur oxidation in the river was lower than that in the reservoir area, whereas the proportion of the SO42- sources of soil organic sulphur, sewage, and agricultural sulphur fertiliser was greater than that in the reservoir area. Isotope evidence and the aerobic conditions in water indicated that bacterial sulphate reduction processes did not play a major role. The uncertainty index (UI90) indicated that the contributions of agricultural sulphur fertiliser and sewage manure to SO42- were relatively constant. This study provides a reference for the protection of water environments and for the development of water pollution control strategies in the karst areas of southwestern China.
Collapse
Affiliation(s)
- Jie Kong
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China; The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Zhongfa Zhou
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China; The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China.
| | - Rukai Xie
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China; The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Weitang Cao
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China; The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China; Guiyang New World School, Guiyang 550081, China
| |
Collapse
|
8
|
Han Y, Zhang Y, He H, Ning X, Zhang L, Li K. External nitrogen influxes hinder the efficacy of lanthanum-modified bentonite (LMB) on phosphorus and algae control in shallow lakes. ENVIRONMENTAL RESEARCH 2025; 264:120364. [PMID: 39547570 DOI: 10.1016/j.envres.2024.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Regulating internal and external phosphorus (P) holds a predominant position in eutrophication management of lakes and other water bodies, with less emphasis on controlling nitrogen (N) due to the presence of N2-fixing cyanobacteria. Nonetheless, external N influxes may stimulate the proliferation of non-N2-fixing cyanobacteria, thereby fostering cyanobacteria blooms during summer seasons. To elucidate the significance of N regulation, a two-factor orthogonal experiment was performed to study the influences of external N input on the efficacy of lanthanum-modified bentonite (LMB), a sediment capping material for P immobilization. At the experimentation ends, the total suspended solids (TSS), organic suspended solids (OSS) concentrations and optical attenuation coefficient (Kd) in the LMB + N treatment were 7.34, 8.65 and 5.20 times higher, respectively, compared to the LMB treatment. The total nitrogen (TN), total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in the LMB + N treatment were 3.02, 1.30 and 0.60 times higher, respectively, than those in the LMB treatment. However, TP and SRP in the LMB + N treatment were 46.98% and 54.93% lower, respectively, compared to N treatment. The chlorophyll a (Chl a) concentration of algae in the LMB + N treatment was observed to be 2.86 times higher compared to the LMB treatment, and 17.13% lower compared to the N treatment. The biomass of cyanobacteria accounted for more than 95% of algae in the LMB + N treatment and N treatment. Furthermore, the photosynthetic performance of algae in the N treatment increased significantly, compared to the LMB + N treatment. Our results indicated that external N influxes significantly reduce the efficacy of LMB to control P and algae. Thus, the implementation of more stringent N control policies holds great significance in the eutrophication control.
Collapse
Affiliation(s)
- Yanqing Han
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - You Zhang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Hu He
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyu Ning
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Kuanyi Li
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
9
|
Wang P, Han D, Yu F, Wang Y, Teng Y, Wang X, Liu S. Changing climate intensifies downstream eutrophication by enhancing nitrogen availability from tropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176959. [PMID: 39419221 DOI: 10.1016/j.scitotenv.2024.176959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The contribution of diffuse nutrient exports from forests to downstream water bodies is significant owing to their extensive spatial distribution across watersheds. However, the intricacies of coupling mechanism between diffuse nutrient exports and meteorological factors driving downstream eutrophication remain poorly understood. Multiple methods involving field sampling, laboratory analysis, and model simulation were utilized to investigate the impact of diffuse nutrient exports from tropical forests on chlorophyll a concentration dynamic in the downstream reservoir. A strong positive correlation was observed between air temperature and chlorophyll a concentration, indicating the direct influence of climatic factors on microalgal biomass. The significant positive linear relationship was also observed between diffuse nitrate exports and chlorophyll a concentration, with a regression coefficient of 0.36 (P < 0.001), underscoring the role of nitrogen inputs in stimulating microalgal growth. The interplay between diffuse nitrate exports and meteorological factors was shown to regulate chlorophyll a concentration fluctuation. Additionally, the structural equation model revealed that increasing temperature and decreasing precipitation could elevate chlorophyll a concentration by enhancing nitrogen availability. Monte Carlo simulation results further revealed that temperature and precipitation were the most influential factors affecting chlorophyll a concentration during dry and rainy seasons, with sensitivity values of 0.94 and - 0.76, respectively. Notably, the eutrophication status was projected to deteriorate from light to moderate under diminishing precipitation conditions. These findings underscore the urgency of addressing eutrophication risks in reservoirs surrounded by tropical forests and the implementation of effective nitrate mitigation strategies is imperative, which offers theoretical guidance for the management of eutrophic water restoration within tropical rainforest regions under changing climate conditions.
Collapse
Affiliation(s)
- Pengtao Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan, PR China
| | - Dongyang Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem, Henan, PR China.
| | - Yidi Wang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yanmin Teng
- School of Ecology, Hainan University, Haikou 570228, Hainan, PR China
| | - Xin Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, PR China
| | - Shaoqing Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, PR China.
| |
Collapse
|
10
|
Deng L, Fan Y, Li M, Wang S, Xu X, Gao X, Li H, Qian X, Li X. Integration of interpretable machine learning and environmental magnetism elucidates reduction mechanism of bioavailable potentially toxic elements in lakes after monsoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176418. [PMID: 39322082 DOI: 10.1016/j.scitotenv.2024.176418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Little information is available on the influence of substantial precipitation and particulate matter entering during the monsoon process on the release of potentially toxic elements (PTEs) into lake sediments. Sediments from a typical subtropical lake across three periods, pre-monsoon, monsoon, and post-monsoon, were collected to determine the chemical forms of 12 PTEs (As, Cd, Co, Cr, Cu, Fe, Hg, Pb, Mn, Ni, Sb, and Zn), magnetic properties, and physicochemical indicators. Feature importance, Shapley additive explanations, and partial dependence plots were used to explore the factors influencing bioavailable PTEs. The proportion of bioavailable forms of PTEs decreased from 3.85 % (Cd) to 87.84 % (Hg) after the monsoon. Gradient extreme boosting demonstrated robust fitting accuracy for the prediction of the bioavailable forms of the 12 PTEs (R2 > 0.84). Shapley additive explanations identified that the bioavailable forms were influenced by the total PTE concentrations, wind, shortwave radiation, and particle inputs (25.1 %-88.5 % for total importance), either individually or in combination. The partial dependence plots highlighted the influence thresholds of background values and anthropogenic factors on the bioavailable forms of PTEs. Changes in environmental properties could indicate the process of external sediment influx into lakes. The optimized model combined with magnetic parameters showed strong performance in other cases (coefficient of determination>0.58), confirming the ubiquitous decrease in bioavailable forms of PTEs in sediments across subtropical lakes after monsoons.
Collapse
Affiliation(s)
- Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shuo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaohan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaolong Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
11
|
Paerl HW, Chaffin JD, Cheshire JH, Plaas HE, Barnard MA, Goerlitz LB, Braddy JS, Sabo A, Nelson LM, Yue L. Dual phosphorus and nitrogen nutrient reduction will be more effective than a phosphorus-only reduction in mitigating diatom and cyanobacterial booms in Lake Erie, USA-Canada. LIMNOLOGY AND OCEANOGRAPHY 2024; 69:2913-2928. [PMID: 40115221 PMCID: PMC11922332 DOI: 10.1002/lno.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/28/2024] [Indexed: 03/23/2025]
Abstract
Lake Erie, USA-Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, Western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in-situ nutrient dilution and addition bioassays were conducted at a WLE bloom-impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom-dominated spring blooms and August cyanobacteria-dominated summer blooms. The primary objectives of this experiment were to 1) Determine if a proposed 40% P-alone reduction would effectively reduce phytoplankton growth and mitigate blooms and 2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA-Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year-round dual N and P 40% reduction is needed for long-term control of eutrophication and algal blooms, including HABs and diatoms, in Lake Erie.
Collapse
Affiliation(s)
- Hans W Paerl
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| | - Justin D Chaffin
- The Ohio State University, F. T. Stone Laboratory, Put-in-Bay, OH 43456-0119
| | - Jack H Cheshire
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| | - Haley E Plaas
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
- Department of Marine, Earth and Atmospheric Sciences, NC State University, Raleigh, NC 27695-8208
| | - Malcolm A Barnard
- Department of Biology and Center for Reservoir and Aquatic System Research, Baylor University, Waco, TX 76706
| | - Lillian B Goerlitz
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| | - Jeremy S Braddy
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| | - Alexandrea Sabo
- Lehigh University, Department of Earth and Environmental Sciences, Bethlehem, PA 18015
| | - Leah M Nelson
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| | - Lindsay Yue
- University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557
| |
Collapse
|
12
|
Zhao X, Xie Z, Liu T, Zhao Z, Song F, Liu Z. Microcystis aeruginosa aggravated arsenic accumulation in silver carp during silver carp controlling algal bloom in arsenic-contaminated water. J Environ Sci (China) 2024; 146:81-90. [PMID: 38969464 DOI: 10.1016/j.jes.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2024]
Abstract
Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.
Collapse
Affiliation(s)
- Xinxin Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Zuoming Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi 276000, China
| | - Zuoping Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Fengmin Song
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Zhifeng Liu
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
13
|
Faria FF, Ariyan TN, Mia MY. Trophic status analysis and nutrient source allocation in urban lakes of Dhaka, Bangladesh: a comprehensive approach to eutrophication monitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1252. [PMID: 39589564 DOI: 10.1007/s10661-024-13419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Urban lakes are vital to ecosystems, providing essential services and recreational spaces in densely populated megacities. However, rapid urbanization and anthropogenic activities, particularly eutrophication driven by macronutrient accumulation, severely threaten these water bodies. This study underscores the critical need for continuous trophic state monitoring to sustain fish, wildlife, and plant ecosystems. The trophic status of Dhanmondi, Gulshan, and Banani Lakes in Dhaka City, Bangladesh, was assessed using Carlson's Trophic State Index (CTSI) and Burn's Trophic Level Index (BTLI), based on chlorophyll a (Chl-a), total phosphorus (TP), Secchi disc depth (SD), and total nitrogen (TN). Water samples from five sites per lake were analyzed for physicochemical parameters from June 2023 to May 2024, revealing monthly and seasonal variations. The study revealed that Dhanmondi Lake's CTSI ranged from 69.3 to 79.5 (June 2023 to March 2024), indicating initial "Eutrophic" conditions progressing to "Hypereutrophic." Gulshan Lake consistently showed "Hypereutrophic" conditions, with CTSI values between 84.1 and 97.3. Banani Lake was "Eutrophic" in June and July 2023, transitioning to "Hypereutrophic" from August 2023 to May 2024 (84.1-97.7). The Trophic Level Index (TLI) showed the "Hypereutrophic" status with a progressive monthly escalation for all the lakes. The Water Quality Index (WQI) categorized the lakes as "Poor" to "Very Poor" from June to August 2023, becoming "Unsuitable" from September 2023 to May 2024, indicating significant anthropogenic stress. Principal component analysis (PCA) identified nutrient infiltration, soil erosion, waste discharge, and organic residue accumulation as key pollution drivers. The study advocates for a multi-sectoral strategy to regulate nutrient loading and mitigate eutrophication, emphasizing best management practices for urban lake conservation.
Collapse
Affiliation(s)
- Farzana Ferdous Faria
- Department of Environmental Science, Bangladesh University Professionals, Dhaka, 1216, Bangladesh
| | - Tasrif Nur Ariyan
- Department of Environmental Science, Bangladesh University Professionals, Dhaka, 1216, Bangladesh
| | - Md Younus Mia
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| |
Collapse
|
14
|
Soleymani Hasani S, Arias ME, Nguyen HQ, Tarabih OM, Welch Z, Zhang Q. Leveraging explainable machine learning for enhanced management of lake water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122890. [PMID: 39405849 DOI: 10.1016/j.jenvman.2024.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Freshwater lakes worldwide suffer from eutrophication caused by excessive nutrient loads, particularly nitrogen (N) and phosphorus (P) from wastewater and runoff, affecting aquatic life and public health. Using a large (1800 km2) subtropical lake as an example (Lake Okeechobee, Florida, USA), this study aims to (1) predict key water quality parameters using machine learning (ML) algorithms based on easily measurable variables, (2) identify spatial patterns of these parameters, and (3) determine environmental drivers influencing turbidity levels. The study employs four ML algorithms-Extreme Gradient Boosting (XGB), Light Gradient-Boosting Machine (LGBM), Support Vector Regression (SVR), and Random Forests (RFs)-to predict total phosphorus (TP), total nitrogen (TN), nitrate + nitrite (NOx-N), and turbidity, via station-specific and lake-wide modeling approaches. The station-specific models uncover spatial patterns, while the lake-wide models support operational decision-making. Results indicated that lake stage (water level), water temperature, and, most notably, turbidity were the main nutrient predictors, with XGB demonstrating superior prediction performance. Spatial analysis using K-means clustering identified three distinct lake regions based on nutrient levels and turbidity. Due to its importance, SHapley Additive exPlanations (SHAP) were employed to identify and quantify environmental factors affecting turbidity. Inflows and lake stage were found as primary drivers of turbidity near lake inlets, while wind speed and air temperature affected turbidity in the middle of the lake. This research advances the understanding of lake water quality dynamics, emphasizing the importance of frequent monitoring of turbidity and its environmental drivers for enhanced management and future mitigation efforts.
Collapse
Affiliation(s)
- Sajad Soleymani Hasani
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Mauricio E Arias
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
| | - Hung Q Nguyen
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Osama M Tarabih
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Zachariah Welch
- South Florida Water Management District, 3301 Gun Club Rd, West Palm Beach, FL, 33406, USA
| | - Qiong Zhang
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
15
|
Lapointe BE, Brewton RA, McFarland MN, Stockley N. Nutrient availability in a freshwater-to-marine continuum: Cyanobacterial blooms along the Lake Okeechobee Waterway. HARMFUL ALGAE 2024; 139:102710. [PMID: 39567062 DOI: 10.1016/j.hal.2024.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 11/22/2024]
Abstract
Water from the Lake Okeechobee watershed historically flowed south through the Everglades. Hydrologic alterations created the Lake Okeechobee Waterway, where lake water is periodically shunted east to the St. Lucie Estuary (C-44 canal) and west to the Caloosahatchee River and Estuary (C-43 canal). Within the last two decades, Microcystis blooms have developed in Lake Okeechobee and been discharged to the downstream urbanized estuaries, resulting in negative environmental and human health impacts. To better understand drivers of cyanobacterial blooms across this modified waterway, two cruises were conducted from the St. Lucie Estuary through Lake Okeechobee to the Caloosahatchee River Estuary during 2019 and 2020. Opportunistic sampling was also conducted during Microcystsis blooms. Cruise stations were sampled for environmental parameters, dissolved nutrients, chlorophyll a, cyanobacterial cell concentrations, and microcystins, as well as particulate organic matter (POM) nutrient properties. Higher ammonium (NH4+), nitrate + nitrite (NO3-), dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP), and POM stable N isotope (δ15N) values were observed in the estuaries and Kissimmee River than in Lake Okeechobee. The nitrogen to phosphorus ratio (N:P), microcystins, and Microcystis cell concentrations were higher in Lake Okeechobee than documented over past decades. During Microcystis blooms, high NH4+, SRP, total dissolved nitrogen (TDN), TDP, and sucralose were observed with elevated algal δ15N. These results demonstrate the importance of local basin contributions, including those within the lake, to estuarine Microcystis blooms. This suggests that decreasing nutrient loading within the St. Lucie and Caloosahatchee estuaries would help to mitigate these urban blooms. High POM δ15N values, NO3- concentrations, and N:P ratios in the Kissimmee River suggest that expanding urbanization north of the lake represents an increasing human N source contributing to cyanobacterial blooms in Lake Okeechobee.
Collapse
Affiliation(s)
- Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL, 34946, USA
| | - Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL, 34946, USA.
| | - Malcolm N McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL, 34946, USA
| | - Nicole Stockley
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL, 34946, USA
| |
Collapse
|
16
|
Li H, Cai Y, Deng H, Qin Z, Li J, Cao X, Zhou Y, Song C, Duan X. Nutrient regeneration patterns for initiating and maintaining algae blooms-a case study of in Lake Taihu. CHEMOSPHERE 2024; 365:143401. [PMID: 39321887 DOI: 10.1016/j.chemosphere.2024.143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
In order to clarify the nitrogen (N) and phosphorus (P) regeneration patterns and internal mechanism for initiating and maintaining algal blooms in Lake Taihu, samples (including surface water and sediment) from 8 sites in Lake Taihu were collected for nine times from May 2010 to April 2011, and analyzed for total and labile organic matter, P fractionation and sorption behaviors, extracellular enzymatic activities (EEA), dehydrogenase activity, the respiratory electron transport system activity, and iron in sediment, EEA, N and P species and chlorophyll a (Chl. a) in surface water, as well as N and P species in interstitial water. In Lake Taihu, although severe blooms occurred in both Meiliang Bay and Zhushan Bay, the nutrient regeneration patterns stimulating the initiation and maintenance of algae blooms in these two bays were different. In Zhushan Bay with low EEA in surface water, abundant N and P flux from sediments, due to the degradation of organic matter and enzymatic hydrolysis in sediment, further stimulated the initiation and maintenance of algae blooms. In Meiliang Bay, in spite of lower nutrient supply from sediment, high EEA in surface water occurred later than the serious blooms, showing that the nutrient regeneration from sediment, not water body, was still the trigger for the start of the bloom, and sediment nutrient release and predominant surface water nutrient regeneration by abundant exoenzymes sustained the algal blooms. In the Western region, algal bloom started in the northern area and further spread in the remaining part of the lake; nutrient regeneration in the surface water sustained the slight bloom. In the East Bays, the decay and decomposition of macrophytes led to anaerobic conditions in sediments and high ammonia in interstitial water, but low iron bound phosphorus resulted in anaerobic release of very few P, thus showed extremely low Chl. a concentration.
Collapse
Affiliation(s)
- Hui Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Yingying Cai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Huatang Deng
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, PR China
| | - Zhenhua Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Xiuyun Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yiyong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Chunlei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - XinBin Duan
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, PR China.
| |
Collapse
|
17
|
Zhang Y, Liu K, Lv J, Peng X, Tang Y, Zhao L, Cheng Y, Liu Q. Effects of Nitrogen and Phosphorus in Sediment on the Occurrence of Cladophora sp. (Cladophoraceae) in Aquaculture Ponds. BIOLOGY 2024; 13:739. [PMID: 39336166 PMCID: PMC11428272 DOI: 10.3390/biology13090739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
To explore the impact of sedimentary nitrogen and phosphorus on Cladophora occurrence, we conducted a microecosystem experiment simulating different nitrogen and phosphorus content as well as nitrogen-to-phosphorus ratios in the sediment. Subsequently, to further explore the specific mechanism of influence that epiphytic algae have on Cladophora, we designed various microsystem culture experiments. These results revealed that an N/P ratio of 40:1 was relatively unfavorable for Cladophora growth. Additionally, there was an extremely significant negative correlation between the benthic cyanobacteria coverage on the sediment surface and the wet weight of Cladophora (p < 0.01), indicating that benthic cyanobacteria could inhibit the growth of Cladophora. Total nitrogen levels in the water column showed a significant positive correlation with phytoplankton biomass (p < 0.05), while benthic cyanobacteria coverage exhibited an extremely significant positive correlation with phytoplankton biomass through phosphorus absorption and nitrogen release (p < 0.01). Metabolite analysis of benthic cyanobacteria identified annotations for 313 metabolites; among them cis,cis-muconic acid (32.48‱), erucamide (9.52‱), phosphoric acid (6.97‱), fenpropidin (6.53‱), and propionic acid (5.16‱) accounted for proportions exceeding 5‱. However, none of these metabolites have been recognized as allelochemicals or toxins at present. This study provides novel insights into controlling Cladophora occurrence by considering sediment nutrients, including nitrogen and phosphorus, along with allelochemicals.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Kaifang Liu
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jun Lv
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Xinliang Peng
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yongtao Tang
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Liangjie Zhao
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrion of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Qigen Liu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
18
|
Nong X, Guan X, Chen L, Wei J, Li R. Identifying environmental impacts on planktonic algal proliferation and associated risks: a five-year observation study in Danjiangkou Reservoir, China. Sci Rep 2024; 14:21568. [PMID: 39294208 PMCID: PMC11411132 DOI: 10.1038/s41598-024-70408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
Understanding the risks of planktonic algal proliferation and its environmental causes is crucial for protecting water quality and controlling ecological risks. Reservoirs, due to the characteristics of slow flow rates and long hydraulic retention times, are more prone to eutrophication and algal proliferation. Chlorophyll-a (Chl-a) serves as an indicator of planktonic algal biomass. Exploring the intricate interactions and driving mechanisms between Chl-a and the water environment, and the potential risks of algal blooms, is crucial for ensuring the ecological safety of reservoirs and the health of water users. This study focused on the Danjiangkou Reservoir (DJKR), the core water source of the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC). The multivariate statistical methods and structural equation modeling were used to explore the relationships between chlorophyll-a (Chl-a) contents and water quality factors and understand the driving mechanisms affecting Chl-a variations. The Copula function and Bayesian theory were combined to analyze the risk of changes in Chl-a concentrations at Taocha (TC) station, which is the core water source intake point of the MRSNWDPC. The results showed that the factors driving planktonic algal proliferation were spatially heterogeneous. The main factors affecting Chl-a concentrations in Dan Reservoir (DR) were water physicochemical factors (water temperature, dissolved oxygen, pH value, and turbidity) with a total contribution rate of 60.18%, whereas those in Han Reservoir (HR) were nutrient factors (total nitrogen, total phosphorus, and ammonia nitrogen) with a total contribution rate of 73.58%. In TC, the main factors were water physicochemical factors (turbidity, pH, and water temperature) and nutrient factors (total phosphorus) with total contribution rates of 39.76% and 45.78%, respectively. When Chl-a concentrations in other areas of the DJKR ranged from the minimum to the uppermost quartile, the probabilities that Chl-a concentrations at the TC station exceeded 3.4 μg/L (the benchmark value of Chl-a for lakes in the central-eastern lake area of China) owing to the influence of these areas were all less than 10%. Thus, the risk of planktonic algal proliferation at the MRSNWDPC intake point is low. This study developed an integrated framework to investigate spatiotemporal changes in algal proliferation and their driving factors in reservoirs, which can be used to support water quality management in mega hydro projects.
Collapse
Affiliation(s)
- Xizhi Nong
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China.
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xian Guan
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Lihua Chen
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Jiahua Wei
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ronghui Li
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
19
|
Xie G, Zhang Y, Gong Y, Luo W, Tang X. Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes. BMC Microbiol 2024; 24:348. [PMID: 39277721 PMCID: PMC11401395 DOI: 10.1186/s12866-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and β-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Third Construction Company of CCCC second Harbor Engineering Co., Ltd, Zhenjiang, 212000, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenlei Luo
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, 653100, Yuxi, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
20
|
Li X, Wang J, He Y, Yang X, Wang M. Eukaryotic plankton species diversity and community structure in the Xiao Jiang River (the primary tributary of Upper Yangtze River), Yunnan. PeerJ 2024; 12:e17972. [PMID: 39285919 PMCID: PMC11404478 DOI: 10.7717/peerj.17972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
The Xiao Jiang River, as a crucial element of ecological restoration in the upper reaches of the Yangtze River, plays an indispensable role in agricultural water utilization and water ecology within its watersheds. The water quality status of the Xiao Jiang River not only impacts local water-ecological equilibrium and economic benefits but also holds paramount importance for sustaining ecosystem health in the Yangtze River basin. Plankton surveys and environmental physicochemical detection were conducted in the major channel region of the Xiao Jiang River in dry and wet periods in 2022 to better understand the diversity of eukaryotic plankton and its community structure characteristics. Environmental DNA is an emerging method that combines traditional ecology with second-generation sequencing technology. It can detect species from a single sample that are difficult to find by traditional microscopy, making the results of plankton diversity studies more comprehensive. For the first time, environmental DNA was used to investigate eukaryotic plankton in the Xiao Jiang River . The results showed that a total of 881 species of plankton from 592 genera in 17 phyla were observed. During the dry period, 480 species belonging to 384 genera within17 phyla were detected, while, during the wet period, a total of 805 species belonging to 463 genera within 17 phyla were recorded. The phylum Ciliophora dominated the zooplankton, while the phylum Chlorophyta and Bacillariophyta dominated the phytoplankton. The presence of these dominant species indicate that the water quality conditions in the study area are oligotrophic and mesotrophic. Principal coordinate analysis and difference test showed that the number of plankton ASVs, abundance, species richness, dominating species, and diversity indices differed between the dry and wet periods. Spearman correlation analysis and redundancy analysis (RDA) of relative abundance data with environmental physicochemical factors revealed that water temperature (WT), dissolved oxygen (DO), potential of hydrogenacidity (pH), ammonia nitrogen (NH3-N), total nitrogen (TN), electrical conductivity (EC) and the determination of redox potential (ORP) were the main environmental physicochemical factors impacting the plankton community structure. The results of this study can serve as a provide data reference at the plankton level for water pollution management in the Xiao Jiang River, and they are extremely important for river ecological restoration and biodiversity recovery in the Yangtze River basin.
Collapse
Affiliation(s)
- XueRong Li
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, Yunnan, China
| | - JiShan Wang
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming, Yunnan, China
- Research Center of Asian Elephant, National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - YunRui He
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, Yunnan, China
| | - XiaoJun Yang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, China
| | - Mo Wang
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Kang M, Kim DK, Le VV, Ko SR, Lee JJ, Choi IC, Shin Y, Kim K, Ahn CY. Microcystis abundance is predictable through ambient bacterial communities: A data-oriented approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122128. [PMID: 39126846 DOI: 10.1016/j.jenvman.2024.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The number of cyanobacterial harmful algal blooms (cyanoHABs) has increased, leading to the widespread development of prediction models for cyanoHABs. Although bacteria interact closely with cyanobacteria and directly affect cyanoHABs occurrence, related modeling studies have rarely utilized microbial community data compared to environmental data such as water quality. In this study, we built a machine learning model, the multilayer perceptron (MLP), for the prediction of Microcystis dynamics using both bacterial community and weekly water quality data from the Daechung Reservoir and Nakdong River, South Korea. The modeling performance, indicated by the R2 value, improved to 0.97 in the model combining bacterial community data with environmental factors, compared to 0.78 in the model using only environmental factors. This underscores the importance of microbial communities in cyanoHABs prediction. Through the post-hoc analysis of the MLP models, we revealed that nitrogen sources played a more critical role than phosphorus sources in Microcystis blooms, whereas the bacterial amplicon sequence variants did not have significant differences in their contribution to each other. Similar to the MLP model results, bacterial data also had higher predictability in multiple linear regression (MLR) than environmental data. In both the MLP and MLR models, Microscillaceae showed the strongest association with Microcystis. This modeling approach provides a better understanding of the interactions between bacteria and cyanoHABs, facilitating the development of more accurate and reliable models for cyanoHABs prediction using ambient bacterial data.
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Dong-Kyun Kim
- K-water Research Institute, 169 Yuseong-daero, Yuseong-gu, Daejeon, 34045, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - Yuna Shin
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
22
|
Xia F, Liu Z, Zhang Y, Li Q, Zhao M, He H, Bao Q, Chen B, He Q, Lai C, He X, Ma Z, Zhou Y. Calcium regulates the interactions between dissolved organic matter and planktonic bacteria in Erhai Lake, Yunnan Province, China. WATER RESEARCH 2024; 261:121982. [PMID: 38936236 DOI: 10.1016/j.watres.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
In recent years, the global carbon cycle has garnered significant research attention. However, details of the intricate relationship between planktonic bacteria, hydrochemistry, and dissolved organic matter (DOM) in inland waters remain unclear, especially their effects on lake carbon sequestration. In this study, we analyzed 16S rRNA, chromophoric dissolved organic matter (CDOM), and inorganic nutrients in Erhai Lake, Yunnan Province, China. The results revealed that allochthonous DOM (C3) significantly regulated the microbial community, and that autochthonous DOM, generated via microbial mineralization (C2), was not preferred as a food source by lake bacteria, and neither was allochthonous DOM after microbial mineralization (C4). Specifically, the correlation between the fluorescence index and functional genes (FAPRPTAX) showed that the degree of utilization of DOM was a critical factor in regulating planktonic bacteria associated with the carbon cycle. Further examination of the correlation between environmental factors and planktonic bacteria revealed that Ca2+ had a regulatory influence on the community structure of planktonic bacteria, particularly those linked to the carbon cycle. Consequently, the utilization strategy of DOM by planktonic bacteria was also determined by elevated Ca2+ levels. This in turn influenced the development of specific recalcitrant autochthonous DOM within the high Ca2+ environment of Erhai Lake. These findings are significant for the exploration of the stability of DOM within karst aquatic ecosystems, offering a new perspective for the investigation of terrestrial carbon sinks.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Yunling Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, 610068, China
| | - Bo Chen
- Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Qiufang He
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400700, China; Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
23
|
He H, Liu Z, Li D, Liu X, Han Y, Sun H, Zhao M, Shao M, Shi L, Hao P, Lai C. Effects of carbon limitation and carbon fertilization on karst lake-reservoir productivity. WATER RESEARCH 2024; 261:122036. [PMID: 38981350 DOI: 10.1016/j.watres.2024.122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Nitrogen and phosphorus are universally recognized as limiting elements in the eutrophication processes affecting the majority of the world's lakes, reservoirs, and coastal ecosystems. However, despite extensive research spanning several decades, critical questions in eutrophication science remain unanswered. For example, there is still much to understand about the interactions between carbon limitation and ecosystem stability, and the availability of carbon components adds significant complexity to aquatic resource management. Mounting evidence suggests that aqueous CO2 could be a limiting factor, influencing the structure and succession of aquatic plant communities, especially in karstic lake and reservoir ecosystems. Moreover, the fertilization effect of aqueous CO2 has the potential to enhance carbon sequestration and phosphorus removal. Therefore, it is important to address these uncertainties to achieve multiple positive outcomes, including improved water quality and increased carbon sinks in karst lakes and reservoirs.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Dongli Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| | - Liangxing Shi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyun Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China
| |
Collapse
|
24
|
Li X, Liu X, Zhang Y, Liu J, Huang Y, Li J. Seasonal Effects of Constructed Wetlands on Water Quality Characteristics in Jinshan Lake: A Gate Dam Lake (Zhenjiang City, China). BIOLOGY 2024; 13:593. [PMID: 39194531 DOI: 10.3390/biology13080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Urban lakes commonly suffer from nutrient over-enrichment, resulting in water quality deterioration and eutrophication. Constructed wetlands are widely employed for ecological restoration in such lakes but their efficacy in water purification noticeably fluctuates with the seasons. This study takes the constructed wetland of Jinshan Lake as an example. By analyzing the water quality parameters at three depths during both summer and winter, this study explores the influence of the constructed wetland on the water quality of each layer during different seasons and elucidates the potential mechanisms underlying these seasonal effects. The results indicate that the constructed wetland significantly enhances total nitrogen (TN) concentration during summer and exhibits the capacity for nitrate-nitrogen removal in winter. However, its efficacy in removing total phosphorus (TP) is limited, and may even serve as a potential phosphorus (P) source for the lake during winter. Water quality test results of different samples indicated they belong to Class III or IV. Restrictive factors varied across seasons: nitrate-nitrogen and BOD5 jointly affected water quality in winter, whereas TP predominantly constrained water quality in summer. These results could provide a reference for water quality monitoring and management strategies of constructed wetlands in different seasons in Jiangsu Province.
Collapse
Affiliation(s)
- Xiao Li
- ART School, Jiangsu University, Zhenjiang 212013, China
- Institute of International Education, New Era University College, Kajang 43000, Malaysia
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yulong Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Huang
- ART School, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Wang H, Ge X, Li S, Huang H. Insight into the binding characteristics of dissolved organic matter(DOM)and Fe(Ⅱ)/Mn(Ⅱ): Based on the spectroscopic and dialysis equilibrium analysis. CHEMOSPHERE 2024; 362:142672. [PMID: 38914288 DOI: 10.1016/j.chemosphere.2024.142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Dissolved organic matter (DOM) plays an important role in metal migration and transformation within inland surface waters. In our study, spectroscopic and dialysis equilibrium analysis were combined to characterize the binding properties between DOM and Fe(II)/Mn(II). Four different type of DOM including two commercial DOM: humic acid、fulvic acid, and two natural dissolved organic matter collected from macrophyte-dominant region (MDR) and algae-dominated region (ADR) of Taihu Lake. Steady state/time resolved fluorescence spectroscopy indicated that the fluorescence intensity of DOM was quenched by Fe(II)/Mn(II) through a static quenching process. The adsorption isotherm shows that the adsorption capacity of DOM from Taihu Lake for metal ions is significantly higher than that of commercial humic acid. Simultaneously, the combination of MDR and Fe(II) has the highest adsorption capacity at 110.950 mg/g among all combinations. Furthermore, the Pseudo-second-order kinetic model and Elovich model were found to be superior in describing the adsorption process, with chemical adsorption controlling the rate of the adsorption reaction. The results of this study show that potentially toxic elements (PETs) pollution in eutrophic shallow lakes may become more serious due to the excessive expansion of algae dominant regions and the reduction of macrophyte dominant regions. In addition, risk analysis and assessment of PETs should consider the contribution of metal binding capabilities.
Collapse
Affiliation(s)
- Haishuo Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xuefeng Ge
- Analysis and Testing Center of Nanjing Normal University, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Heyong Huang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Analysis and Testing Center of Nanjing Normal University, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
26
|
Liu D, Huang L, Jia L, Li S, Wang P. Evaluation of best management practices for mitigating harmful algal blooms risk in an agricultural lake basin using a watershed model integrated with Bayesian Network approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121433. [PMID: 38878574 DOI: 10.1016/j.jenvman.2024.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
Lake eutrophication caused by nitrogen and phosphorus has led to frequent harmful algal blooms (HABs), especially under the unknown challenges of climate change, which have seriously damaged human life and property. In this study, a coupled SWAT-Bayesian Network (SWAT-BN) model framework was constructed to elucidate the mechanisms between non-point source nitrogen pollution in agricultural lake watersheds and algal activities. A typical agricultural shallow lake basin, the Taihu Basin (TB), China, was chosen in this study, aiming to investigate the effectiveness of best management practices (BMPs) in controlling HABs risks in TB. By modeling total nitrogen concentration of Taihu Lake from 2007 to 2022 with four BMPs (filter strips, grassed waterway, fertilizer application reduction and no-till agriculture), the results indicated that fertilizer application reduction proved to be the most effective BMP with 0.130 of Harmful Algal Blooms Probability Reduction (HABs-PR) when reducing 40% of fertilizer, followed by filter strips with 0.01 of HABs-PR when 4815ha of filter strips were conducted, while grassed waterway and no-till agriculture showed no significant effect on preventing HABs. Furthermore, the combined practice between 40% fertilizer application reduction and 4815ha filter strips construction showed synergistic effects with HABs-PR increasing to 0.171. Precipitation and temperature data were distorted to model scenarios of extreme events. As a result, the combined approach outperformed any single BMP in terms of robustness under extreme climates. This research provides a watershed-level perspective on HABs risks mitigation and highlights the strategies to address HABs under the influence of climate change.
Collapse
Affiliation(s)
- Dingwu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ling Jia
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China
| | - Shenshen Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Peng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
27
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Mohan R, Pillai SS, Purushothaman A, Thomas LC, Padmakumar KB. Phylogenic diversity of bacteria associated with potentially toxic cyanobacteria Microcystis aeruginosa: a synthesis on its bloom dynamics. Folia Microbiol (Praha) 2024; 69:677-691. [PMID: 37991690 DOI: 10.1007/s12223-023-01108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
The occurrence of toxic bloom-forming cyanobacteria, Microcystis aeruginosa, has been frequently reported worldwide. These colony forming toxic cyanobacteria harbour a wide range of heterotrophic bacterial communities. The present study has attempted to understand the bloom dynamics of M. aeruginosa along with isolating their colony-associated culturable heterotrophic bacteria from two freshwater ponds in south India with a persisting cyanobacterial bloom. The monthly monitoring of these study areas revealed the conducive role of warm, stagnant waters with high nutrients in forming M. aeruginosa bloom. The peak values of temperature, nitrate, and phosphate at station 1 reached up to 30.5 °C, 4.48 mg/L, 1.64 mg/L, and at station 2, 31 °C, 3.45 mg/L, and 0.62 mg/L, respectively. Twenty-eight bacterial isolates belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes were obtained during the study. Among these 28 isolates, Firmicutes was dominant with the M. aeruginosa bloom from both the study areas.
Collapse
Affiliation(s)
- Renju Mohan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - Sreya S Pillai
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - Aishwarya Purushothaman
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - Lathika Cicily Thomas
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - K B Padmakumar
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India.
| |
Collapse
|
29
|
Sun Y, Wang M, Yang J, Song C, Chen X, Chen X, Strokal M. Increasing cascade dams in the upstream area reduce nutrient inputs to the Three Gorges Reservoir in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171683. [PMID: 38492593 DOI: 10.1016/j.scitotenv.2024.171683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The upstream cascade dams play an essential role in the nutrient cycle in the Yangtze. However, there is little quantitative information on the effects of upstream damming on nutrient retention in the Three Gorges Reservoir (TGR) in China. Here, we aim to assess the impact of increasing cascade dams in the upstream area of the Yangtze on Dissolved Inorganic Nitrogen and Phosphorus (DIN and DIP) inputs to the TGR and their retention in the TGR and to draw lessons for other large reservoirs. We implemented the Model to Assess River Inputs of Nutrients to seAs (MARINA-Nutrients China-2.0 model). We ran the model with the baseline scenario in which river damming was at the level of 2009 (low) and alternative scenarios with increased damming. Our scenarios differed in nutrient management. Our results indicated that total water storage capacity increased by 98 % in the Yangtze upstream from 2009 to 2022, with 17 new large river dams (>0.5 km3) constructed upstream of the Yangtze. As a result of these new dams, the total DIN inputs to the TGR decreased by 15 % (from 768 Gg year-1 to 651 Gg year-1) and DIP inputs decreased by 25 % (from 70 Gg year-1 to 53 Gg year-1). Meanwhile, the molar DIN:DIP ratio in inputs to the TGR increased by 13 % between 2009 and 2022. In the future, DIN and DIP inputs to the TGR are projected to decrease further, while the molar DIN:DIP ratio will increase. The Upper Stem contributed 39 %-50 % of DIN inputs and 63 %-84 % of DIP inputs to the TGR in the past and future. Our results deepen our knowledge of nutrient loadings in mainstream dams caused by increasing cascade dams. More research is needed to understand better the impact of increased nutrient ratios due to dam construction.
Collapse
Affiliation(s)
- Ying Sun
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China
| | - Mengru Wang
- Earth Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Jing Yang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Chunqiao Song
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuanjing Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China
| | - Maryna Strokal
- Earth Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
30
|
Mutoti MI, Jideani AI, Madala NE, Gumbo JR. The occurrence and human health risk assessment of microcystins in diverse food matrixes during production. Heliyon 2024; 10:e29882. [PMID: 38681651 PMCID: PMC11053293 DOI: 10.1016/j.heliyon.2024.e29882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Globally, the presence of cyanotoxins in water supplies and food has been widely investigated for over a decade. Cyanotoxins are harmful metabolites produced by toxic cyanobacterial genera. These metabolites belong to diverse chemical classes, with a variety of physicochemical properties, chemical structures, and toxic activities. The present study seeks to investigate the occurrence of cyanotoxins in water supplies destined for food processing and assess the human health risk from exposure to cyanotoxins. To achieve this, a simple, sensitive, and reliable analytical method was developed for the determination of microcystins (MC-RR, MC-LR, MC-YR) in process water, raw maize meal, and cooked maize (porridge) at ppb (parts per billion) levels. These compounds were extracted using Solid Phase Extraction (SPE) with optimized parameters; thereafter, Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used for the rapid determination of the analytes selected for the present study. The method developed was applied to samples collected from the meal grinding station located in Mawoni village in South Africa; and was able to detect and quantify all the target cyanotoxins. MC-LR, MC-YR and MC-RR were detected at concentrations ranging from 10 to 11.2 μg/L, 9.1-9.4 μg/L, and 2.3-3.5 μg/L, in water samples, respectively. However, MC-YR was not detected in ground water sample. Moreover, MC-LR, MC-YR, and MC-RR concentrations in maize and porridge samples ranged between 9.2 and 11.2, 5.5-8.6, and 6.3-9.3 μg/kg dry weight, respectively. The hazard quotient index (HQi) levels found in the present study ranged between 2.2 - 8.4 and 0.11-8.9 for adults and children, respectively, representing potential risks to human health. Findings from LC-MS/MS reveal that cyanotoxins can be transferred from water to food during food processing using cyanotoxins contaminated water. Furthermore, the methods developed can be used by environmental and health agencies to strengthen the monitoring of cyanotoxins in water and food.
Collapse
Affiliation(s)
- Mulalo I. Mutoti
- Department of Environmental, Water, and Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, 0083, South Africa
| | - Afam I.O. Jideani
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Jabulani R. Gumbo
- Department of Earth Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
31
|
Chi L, Jiang K, Ding Y, Wang W, Song X, Yu Z. Uncovering nutrient regeneration, transformation pattern, and its contribution to harmful algal blooms in mariculture waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170652. [PMID: 38331282 DOI: 10.1016/j.scitotenv.2024.170652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The prevalence of harmful algal blooms (HABs), especially in mariculture waters, has become a concern for environmental and human health worldwide. Notably, the frequent occurrence of HABs relies upon a substantial supply of available nutrients, which are influenced by nutrient recycling. However, nutrient regeneration, transformation pattern, and their contribution to HABs in mariculture waters remain largely unknown. In this study, by combining field investigation and incubation experiments from June to September 2020, the temporal variations in nutrients and algal composition were revealed. In addition, the nutrient regeneration and assimilation rates in the water column during two continuous algal blooms were measured. The results indicated that organic nutrients, which were the dominant components, strongly stimulated nutrient regeneration. High regeneration rates were observed, with dissolved inorganic nitrogen (DIN) and phosphorous (DIP) regeneration rates ranging from 0.25 to 2.64 μmol/L·h and 0.01 to 0.09 μmol/L·h, respectively. Compared to the direct uptake of organic nutrients, the rapid regeneration of inorganic nutrients played a vital role in sustaining continuous algal blooms, as regenerated DIN contributed 100 % while regenerated DIP contributed 72-100 % of the algal assimilation demand. Furthermore, the redundancy analysis and inverse solution equations indicated that different N transformation patterns and utilization strategies occurred during Heterosigma and Nannochloris blooms. The shorter N recycling pathway and faster NH4+ supply rates provided favorable conditions for the dominance of Nannochloris over Heterosigma, which had a preference for the uptake of NO3-. In conclusion, we propose that nutrient regeneration is a key maintenance mechanism underlying the maintenance of continuous algal blooms, and different N transformation patterns and utilization strategies regulate algal communities in mariculture waters.
Collapse
Affiliation(s)
- Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kaiqin Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ding
- Weihai Vocational College, Weihai 264200, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zhao B, Zeng Q, Wang J, Jiang Y, Liu H, Yan L, Yang Z, Yang Q, Zhang F, Tang J, Hu P. Impact of cascade reservoirs on nutrients transported downstream and regulation method based on hydraulic retention time. WATER RESEARCH 2024; 252:121187. [PMID: 38295452 DOI: 10.1016/j.watres.2024.121187] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Cascade reservoirs construction has modified the nutrients dynamics and biogeochemical cycles, consequently affecting the composition and productivity of river ecosystems. The Jinsha River, as the predominant contributor to runoff, suspended sediment (SS), and nutrients production within the Yangtze River, is a typical cascade reservoir region with unclear transport patterns and retention mechanisms of nutrients (nitrogen and phosphorus). Furthermore, how to regulate nutrients delivery in the cascade reservoirs region is also an urgent issue for basin water environment study. Therefore, we monitored monthly variations in nitrogen and phosphorus concentrations from November 2021 to October 2022 in the cascade reservoirs of the Jinsha River. The results indicated that the concentrations and fluxes of total phosphorus (TP) and particulate phosphorus (PP) decreased along the cascade of reservoirs, primarily due to PP deposited with SS, while opposing trends for total nitrogen (TN) and dissolved total nitrogen (DTN), which might be the consequences of human inputs and the increase of dissolved inorganic nitrogen discharged from the bottom of the reservoirs. Moreover, the positive average annual retention ratios for TP and PP were 10% and 16%, respectively, in contrast to the negative averages of -8 % for TN and -11% for particulate nitrogen (PN). The variability in runoff-sediment and hydraulic retention time (HRT) of cascade reservoirs played crucial roles in the retention of TP and PP. A regulatory threshold of HRT = 5.3 days in the flood season was obtained for controlling the balance of TP based on the stronger relationship between HRT and TP retention ratio. Consequently, the HRT of these reservoirs could be managed to control nutrients delivery, which was of particular significance for basin government institutions. This study enhances our comprehension of how cascade reservoirs influence the distribution and transport patterns of nutrients, offering a fresh perspective on nutrients delivery regulation.
Collapse
Affiliation(s)
- Baolong Zhao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Qinghui Zeng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China.
| | - Jianhua Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Yunzhong Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Huan Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Long Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Zefan Yang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Qin Yang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Fengbo Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Jiaxuan Tang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China.
| |
Collapse
|
33
|
Jiang M, Xiao Q, Deng J, Zhang M, Zhang X, Hu C, Xiao W. Ecological water diversion activity changes the fate of carbon in a eutrophic lake. ENVIRONMENTAL RESEARCH 2024; 245:117959. [PMID: 38123047 DOI: 10.1016/j.envres.2023.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Lake eutrophication mitigation measures have been implemented by ecological water diversion, however, the responses of carbon cycle to the human-derived hydrologic process still remains unclear. With a famous river-to-lake water diversion activity at eutrophic Lake Taihu, we attempted to fill the knowledge gap with integrative field measurements (2011-2017) of gas carbon (CO2 and CH4) flux, including CO2-equivalent, and dissolved carbon (DOC and DIC) at water-receiving zone and reference zone. Overall, results showed the artificial water diversion activity increased gas carbon emissions. At water-receiving zone, total gas carbon (expressed as CO2-equivalent) emissions increased significantly due to the occurring of water diversion, with CO2 flux increasing from 9.31 ± 16.28 to 18.16 ± 12.96 mmol C m-2 d-1. Meanwhile, CH4 emissions at water-receiving zone (0.06 ± 0.05 mmol C m-2 d-1) was double of that at reference zone. Water diversion decreased DOC but increased DIC especially at inflowing river mouth. Temporal variability of carbon emissions and dissolved carbon were linked to water temperature, chlorophyll a, and nutrient, but less or negligible dependency on these environment variables were found with diversion occurring. Water diversion may increase gas carbon production via stimulating DOC mineralization with nutrient enrichment, which potentially contribute to increasing carbon emissions and decreasing DOC at the same time and the significant correlation between CO2 flux and CH4 flux. Our study provided new insights into carbon biogeochemical processes, which may help to predict carbon fate under hydrologic changes of lakes.
Collapse
Affiliation(s)
- Minliang Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mi Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinyue Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cheng Hu
- College of Ecology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wei Xiao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
34
|
Luo Y, Dao G, Zhou G, Wang Z, Xu Z, Lu X, Pan X. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169765. [PMID: 38181948 DOI: 10.1016/j.scitotenv.2023.169765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 μg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 μg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 μg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.
Collapse
Affiliation(s)
- Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Guoquan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhuoxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xinyue Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
35
|
Sang C, Tan L, Cai Q, Ye L. Long-term (2003-2021) evolution trend of water quality in the Three Gorges Reservoir: An evaluation based on an enhanced water quality index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169819. [PMID: 38190913 DOI: 10.1016/j.scitotenv.2023.169819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
The degradation of water quality induced by the construction of large-scale hydraulic projects is one of the primary public concerns; however, it is rarely addressed with long-term field observation data. Here, we reported the long-term (2003-2021) trends, seasonal patterns, and overall condition of water quality of the Three Gorges Reservoir (TGR) with an enhanced water quality index (WQI). Specifically, to emphasize the importance of the biological role in water quality assessment, chlorophyll-a (Chla) was incorporated into WQI, and then a novel workflow using machine learning approach based on Random Forest (RF) model was constructed to develop a minimal water quality index (WQImin). The enhanced WQI indicated an overall "good" water quality condition, exhibiting a gradually improving trend subsequent to the reservoir impoundment in 2003. Meanwhile, the assessment revealed that the water quality has discernible seasonal patterns, characterized by poorer conditions in the spring and summer seasons. Furthermore, the RF model identified Chla, dissolved oxygen (DO), ammonium nitrogen (NH4-N), water temperature (WT), pH, and total nitrogen (TN) as key parameters for the WQImin, with Chla emerging as the most important factor in determining WQImin in our study. Moreover, weighted WQImin models exhibited improved performance in estimating WQI. Our study emphasizes the importance of biological parameters in water quality assessment, and introduces a systematic workflow to facilitate the development of WQImin for accurate and cost-efficient water quality assessment. Furthermore, our study makes a substantial contribution to the advancement of knowledge regarding long-term trends and seasonal patterns in water quality of large reservoirs, which provides a foundational basis for guiding water quality management practices for reservoirs worldwide.
Collapse
Affiliation(s)
- Chong Sang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lin Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
36
|
Chen W, Dou J, Xu X, Ma X, Chen J, Liu X. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133248. [PMID: 38147752 DOI: 10.1016/j.jhazmat.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
β-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of β-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to β-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to β-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release β-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of β-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that β-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Hu C, Xie C, Yang W, Liu Q, Gao Y, Zeng Y, Li H, Sun J, Wang C. Function rather than structure of phytoplankton community reveals changes of water quality in an ecological restored lake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:274. [PMID: 38363428 DOI: 10.1007/s10661-024-12398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Although phytoplankton is well known as robust bioindicators to aquatic environments, their indicating functions based on different community parameters remain to be understood. In order to filter effective bioindicators in aquatic ecosystems, four phytoplankton community parameters including species richness (SR), total biomass (SBP), functional groups (FGBP), and size-fractionated chlorophyll-a (SC) were demonstrated in a subtropical artificial lake with ecological restoration in South China. Our results indicated that all the above four parameters exhibited high sensitivity to environmental variations and illustrated distinct aspects of indicating functions to aquatic environments due to their individual biological characteristics. Based on FGBP, both spatial and temporal differences in phytoplankton community could be identified. SR and SBP only classified the spatial and temporal distributions, respectively, while SC could distinguish the sewage outfalls from other sites. In terms of ecological management, two parameters (SR and FGBP) could distinguish the restored waters from untreated environments as non-point source pollution, and another parameter SC could indicate the sewage outfalls as point source pollution. Therefore, the combination of the above two categories of phytoplankton community parameters could make the strongest indicating functions. Our study provided greater insight into indicating functions of phytoplankton community parameters in an ecological restored lake and enabled better managements in such artificial lakes.
Collapse
Affiliation(s)
- Caiqin Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
| | - Changxin Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300384, China
| | - Wanling Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300384, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China
| | - Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China
| | - Yanyi Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China
| | - Jinhui Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300384, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China.
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, People's Republic of China.
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, People's Republic of China.
| |
Collapse
|
38
|
Zhang W, Sun XL, Yang Q, Guo Y, Cui Y, Xiang Y, Hu B, Wei J, Tu P. In situ forming of PEG-NH 2/dialdehyde starch Schiff-base hydrogels and their application in slow-release urea. Int J Biol Macromol 2024; 256:128355. [PMID: 37995790 DOI: 10.1016/j.ijbiomac.2023.128355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
In this study, a biodegradable Schiff-base hydrogel urea, possessing substantial water retention and certain slow-release ability was designed and synthesized. Firstly, dialdehyde starch (DAS) and amine-terminated polyethylene glycol (PEG-(NH2)2) were synthesized using potato starch and polyethylene glycol. Then, a novel Schiff-base hydrogel (SH) was prepared through the in-situ reaction between the aldehyde group of DAS and the amino group of PEG-(NH2)2. Three SH based slow-release urea, designated as SHU1, SHU2, and SHU3 and distinguished by varying urea content, were obtained using SH as the substrate. Several characterizations and tests were conducted to determine the structure, thermal properties, morphology, swelling properties, sustainable use, water retention, and biodegradation properties of SH. Additionally, the slow-release behavior of SHU was studied. SEM results revealed that SH possessed a porous three-dimensional network structure, with a maximum water absorption capacity of 4440 % ± 6.23 %. Compared to pure urea, SHU exhibited better slow-release performance after 30 days of release in soil, with SHU1 having a residual nitrogen content of specifically 36.01 ± 0.57 % of the initial nitrogen content. A pot experiment with pakchoi substantiated the water retention and plant growth promotion properties of SHU. This study demonstrated a straightforward method for the preparation of starch-based Schiff-base hydrogels as fertilizer carriers.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Liao Sun
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Yang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Guo
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongsheng Xiang
- Lanzhou Petrochemical research center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China.
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wei
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Tu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
39
|
Liu Q, Zhang H, Zhang Y, Li D, Gao Y, Li H, Duan L, Zhang X, Liu F, Xu J, Xu T, Li H. Heterogeneous bacterial communities affected by phytoplankton community turnover and microcystins in plateau lakes of Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166303. [PMID: 37586523 DOI: 10.1016/j.scitotenv.2023.166303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Both phytoplankton and bacteria are fundamental organisms with key ecological functions in lake ecosystems. However, the mechanistic interactions through which phytoplankton community change and bacterial communities interact remain poorly understood. Here, the responses of bacterial communities to the community structure, resource-use efficiency (RUE), and community turnover of phytoplankton and microcystins (MCs) were investigated in Lake Dianchi, Lake Xingyun, and Lake Erhai of Southwestern China across two seasons (May and October 2020). Among phytoplankton, Cyanobacteria was the dominant species in all three lakes and attained greater dominance in October than in May due to variation in the RUE of nitrogen and phosphorus and environmental changes. The production of MCs, including MC_LR, MC_RR and MC_YR, was the result of the massive Cyanobacteria. Decreases in diversity and increases in heterogeneity were observed in the bacterial community structure. Nutrient levels, environmental factors and MCs (especially MC_YR) jointly affected the bacterial community in lakes, namely its diversity and community assembly. The cascading effects in lakes mediated by environmental conditions, phytoplankton community composition, RUE, community turnover, and MCs on bacterial communities were revealed in this study. These findings underscore the importance of relating phytoplankton community change and MCs to the bacterial community, which is fundamental for better understanding the lake ecosystem functioning and potential risks of MCs.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Jing Xu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Tianbao Xu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China
| | - Huayu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| |
Collapse
|
40
|
Sarpong L, Li Y, Cheng Y, Nooni IK. Temporal characteristics and trends of nitrogen loadings in lake Taihu, China and its influencing mechanism at multiple timescales. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118406. [PMID: 37354595 DOI: 10.1016/j.jenvman.2023.118406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Climate warming impact on excessive nitrogen (N) load in sediment favours cyanobacterial blooms in eutrophic waters. The nitrate (NO3--N) and ammonium (NH4+-N) are two forms of N loads that contribute to algae blooms. However, little attention is paid to the impact of environmental factors on N loads variations at different time scales. This paper used a well-calibrated and validated EFDC model to investigate the temporal patterns and trends of ammonium and nitrate from June 2016 to June 2017. This paper presented the relationship and effects between these variations and environmental factors using data from satellite and reanalysis-based observations obtained for six meteorological parameters. The relationship and effects between these variations and environmental factors were also examined at different timescales (i.e., daily, monthly and seasonal scales). Model calibration results indicated that measured values reasonably matched simulated values. The validation results revealed that relative error (RE) values were within an acceptable range. The REs of ammonium at East Taihu (S12) and Xu Lake (S23) sampling sites were 55.83% and 57.61%, while that of nitrate was 24.37% (S12) and 41.08%, respectively. The daily analysis of NH4+-N and NO3--N variations was 7.318 ± 3.876 (g/m2/day) and 0.0275 ± 0.222 (g/m2/day), respectively. The monthly analysis showed NH4+-N and NO3-N range from 2.04 to 12.04 (g/m2/day) and 0.0008 to 0.064 (g/m2/day), respectively. The magnitude NH4+-N and NO3--N varied and showed distinct inter-monthly variations. , The relationship between sediment fluxes and meteorological parameters showed the magnitude of correlation coefficient (r) and strength of correlation varied significantly. At daily scales, the relationship of NH4+-N and NO3--N had a significant positive correlation with all meteorological parameters. At monthly, the correlation coefficient (r) of NH4+-N and NO3-N were heterogenous. At daily and monthly scales, air temperature and wind speed are the main drivers affecting sediment N loads' dynamics; however, the influence of relative humidity, precipitation, and evaporation on N loads are smaller. The study demonstrates the contribution of meteorological conditions to the magnitude and timing of N loadings variability in water bodies. The findings provide more insight into lake ecosystem protection and environmental remediation.
Collapse
Affiliation(s)
- Linda Sarpong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yue Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Isaac Kwesi Nooni
- School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi, 214105, China; School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
41
|
Zhang Y, Shen R, Gu X, Li K, Chen H, He H, Mao Z, Johnson RK. Simultaneous increases of filter-feeding fish and bivalves are key for controlling cyanobacterial blooms in a shallow eutrophic lake. WATER RESEARCH 2023; 245:120579. [PMID: 37688854 DOI: 10.1016/j.watres.2023.120579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Eutrophication and cyanobacterial blooms have severely affected many freshwater ecosystems. We studied the effects of filter-feeding fish and bivalves on algal populations using a mesocosm experiment and long-term monitoring data from Lake Taihu (China). The mesocosm study, comprised of a two-way factorial design with the clam Corbicula fluminea and the fish Aristichthys nobilis at three biomass levels, resulted in lower chlorophyll a (Chl a) in high fish treatments, but no significant differences in the low and medium fish treatments. Chl a also decreased with an increase in clam biomass in the high fish treatments. Moreover, filter-feeding fish resulted in a decrease in algal sizes (e.g., the colony size of Microcystis aeruginosa was inversely related to fish biomass) which likely increased the filter-feeding efficiency of bivalves. Biomass of filter-feeding fish was found to be a key factor driving the synergistic effects of filter-feeding fish and bivalves in waters dominated by Microcystis colonies. Long-term monitoring revealed increasing trends in Chl a concentration, total fish catch per unit effort (TF-CPUE), and filter-feeding fish (FF-CPUE), and slightly decreasing trends in bivalve biomass and nitrogen to phosphorus ratios (N:P) from 2006 to 2016. Bivalve biomass and N:P were negatively correlated with Chl a, while FF-CPUE was not significantly related to Chl a. The current filter-feeding fish biomass in Lake Taihu is estimated to be too low to drive synergistic algal control effects together with bivalves. Furthermore, the lack of filter feeders in Lake Taihu may lead to top-down control by predators that cannot counteract the bottom-up effects of nutrients on phytoplankton. Collectively, these long-term monitoring and experimental data support the combined use filter-feeding fish and bivalves for managing cyanobacteria blooms in Lake Taihu.
Collapse
Affiliation(s)
- You Zhang
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing 210008, China.
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| |
Collapse
|
42
|
Li B, Zhang X, Wu G, Qin B, Tefsen B, Wells M. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production. WATER RESEARCH 2023; 244:120490. [PMID: 37659180 DOI: 10.1016/j.watres.2023.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Research on harmful algal blooms has focused on macronutrients, yet recent research increasingly indicates that understanding micronutrient roles is also important in the development of effective environmental management interventions. Here, we report results on metallophore production from mesocosms amended with copper and iron (enzymatic co-factors in photosynthetic electron transport) to probe questions of how cyanobacteria navigate the divide between copper nutrition, copper toxicity, and issues with iron bioavailability. These experiments utilized Microcystis, Chlorella and Desmodesmus spp., in mono- and mixed-cultures in lake water from a large, hypereutrophic lake (Taihu, China). To initiate experiments, copper and iron amendments were added to mesocosms containing algae that had been acclimated to achieve a state of copper and iron limitation. Mesocosms were analyzed over time for a range of analytes including algal growth parameters, algal assemblage progression, copper/iron concentrations and biomolecule production of chalkophore, siderophore and total microcystins. Community Trajectory Analysis and other multivariate methods were used for analysis resulting in our findings: 1) Microcystis spp. manage copper/iron requirements though a dynamically phased behavior of chalkophore/siderophore production according to their copper and iron limitation status (chalkophore correlates with Cu concentration, R2 = 0.99, and siderophore correlates with the sum of Cu and Fe concentrations, R2 = 0.98). 2) A strong correlation was observed between the production of chalkophore and the cyanobacterial toxin microcystin (R2 = 0.76)-Chalkophore is a predictor of microcystin production. 3) Based on our results and literature, we posit that Microcystis spp. produces microcystin in response to copper/iron availability to manage photosystem productivity and effect an energy-saving status. Results from this work underscore the importance of micronutrients in influencing harmful algal bloom progression and represents a major advance in understanding the ecological function for the cyanobacterial toxin microcystin as a hallmark of micronutrient limitation stress.
Collapse
Affiliation(s)
- Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gongjie Wu
- Department of Biochemistry and Systems Biology, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Boris Tefsen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ, 07043, USA; Meadows Center for Water and the Environment, Texas State University, San Marcos, Texas, 78666, USA.
| |
Collapse
|
43
|
Zhang Y, Shen R, Li K, Li Q, Chen H, He H, Gu X, Mao Z, Johnson RK. Top-down effects of filter-feeding fish and bivalves moderate bottom-up effects of nutrients on phytoplankton in subtropical shallow lakes: An outdoor mesocosm study. Ecol Evol 2023; 13:e10567. [PMID: 37753309 PMCID: PMC10518750 DOI: 10.1002/ece3.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Biomanipulation has been widely used in the ecological restoration of eutrophic lakes for decades. However, biomanipulation is prone to failure if external nutrient loads are not reduced. In order to explore the importance of filter-feeding fish and bivalves on algal control, an outdoor mesocosm experiment was conducted using different nutrient concentrations. Four treatments simulating daily loads of nutrients in Lake Taihu were studied: current, two times, and three times average daily loads of nutrients with both fish (Aristichthys nobilis) and Asian clam (Corbicula fluminea) and as a control current daily loads without fish or bivalves. Results showed that stocking of filter-feeding fish and bivalves (80 g m-3 bighead carp; 200 g cm-2 clams) at two times daily nutrient loads could effectively control water column Chl a concentrations and phytoplankton biomass. At higher nutrient concentrations (TN ≥ 260 μg L-1 d-1; TP ≥ 10 μg L-1 d-1), top-down control of filter-feeding fish and bivalves was less effective and bottom-up effects resulted in significant increases of Chl a concentration. Thus, as phytoplankton biomass in freshwater ecosystems is determined by both the top-down effects of predators and the bottom-up effects of nutrients, external loadings should be controlled when filter-feeding fish and bivalves are used for algal control to ensure the efficacy of biomanipulation.
Collapse
Affiliation(s)
- You Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Huaiyin Normal UniversityHuaiyinChina
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Richard K. Johnson
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
44
|
Lai C, Ma Z, Liu Z, Sun H, Yu Q, Xia F, He X, Bao Q, Han Y, Liu X, He H. Alleviating eutrophication by reducing the abundance of Cyanophyta due to dissolved inorganic carbon fertilization: Insights from Erhai Lake, China. J Environ Sci (China) 2023; 131:68-83. [PMID: 37225382 DOI: 10.1016/j.jes.2022.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 05/26/2023]
Abstract
The eutrophication of lakes is a global environmental problem. Regulating nitrogen (N) and phosphorus (P) on phytoplankton is considered to be the most important basis of lake eutrophication management. Therefore, the effects of dissolved inorganic carbon (DIC) on phytoplankton and its role in mitigating lake eutrophication have often been overlooked. In this study, the relationships between phytoplankton and DIC concentrations, carbon isotopic composition, nutrients (N and P), and hydrochemistry in the Erhai Lake (a karst lake) were investigated. The results showed that when the dissolved carbon dioxide (CO2(aq)) concentrations in the water were higher than 15 µmol/L, the productivity of phytoplankton was controlled by the concentrations of TP and TN, especially by that of TP. When the N and P were sufficient and the CO2(aq) concentrations were lower than 15 µmol/L, the phytoplankton productivity was controlled by the concentrations of TP and DIC, especially by that of DIC. Additionally, DIC significantly affected the composition of the phytoplankton community in the lake (p<0.05). When the CO2(aq) concentrations were higher than 15 µmol/L, the relative abundance of Bacillariophyta and Chlorophyta was much higher than those of harmful Cyanophyta. Thus, high concentrations of CO2(aq) can inhibit harmful Cyanophyta blooms. During lake eutrophication, when controlling N and P, an appropriate increase in CO2(aq) concentrations by land-use changes or pumping of industrial CO2 into water may reduce the proportion of harmful Cyanophyta and promote the growth of Chlorophyta and Bacillariophyta, which may provide effectively assist in mitigating water quality deterioration in surface waters.
Collapse
Affiliation(s)
- Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Hefei University, Hefei 230601, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China.
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Qingchun Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fan Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Sichuan Normal University Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China of Ministry of Education, Chengdu 610066, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| |
Collapse
|
45
|
Chen Z, Huang Y, Shen Y, Zhang J, Deng J, Chen X. Denitrification shifted autotroph-heterotroph interactions in Microcystis aggregates. ENVIRONMENTAL RESEARCH 2023; 231:116269. [PMID: 37257745 DOI: 10.1016/j.envres.2023.116269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Denitrification is the most important process for nitrogen removal in eutrophic lakes and was mostly investigated in lake sediment. Denitrification could also be mediated by cyanobacterial aggregates, yet how this process impacts nitrogen (N) availability and the associated autotroph-heterotroph relationships within cyanobacterial aggregates has not been investigated. In this study, incubation experiments with nitrate amendment were conducted with Microcystis aggregates (MAs). Measurement of nitrogen contents, 16S rRNA-based microbial community profiling and metatranscriptomic sequencing were used to jointly assess nitrogen turnover dynamics, as well as changes in microbial composition and gene expression. Strong denitrification potential was revealed, and maximal N removal was achieved within two days, after which the communities entered a state of severe N limitation. Changes of active microbial communities were further promoted both with regard to taxonomic composition and transcriptive activities. Expression of transportation-related genes confirmed competition for N sources by Microcystis and phycospheric communities. Strong stress response to reactive oxygen species by Microcystis was revealed. Notably, interspecific relationships among Microcystis and phycospheric communities exhibited a shift toward antagonistic interactions, particularly evidenced by overall increased expression of genes related to cell lysis and utilization of cellular materials. Patterns of fatty acid and starch metabolism also suggested changes in carbon metabolism and cross-feeding patterns within MAs. Taken together, this study demonstrated substantial denitrification potential of MAs, which, importantly, further induced changes in both metabolic activities and autotroph-heterotroph interactions. These findings also highlight the key role of nutrient condition in shaping autotroph-heterotroph relationships.
Collapse
Affiliation(s)
- Zhijie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yingying Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China.
| | - Yingshi Shen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Junyi Zhang
- Jiangsu Wuxi Environmental Monitoring Center, Jiangsu, China
| | - Jie Deng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China.
| | - Xuechu Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| |
Collapse
|
46
|
Bai L, Liu X, Wu Y, Cheng H, Wang C, Jiang H, Wang A. Distinct seasonal variations of dissolved organic matter across two large freshwater lakes in China: Lability profiles and predictive modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117880. [PMID: 37080098 DOI: 10.1016/j.jenvman.2023.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Biological lability of dissolved organic matter (DOM) is a crucial indicator of carbon cycle and contaminant attenuation in freshwater lakes. In this study, we employed a multi-stage plug-flow bioreactor and spectrofluorometric indices to characterize the seasonal variations in DOM composition and lability across Poyang Lake (PY) and Lake Taihu (TH), two large freshwater lakes in China with distinct hydrological seasonality. Our findings showed that the export of floodplain-derived organics and river-lake interaction led to a remarkable increase in terrestrial aromatic and humic-like DOM with high molecular weights and long turnover times in PY. Consequently, the labile fraction was extremely low (average LDOC% of 3%) during the rising-to-flood season (spring and summer). Conversely, autochthonous production in TH considerably enriched semi-labile (average SDOC% of 26%) and biodegradable DOM (average BDOC% of 34%) during the phytoplankton bloom to post-bloom season (summer and autumn). This was reflected by the accumulation of low-light-absorbing and protein-like components with high biological and fluorescence indices. In the dry and non-bloom season (winter), the better preservation of humic substances maintained the high molecular weight and humic degree of DOM in PY, while the decay of aquatic plants strengthened autochthonous production, resulting in a similar BDOC% of PY samples (23%-34%) to TH samples (18%-33%). We further applied partial least squares regression using DOM optical indices as predictive proxies, which generated a greater prediction strength for BDOC% (R2 = 0.80) compared to SDOC% (R2 = 0.57) and LDOC% (R2 = 0.28). The regression model identified aromaticity (SUVA254) as the most effective and negative predictor and low molecular weight (A250/A365) as the highly and positively influential factor. Our study provides new evidence that the seasonality of DOM lability profiles is regulated by the trade-off between flow-related variation and phytoplankton production, and presents an approach to describe and predict DOM lability across freshwater lakes.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanqiang Wu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyu Cheng
- Zhengzhou Architectural Design Institute, Zhengzhou, 450001, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
47
|
Nwankwegu AS, Yang G, Zhang L, Xie D, Ohore OE, Adeyeye OA, Li Y, Yao X, Song Z, Yonas MW. Ecosystem anthropogenic enrichments enhance Chroococcus abundance and suppress Anabaena during cyanobacterial-dominated spring blooms in the Pengxi River, Three Gorges Reservoir, China. MARINE POLLUTION BULLETIN 2023; 193:115141. [PMID: 37295313 DOI: 10.1016/j.marpolbul.2023.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Taxa-specific responses to the increasing anthropogenic eutrophication offer promising insights for mitigating harmful algal blooms (HABs) in freshwaters. The present study evaluated the HABs species dynamics in response to the ecosystem anthropogenic enrichment during cyanobacterial-dominated spring HABs in the Pengxi River, Three Gorges Reservoir, China. Results show significant cyanobacterial dominance with a relative abundance (RA = 76.54 %). The ecosystem enrichments triggered shifts in the HABs community structure from Anabaena to Chroococcus, especially in the culture involving iron (Fe) addition (RA = 66.16 %). While P-alone enrichment caused a dramatic increase in the aggregate cell density (2.45 × 108 cells L-1), the multiple enrichment (NPFe) led to maximum biomass production (as chl-a = 39.62 ± 2.33 μgL-1), indicating that nutrient in conjunction with the HABs taxonomic characteristics e.g., tendency to possess high cell pigment contents rather than cell density can potentially determine massive biomass accumulations during HABs. The stimulation of growth as biomass production demonstrated by both P-alone and the multiple enrichments, NPFe indicates that although P exclusive control is feasible in the Pengxi ecosystem, it can only guarantee a short-term reduction in HABs magnitude and duration, thus a lasting HABs mitigation measure must consider a policy recommendation involving multiple nutrient management, especially N and P dual control strategy. The present study would adequately complement the concerted effort in developing a rational predictive framework for freshwater eutrophication management and HABs mitigations in the TGR and elsewhere with similar anthropogenic stressors.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China; College of Environment, Hohai University, No.1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Guanglang Yang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China.
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China
| | - Okugbe E Ohore
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Oluwafemi Adewole Adeyeye
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China
| | - Yiping Li
- College of Environment, Hohai University, No.1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Xuexing Yao
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zenghui Song
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Muhammad W Yonas
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
48
|
Lv C, Tian Y, Huang L, Shan H, Chou Q, Zhang W, Su H, Li K, Zhang X, Ni L, Cao T, Jeppesen E. Buffering capacity of submerged macrophytes against nutrient pulses increase with its coverage in shallow lakes. CHEMOSPHERE 2023; 332:138899. [PMID: 37169089 DOI: 10.1016/j.chemosphere.2023.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangliang Huang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Erik Jeppesen
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Aarhus University, Department of Ecoscience, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
49
|
Chen X, Liu L, Yan W, Li M, Li Q, He X, Zhao Z, Liu R, Zhang S, Huang Y, Jiang F. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments. ENVIRONMENTAL RESEARCH 2023; 231:116060. [PMID: 37149024 DOI: 10.1016/j.envres.2023.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In this study, CaO2 was used as a capping material to control the release of Phosphate (P) and tungsten (W) from the sediment due to its oxygen-releasing and oxidative properties. The results revealed significant decreases in SRP and soluble W concentrations after the addition of CaO2. The mechanisms of P and W adsorption by CaO2 were mainly chemisorption and ligand exchange mechanisms. In addition, the results showed significant increases in HCl-P and amorphous and poorly crystalline(oxyhydr)oxides bound W after the addition of CaO2. The highest reduction rates of sediment SRP and soluble W release were 37 and 43%, respectively. Furthermore, CaO2 can promote the redox of iron (Fe) and manganese (Mn). On the other hand, a significant positive correlation was observed between SRP/soluble W and soluble Fe (II) and between SRP/soluble W and soluble Mn, indicating that the effects of CaO2 on Fe and Mn redox play a crucial role in controlling P and W releases from sediments. However, the redox of Fe plays a key role in controlling sediment P and W release. Therefore, CaO2 addition can simultaneously inhibit sediment internal P and W release.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Inst Environm Sci, Minist Ecol & Environm, Nanjing, 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
50
|
Kong J, Zhou Z, Li Y, Liu X, Wen C, Xie J. Determination of nitrate sources in a karst plateau reservoir based on nitrogen and oxygen isotopes. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2023; 59:142-160. [PMID: 36779792 DOI: 10.1080/10256016.2023.2176850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Investigating the sources, migration and proportional contribution of nitrate is essential to effectively protect water quality. δ15N-NO3-, δ18O-NO3- and Stable Isotope Analysis in R (SIAR) were used to qualitatively and quantitatively analyse nitrate sources in the Pingzhai Reservoir water body. The values of δ15N-NO3- and δ18O-NO3- in water vary with season. Soil organic nitrogen and chemical fertilisers are the main sources of nitrate in autumn, while domestic sewage and livestock manure are the primary sources of nitrate in winter and spring. The SIAR results showed that chemical fertilisers, livestock manure, sewage, and soil organic nitrogen had the highest proportional contribution. In autumn, the proportional contribution of chemical fertilisers to river and reservoir were 47 and 51 %. During winter, the proportional contributions of livestock manure and sewage to river and reservoir were 53 and 68 %, respectively, and in spring 49 and 68 %, respectively. Considering the fragility of karst ecosystems, strict measures should be formulated for the use of chemical fertilisers and standards for sewage discharge should be raised. Control nitrogen input from agricultural activities and prevent water quality deterioration.
Collapse
Affiliation(s)
- Jie Kong
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| | - Zhongfa Zhou
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| | - Yongliu Li
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| | - Xianmei Liu
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| | - Chaocheng Wen
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| | - Jiangting Xie
- School of Geography & Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, People's Republic of China
| |
Collapse
|