1
|
Partal R, Murat Hocaoglu S, Yigit NÖ. Acute inhibition of hospital and medical laboratory wastewater on activated sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:262-271. [PMID: 35849543 DOI: 10.1080/09593330.2022.2103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sustainable operation is an essential challenge in many municipal wastewater treatment plants. Among many types of wastewater mixed in a sewer, healthcare wastewaters need special attention due to their hazardous substance content, which can be toxic to activated sludge. This study compared the acute inhibitory effects of healthcare wastewaters (HW) and medical laboratory wastewater (MLW) on conventional activated sludge (CAS) and membrane bioreactor (MBR). The sensitivity test showed that nitrifying bacteria (NBs) in MBR sludge have higher resistance to acute toxicity than the CAS. Compared with HW, MLW caused much higher inhibition on both sludges. When the ratio of HW in the tested domestic wastewater was 10%, inhibition of NBs was 39% in AS, while it was 31% in MBR. When the ratio of MLW in the tested domestic wastewater was only 10%, 72% of NBs in AS and 57% of NBs in MBR were already inhibited. The higher resistance of NB in MBR may be explained by the diversity of microorganisms in the MBR operated at high sludge ages. The findings of this study may be used to estimate the acute inhibition effect of HW and MLW discharged directly to the sewage at higher loads.
Collapse
Affiliation(s)
| | | | - Nevzat Özgu Yigit
- Faculty of Engineering, Department of Environmental Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Zhang Y, Hu W, Lin L, Bu S, Guan Z, Zhang J, Wang Q. Enhanced treatment of sludge drying condensate by A/O-MBR process: Microbial activity and community structure. CHEMOSPHERE 2023; 340:139911. [PMID: 37611752 DOI: 10.1016/j.chemosphere.2023.139911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/19/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With the rapid increase of sludge production from sewage treatment plants, the treatment of sludge drying condensate rich in a large amount of pollutants urgently needs to be addressed. Due to the unique characteristics of sludge drying condensate (high ammonia nitrogen and COD concentration), there are almost no reports on biological treatment methods specifically targeting sludge drying condensate. In this study, A/O-MBR process was proposed for sludge drying condensate treatment and the effects of ammonia nitrogen loads, alkalinity and aeration intensity were explored. Experimental results show that under the ammonia nitrogen load of 0.35 kg NH4+-N/(m3·d) and the aeration intensity of 0.5 m3/(m2·min), the removal rate of COD and NH4+-N could reach 94% and 99.86% with the addition of alkalinity (m(NaHCO3): m(NH4+-N) = 7:1), respectively. The distribution of living and dead microbial cells in the activated sludge of three reactors also proved that the supplement of alkalinity in the influent can ensure the feasible living conditions for microorganisms. In addition to traditional nitrifying bacteria, through the supplementation of alkalinity and the reduction of aeration intensity, the system had also domesticated high abundance heterogeneous nitrification aerobic denitrification (HN-AD) and aerobic denitrification bacteria (both more than 10% of the total bacterial count). The denitrification process of sludge drying condensate was simplified and the denitrification efficiency was greatly improved. The findings of this study could provide important theoretical guidance for the biological treatment process of sludge drying condensate.
Collapse
Affiliation(s)
- Yin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Lifeng Lin
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Shiying Bu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhangqin Guan
- Shanghai Zizheng Environmental Technology Co., Ltd, Shanghai, 200086, China
| | - Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Daud SM, Noor ZZ, Mutamim NSA, Baharuddin NH, Aris A. In-depth insight on microbial electrochemical systems coupled with membrane bioreactors for performance enhancement: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91636-91648. [PMID: 37518846 DOI: 10.1007/s11356-023-28975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
A conventional activated sludge (CAS) system has traditionally been used for secondary treatment in wastewater treatment plants. Due to the high cost of aeration and the problem of sludge treatment, researchers are developing alternatives to the CAS system. A membrane bioreactor (MBR) is a technology with higher solid-liquid separation efficiency. However, the use of MBR is limited due to inevitable membrane fouling and high energy consumption. Membrane fouling requires frequent cleaning, and MBR components must be replaced, which reduces membrane lifetime and operating costs. To overcome the limitations of the MBR system, a microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system has attracted the interest of researchers. The design of the novel bioelectrochemical membrane reactor (BEMR) can effectively couple microbial degradation in the microbial electrochemical system (MES) and generate a microelectric field to reduce and alleviate membrane fouling in the MBR system. In addition, the coupling system combining an MES and an MBR can improve the efficiency of COD and ammonium removal while generating electricity to balance the energy consumption of the system. However, several obstacles must be overcome before the MFC-MBR coupling system can be commercialised. The aim of this study is to provide critical studies of the MBR, MES and MFC-MBR coupling system for wastewater treatment. This paper begins with a critical discussion of the unresolved MBR fouling problem. There are detailed past and current studies of the MES-MBR coupling system with comparison of performances of the system. Finally, the challenges faced in developing the coupling system on a large scale were discussed.
Collapse
Affiliation(s)
- Siti Mariam Daud
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia.
| | - Zainura Zainon Noor
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
- Faculty of School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Noor Sabrina Ahmad Mutamim
- Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Leburaya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Nurul Huda Baharuddin
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Azmi Aris
- Faculty of School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
4
|
Wang Y, Li J, Zhu J. Comparative analysis of membrane fouling mechanisms induced by operation modes of membrane bioreactors with aerobic granular sludge. Heliyon 2023; 9:e17973. [PMID: 37539310 PMCID: PMC10395347 DOI: 10.1016/j.heliyon.2023.e17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
This experimental work investigated fouling characteristics induced by two different configurations of membrane bioreactor (MBR), which are submerged MBR and sidestream MBR with aerobic granular sludge. Submerged membrane bioreactor with granular sludge (Sub-MGSBR) ran the longest operation time 61 days with a steady overall TMP increase rate; Sidestream membrane bioreactor with granular sludge (SS-MGSBR) performed only 39 days, which exhibited Sub-MGSBR had more efficiently retarding membrane fouling. In both membrane bioreactors with flocculent sludge (MFSBRs) as a control, membrane foulants were compact, and cake resistance was the dominant fouling factor. In MGSBRs, however, pore blocking resistance turned out the key fouling factor. Especially in Sub-MGSBR, it went beyond 75%, and there was the most conglomeration of microorganisms of foulants with the highest porosity. Extracellular polymeric substances (EPS) content of foulants proved membrane fouling was hardly just for granules accumulation into cake but microorganisms' growth in MGSBRs.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Hydraulic Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, PR China
| | - Jianwei Li
- School of Hydraulic Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, PR China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
5
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
6
|
Krishnan RY, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159681. [PMID: 36302412 DOI: 10.1016/j.scitotenv.2022.159681] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have been identified as an emerging pollutant due to their irrefutable prevalence in air, soil, and particularly, the aquatic ecosystem. Wastewater treatment plants (WWTPs) are seen as the last line of defense which creates a barrier between microplastics and the environment. These microplastics are discharged in large quantities into aquatic bodies due to their insufficient containment during water treatment. As a result, WWTPs are regarded as point sources of microplastics release into the environment. Assessing the prevalence and behavior of microplastics in WWTPs is therefore critical for their control. The removal efficiency of microplastics was 65 %, 0.2-14 %, and 0.2-2 % after the successful primary, secondary and tertiary treatment phases in WWTPs. In this review, other than conventional treatment methods, advanced treatment methods have also been discussed. For the removal of microplastics in the size range 20-190 μm, advanced treatment methods like membrane bioreactors, rapid sand filtration, electrocoagulation and photocatalytic degradation was found to be effective and these methods helps in increasing the removal efficiency to >99 %. Bioremediation based approaches has found that sea grasses, lugworm and blue mussels has the ability to mitigate microplastics by acting as a natural trap to the microplastics pollutants and could act as candidate species for possible incorporation in WWTPs. Also, there is a need for controlling the use and unchecked release of microplastics into the environment through laws and regulations.
Collapse
Affiliation(s)
- Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
7
|
Xu H, Deng Y, Zou J, Zhang K, Li X, Yang Y, Huang S, Liu ZQ, Wang Z, Hu C. Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154972. [PMID: 35367558 DOI: 10.1016/j.scitotenv.2022.154972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The responses of the operational performance and bacterial community structure of a nitrification membrane bioreactor (MBR) to elevated ammonia loading rate (ALR) were investigated. Effective nitrification performance was achieved at high ALR up to 3.43 kg NH4+-N/m3·d, corresponding to influent NH4+-N concentration of 2000 mg/L. Further increasing influent NH4+-N concentration to 3000 mg/L, the MBR system finally became completely inefficient due to the combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification. Ammonia-oxidizing bacteria (AOB) Nitrosomonas were enriched with the increase of ALR. The relative abundance of Nitrosomonas in the sludge with ALR of 2.57 kg NH4+-N/m3·d was up to 14.82%, which were 9-fold and 53-fold higher than that in seed sludge and the sludge with ALR of 0.10 kg NH4+-N/m3·d, respectively. The phylogenetic analysis of AOB amoA genes showed that Nitrosomonas europaea/mobilis lineage are chiefly responsible for catalyzing ammonia oxidation at high ALRs.
Collapse
Affiliation(s)
- Huaihao Xu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuepeng Deng
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jie Zou
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kaoming Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiuying Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yunhua Yang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shuangqiu Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Paśmionka IB, Gospodarek J. Assessment of the Impact of Selected Industrial Wastewater on the Nitrification Process in Short-Term Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053014. [PMID: 35270705 PMCID: PMC8910604 DOI: 10.3390/ijerph19053014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Many chemical compounds can inhibit the nitrification process, especially organic compounds used in the chemical industry. This results in a decrease in the nitrification intensity or even a complete termination of this process. As the technological design of the selected municipal and industrial wastewater treatment plant (WWTP) assumed the dephosphation process, without taking into account nitrification, it was necessary to reduce the concentration of ammonium nitrogen in the treated sewage supplied to the Vistula River. Therefore, the aim of the research was to determine the inhibition of nitrification in the activated sludge method under the influence of industrial wastewater from the production of various organic compounds and to select the most toxic wastewater in relation to nitrifiers. The assessment of nitrification inhibition was carried out on the basis of the method of short-term (4-h) impact of the tested sewage on nitrifying bacteria in the activated sludge. The research covered nine different types of chemical sewage, including wastewater from the production of synthetic rubbers, styrene plastics, adhesives, solvents and emulsifiers. The nitrification process was inhibited to the highest degree by wastewater from the production of styrene-butadiene rubbers (72%). Only wastewater from the production of methacrylate (polymethyl methacrylate) had the lowest degree of inhibition: 16%. These wastewaters also have a toxic effect on the entire biocenosis and adversely affect the structure of activated sludge flocs. The attempts to filter toxic wastewater through the ash basins significantly relieved the inhibition of nitrification.
Collapse
|
9
|
Xu H, Deng Y, Li X, Liu Y, Huang S, Yang Y, Wang Z, Hu C. Effect of Increasing C/N Ratio on Performance and Microbial Community Structure in a Membrane Bioreactor with a High Ammonia Load. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8070. [PMID: 34360363 PMCID: PMC8345800 DOI: 10.3390/ijerph18158070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Herein, the responses of the operational performance of a membrane bioreactor (MBR) with a high ammonium-nitrogen (NH4+-N) load and microbial community structure to increasing carbon to nitrogen (C/N) ratios were studied. Variation in the influent C/N ratio did not affect the removal efficiencies of chemical oxygen demand (COD) and NH4+-N but gradually abated the ammonia oxidization activity of sludge. The concentration of the sludge in the reactor at the end of the process increased four-fold compared with that of the seed sludge, ensuring the stable removal of NH4+-N. The increasing influent COD concentration resulted in an elevated production of humic acids in soluble microbial product (SMP) and accelerated the rate of membrane fouling. High-throughput sequencing analysis showed that the C/N ratio had selective effects on the microbial community structure. In the genus level, Methyloversatilis, Subsaxibacter, and Pseudomonas were enriched during the operation. However, the relative abundance of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) involved in nitrification declined gradually and were decreased by 86.54 and 90.17%, respectively, with influent COD increasing from 0 to 2000 mg/L. The present study offers a more in-depth insight into the control strategy of the C/N ratio in the operation of an MBR with a high NH4+-N load.
Collapse
Affiliation(s)
- Huaihao Xu
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| | - Yuepeng Deng
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| | - Xiuying Li
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| | - Yuxian Liu
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
- Linköping University-Guangzhou University Research Center on Urban Sustainable Development, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuangqiu Huang
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| | - Yunhua Yang
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Guangzhou Key Laboratory for Clean Energy and Materials, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (H.X.); (Y.D.); (X.L.); (S.H.); (Y.Y.); (C.H.)
| |
Collapse
|
10
|
Zhao X, Jiang J, Zhou Z, Zheng Y, Shao Y, Zuo Y, Ren Y, An Y. Responses of microbial structures, functions and metabolic pathways for nitrogen removal to different hydraulic retention times in anaerobic side-stream reactor coupled membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 329:124903. [PMID: 33662853 DOI: 10.1016/j.biortech.2021.124903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Synchronous sludge reduction and nitrogen removal have attracted increasing attention, while the underlying mechanisms of diverse nitrogen metabolism within the complicated processes remain unclear. Four anoxic/oxic membrane bioreactors, three of which were upgraded by anaerobic side-stream reactors (ASSR) and carriers (APSSR-MBRs), were operated to determine effects of hydraulic retention time of ASSRs. APSSR-MBRs achieved more significant nitrogen removal and higher nitrate uptake rate because of more denitrifying bacteria and the supernumerary release of secondary substrates. Ammonia uptake rate showed the diverse Nitrospira preceded over anaerobic decay and sulfide inhibition in the ASSR, and made the reactor exhibit higher nitrification capacity. Metagenomic analysis indicated that APSSR-MBRs showed higher abundances of genes related to nitrogen consumption processes, and higher abundances on the carriers, confirming their pivotal roles in nitrogen metabolism. This study provided novel perspectives to build a bridge between process model and nitrogen metabolism in the sludge reduction system..
Collapse
Affiliation(s)
- Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuqing Ren
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
11
|
Liu W, Zhang J, Liu H, Guo X, Zhang X, Yao X, Cao Z, Zhang T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. ENVIRONMENT INTERNATIONAL 2021; 146:106277. [PMID: 33227584 DOI: 10.1016/j.envint.2020.106277] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/12/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered to be the main sources of microplastic contaminants in the aquatic environment, and an in-depth understanding of the behavior of microplastics among the critical treatment technologies in WWTPs is urgently needed. In this paper, the characteristics and removal of microplastics in 38 WWTPs in 11 countries worldwide were reviewed. The abundance of microplastics in the influent, effluent, and sludge was compared. Then, based on existing data, the removal efficiency of microplastics in critical treatment technologies were compared by quantitative analysis. Particularly, detailed mechanisms of critical treatment technologies including primary settling treatment with flocculation, bioreactor system, advanced oxidation and membrane filtration were discussed. Thereafter, the abundance load and ecological hazard of the microplastics discharged from WWTPs into the aquatic and soil environments were summarized. The abundance of microplastics in the influent ranged from 0.28 particles L-1 to 3.14 × 104 particles L-1, while that in the effluent ranged from 0.01 particles L-1 to 2.97 × 102 particles L-1. The microplastic abundance in the sludge within the range of 4.40 × 103-2.40 × 105 particles kg-1. In addition, there are still 5.00 × 105-1.39 × 1010 microplastic particles discharged into the aquatic environment each day Moreover, among the critical treatment technologies, the quantitative analysis revealed that filter-based treatment technologies exhibited the best microplastics removal efficiency. Fibers and microplastics with large particle sizes (0.5-5 mm) were easily separated by primary settling. Polyethene and small-particle size microplastics (<0.5 mm) were easily trapped by bacteria in the activated sludge of bioreactor system. The negative impact of microplastics from wastewater treatment plant was worthy of attention. Moreover, unknown transformation products of microplastics and their corresponding toxicity need in-depth research.
Collapse
Affiliation(s)
- Weiyi Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hang Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaonan Guo
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiyue Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Bayo J, López-Castellanos J, Olmos S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. MARINE POLLUTION BULLETIN 2020; 156:111211. [PMID: 32365007 DOI: 10.1016/j.marpolbul.2020.111211] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 05/26/2023]
Abstract
This paper discusses about the role of two different wastewater treatment technologies in the abatement of microplastics (MPs) from the final effluent of an urban wastewater treatment plant (WWTP); i.e., membrane bioreactor technology (MBR) and rapid sand filtration (RSF). For this purpose, a WWTP with these two technologies was monitored for 18 months. The average microplastic concentration was 4.40 ± 1.01 MP L-1 for the influent, 0.92 ± 0.21 MP L-1 for MBR, and 1.08 ± 0.28 MP L-1 for RSF, without statistically significant differences for MPs removal between both technologies (F-test = 0.195, p = 0.661). The main MP forms isolated in our study were fibers (1.34 ± 0.23 items L-1), followed by films (0.59 ± 0.24 items L-1), fragments (0.20 ± 0.09 items L-1), and beads (0.02 ± 0.01 items L-1). All of them probed to be statistically significant reduced after both technologies, but without statistically significant differences between them. The MP removal efficiency was 79.01% and 75.49% for MBR and RSF, respectively, although higher for microplastic particulate forms (MPPs), 98.83% and 95.53%, than for fibers, 57.65% and 53.83% for MBR and RSF, respectively, displaying a selective removal of particulate forms against microfibers. Fourteen different plastic polymers were identified in the influent, only persisting low-density polyethylene (LDPE), nylon (NYL), and polyvinyl (PV) in RSF effluent, and melamine (MUF) after MBR treatment. The MP size ranged from 210 μm, corresponding to NYL fragment form in the influent, to 6.3 mm, corresponding to a red microfiber also from the influent. The maximum MP average size significantly decreased from MBR (1.39 ± 0.15 mm), to RSF (1.15 ± 0.08 mm) and influent (1.05 ± 0.05 mm) (F-test = 4.014, p = 0.019), exhibiting the fiber selection carried out by these advanced technologies for wastewater treatment.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44, E-30203 Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44, E-30203 Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44, E-30203 Cartagena, Spain
| |
Collapse
|
13
|
Enrichment of Denitrifying Bacterial Community Using Nitrite as an Electron Acceptor for Nitrogen Removal from Wastewater. WATER 2019. [DOI: 10.3390/w12010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aimed to enrich a denitrifying bacterial community for economical denitrification via nitrite to provide the basic objects for enhancing nitrogen removal from wastewater. A sequencing batch reactor (SBR) with continuous nitrite and acetate feeding was operated by reasonably adjusting the supply rate based on the reaction rate, and at a temperature of 20 ± 2 °C, pH of 7.5 ± 0.2, and dissolved oxygen (DO) of 0 mg/L. The results revealed that the expected nitrite concentration can be achieved during the whole anoxic reaction period. The nitrite denitrification rate of nitrogen removal from synthetic wastewater gradually increased from approximately 10 mg/(L h) to 275.35 mg/(L h) over 12 days (the specific rate increased from 3.83 mg/(g h) to 51.80 mg/(g h)). Correspondingly, the chemical oxygen demand/nitrogen (COD/N) ratio of reaction decreased from 7.9 to 2.7. Both nitrite and nitrate can be used as electron acceptors for denitrification. The mechanism of this operational mode was determined via material balance analysis of substrates in a typical cycle. High-throughput sequencing showed that the main bacterial community was related to denitrification, which accounted for 84.26% in the cultivated sludge, and was significantly higher than the 2.16% in the seed sludge.
Collapse
|
14
|
Zhao N, Angelidaki I, Zhang Y. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell - Nitrification system. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
The aim of the present work was to investigate the behavior of a membrane bioreactor (MBR) system for the treatment of oily wastewater. A bench scale MBR was fed with synthetic wastewater containing diesel fuel. Organic carbon, hydrocarbon and ammonium removal, kinetic constants, extracellular polymeric substances production, and membrane fouling rates were monitored. The MBR plant was operated for more than 200 days, and the results highlighted good carbon removal and nitrification, suggesting a sort of biomass adaptation to hydrocarbons. Membrane fouling analysis showed an increase in total resistance, likely due to hydrocarbons, which caused an irreversible fouling (pore blocking) mainly due to oil deposition.
Collapse
|
16
|
Güven D, Hanhan O, Aksoy EC, Insel G, Çokgör E. Impact of paint shop decanter effluents on biological treatability of automotive industry wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:61-67. [PMID: 28212510 DOI: 10.1016/j.jhazmat.2017.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
A lab-scale Sequencing Batch Reactor (SBR) was implemented to investigate biological treatability and kinetic characteristics of paint shop wastewater (PSW) together with main stream wastewater (MSW) of a bus production factory. Readily biodegradable and slowly biodegradable COD fractions of MWS were determined by respirometric analysis: 4.2% (SS), 10.4% (SH) and 59.3% (XS). Carbon and nitrogen removal performance of the SBR feeding with MSW alone were obtained as 89% and 58%, respectively. When PSW was introduced to MSW, both carbon and nitrogen removal were deteriorated. Model simulation indicated that maximum heterotrophic growth rate decreased from 7.2 to 5.7day-1, maximum hydrolysis rates were reduced from 6 to 4day-1 (khS) and 4 to 1day-1 (khX). Based on the dynamic model simulation for the evaluation of nitrogen removal, a maximum specific nitrifier growth rate was obtained as 0.45day-1 for MSW feeding alone. When PSW was introduced, nitrification was completely inhibited and following the termination of PSW addition, nitrogen removal performance was recovered in about 100 days, however with a much lower nitrifier growth rate (0.1day-1), possibly due to accumulation of toxic compounds in the sludge. Obviously, a longer recovery period is required to ensure an active nitrifier community.
Collapse
Affiliation(s)
- Didem Güven
- Istanbul Technical University, Applied Biopolymer and Bioplastics Production Technologies Research Center, 34469, Maslak, Istanbul, Turkey.
| | - Oytun Hanhan
- Daimler Buses EvoBus GmbH, Carl-Zeiss-Str. 2, 89231 Neu-Ulm, Germany.
| | | | - Güçlü Insel
- Istanbul Technical University, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey.
| | - Emine Çokgör
- Istanbul Technical University, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
17
|
Mannina G, Cosenza A, Di Trapani D, Laudicina VA, Morici C, Ødegaard H. Nitrous oxide emissions in a membrane bioreactor treating saline wastewater contaminated by hydrocarbons. BIORESOURCE TECHNOLOGY 2016; 219:289-297. [PMID: 27498010 DOI: 10.1016/j.biortech.2016.07.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The joint effect of wastewater salinity and hydrocarbons on nitrous oxide emission was investigated. The membrane bioreactor pilot plant was operated with two phases: i. biomass acclimation by increasing salinity from 10gNaClL(-1) to 20gNaClL(-1) (Phase I); ii. hydrocarbons dosing at 20mgL(-1) with a constant salt concentration of 20gNaClL(-1) (Phase II). The Phase I revealed a relationship between nitrous oxide emissions and salinity. During the end of the Phase I, the activity of nitrifiers started to recover, indicating a partial acclimatization. During the Phase II, the hydrocarbon shock induced a temporary inhibition of the biomass with the suppression of nitrous oxide emissions. The results revealed that the oxic tank was the major source of nitrous oxide emission, likely due to the gas stripping by aeration. The joint effect of salinity and hydrocarbons was found to be crucial for the production of nitrous oxide.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vito Armando Laudicina
- Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Claudia Morici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Hallvard Ødegaard
- NTNU - Norwegian University of Science and Technology, Department of Hydraulic and Environmental Engineering, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Ji B, Wei T, Chen W, Fan J, Wang J, Zhu L, Yang K. Optimization of operation conditions for domestic sewage treatment using a sequencing batch biofilm filter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1492-1498. [PMID: 27685978 DOI: 10.2166/wst.2016.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A sequencing batch biofilm filter (SBBF) was applied to treat domestic sewage. The bioreactor consisted of fibrous filler in the upper part and ceramsite filter media in the lower part. The impacts of the most important factors including dissolved oxygen (DO), water temperature and hydraulic retention time (HRT) were evaluated on contaminants removal during the operation of the SBBF. Changes in DO (1.5-4.0 mg/L) and water temperature (2-30 °C) had little effect on the removal of chemical oxygen demand (COD), but had a greater impact on the removal of total nitrogen (TN) and NH4+-N. Changes in HRT (8-14 h) had little effect on the removal of COD, but had a greater impact on the removal of TN, NH4+-N and total phosphorus. The optimal operating parameters for the SBBF were as follows: DO of 2-3 mg/L, water temperature above 10 °C, and HRT of 10-13 h. Furthermore, a simple kinetic model was developed, reflecting the relationship between COD and HRT.
Collapse
Affiliation(s)
- Bin Ji
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Taoyuan Wei
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Wei Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Jie Fan
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Jian Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 2016; 148:272-80. [DOI: 10.1016/j.carbpol.2016.04.070] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/07/2016] [Accepted: 04/17/2016] [Indexed: 12/14/2022]
|
20
|
Wang Z, Luo G, Li J, Chen SY, Li Y, Li WT, Li AM. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading. BIORESOURCE TECHNOLOGY 2016; 216:714-721. [PMID: 27290667 DOI: 10.1016/j.biortech.2016.05.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000mg/L NH(+)4-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress.
Collapse
Affiliation(s)
- Zhu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Yu Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Chiarello M, Minetto L, Giustina SVD, Beal LL, Moura S. Popular pharmaceutical residues in hospital wastewater: quantification and qualification of degradation products by mass spectroscopy after treatment with membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16079-16089. [PMID: 27146545 DOI: 10.1007/s11356-016-6766-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of drugs in wastewater has been considered an imminent risk to the population, for the treatments used are usually ineffective. The presence of four popular drug residues (metformin, paracetamol, tetracycline, and enalapril) in hospital effluents, by using ultra-fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) with electrospray (ESI) ionization, and removal/degradation by membrane bioreactor (MBR) system are investigated in this study. For analysis method, all standard calibration curves showed satisfactory linearity (R (2) ≥ 0.993) within a relatively wide range. The recovery was between 70.4 and 105.0 %, and the relative standard deviation (RSD) values were within the ranges of 8.2 and 13.5 %. The effluent samples were collected at the end of the process treated in a bench-scale MBR treatment system and preconcentrated on solid-phase extraction (SPE) cartridges. Following that procedure, the chemical analysis demonstrated that the MBR system was effective in enalapril 94.3 ± 7.63 %, tetracycline 99.4 ± 0.02 %, and paracetamol 98.8 ± 0.86 % removal. However, the polar metformin was less effectively removed (35.4 ± 12.49 %). Moreover, the degradation products were investigated using high-resolution mass spectrometry (HRMS) by quadrupole-time of flight (Q-TOF), which has been indicated a tetracycline metabolite. In order to investigate the environmental impact, the wastewater potential risk was evaluated. The risk quotient (RQ) by measure environmental concentration (MEC) and its predicted no effect concentration (PNEC) ratio (RQ = MEC/PNEC) was between 0.003 (enalapril) to 0.815 (paracetamol). Finally, this work demonstrates that UFLC-MS/MS (ESI-Q) is a sensitive and selective method for drug analysis in wastewater and with ESI-Q-TOF has the accuracy required for determining the degradation products of these compounds. Also, it indicated that membrane bioreactor systems represent a new generation of processes that have proved to outperform conventional treatment showing better effluent quality. The removal capacity studied in this work demonstrates the efficiency of this process.
Collapse
Affiliation(s)
- M Chiarello
- LBIOP-Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil
- LATAM-Laboratory of Environmental Technology, Technology Department, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil
| | - L Minetto
- LBIOP-Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil
| | - S V Della Giustina
- LATAM-Laboratory of Environmental Technology, Technology Department, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil
| | - L L Beal
- LATAM-Laboratory of Environmental Technology, Technology Department, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil
| | - S Moura
- LBIOP-Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, 1130, Francisco Getúlio Vargas St., CEP 95070-560, Caxias do Sul, Brazil.
| |
Collapse
|
22
|
Structural characteristics and development of the cake layer in a dynamic membrane bioreactor. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Zyoud SH, Al-Rawajfeh AE, Shaheen HQ, Fuchs-Hanusch D. Benchmarking the scientific output of industrial wastewater research in Arab world by utilizing bibliometric techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10288-300. [PMID: 26996912 PMCID: PMC4871912 DOI: 10.1007/s11356-016-6434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/07/2016] [Indexed: 02/07/2023]
Abstract
Rapid population growth, worsening of the climate, and severity of freshwater scarcity are global challenges. In Arab world countries, where water resources are becoming increasingly scarce, the recycling of industrial wastewater could improve the efficiency of freshwater use. The benchmarking of scientific output of industrial wastewater research in the Arab world is an initiative that could support in shaping up and improving future research activities. This study assesses the scientific output of industrial wastewater research in the Arab world. A total of 2032 documents related to industrial wastewater were retrieved from 152 journals indexed in the Scopus databases; this represents 3.6 % of the global research output. The h-index of the retrieved documents was 70. The total number of citations, at the time of data analysis, was 34,296 with an average citation of 16.88 per document. Egypt, with a total publications of 655 (32.2 %), was ranked the first among the Arab countries followed by Saudi Arabia 300 (14.7 %) and Tunisia 297 (14.6 %). Egypt also had the highest h-index, assumed with Saudi Arabia, the first place in collaboration with other countries. Seven hundred fifteen (35.2 %) documents with 66 countries in Arab/non-Arab country collaborations were identified. Arab researchers collaborated mostly with researchers from France 239 (11.7 %), followed by the USA 127 (6.2 %). The top active journal was Desalination 126 (6.2 %), and the most productive institution was the National Research Center, Egypt 169 (8.3 %), followed by the King Abdul-Aziz University, Saudi Arabia 75 (3.7 %). Environmental Science was the most prevalent field of interest 930 (45.8 %). Despite the promising indicators, there is a need to close the gap in research between the Arab world and the other nations. Optimizing the investments and developing regional experiences are key factors to promote the scientific research.
Collapse
Affiliation(s)
- Shaher H. Zyoud
- Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technology, Stremayrgasse 10/I, A-8010 Graz, Austria
| | - Aiman E. Al-Rawajfeh
- Chemical Engineering Department, The University of Jordan, Amman, Jordan
- Chemical Engineering Department, Tafila Technical University, Tafila, Jordan
| | - Hafez Q. Shaheen
- Civil Engineering Department, An-Najah National University, Nablus, Palestine
| | - Daniela Fuchs-Hanusch
- Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technology, Stremayrgasse 10/I, A-8010 Graz, Austria
| |
Collapse
|
24
|
Alsalhy QF, Almukhtar RS, Alani HA. Oil Refinery Wastewater Treatment by Using Membrane Bioreactor (MBR). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1881-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Tang HL, Chen H. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. BIORESOURCE TECHNOLOGY 2015; 190:76-81. [PMID: 25933253 DOI: 10.1016/j.biortech.2015.04.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Batch nitrification tests were conducted with sludge and wastewater streams obtained from field implementations to evaluate nitrification inhibition and efficiency of a nitrifiers bioaugmentation technology at full-scale municipal wastewater treatment plants (WWTPs). The results showed that the substrate organic carbon and pH of wastewater streams were inhibitory factors to nitrification and the low pH was the cause of the WWTP experiencing poor nitrification. An ammonia-nitrogen removal rate of 0.21mg-N/gMLVSS-h was observed at pH 6.5, while the rate increased to 0.54mg-N/gMLVSS-h with an introduction of 6% bioaugmented nitrifiers, indicating that the integrated side-stream nitrifiers bioaugmentation process was beneficial in improving nitrification efficiency, even under low pH conditions not conducive to nitrification. The study provides new insights into effective upgrading of municipal WWTPs exposed to poor nitrification.
Collapse
Affiliation(s)
- Hao L Tang
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Hongping Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
26
|
Sato Y, Hori T, Ronald NR, Habe H, Ogata A. Effect of a microbiota activator on accumulated ammonium and microbial community structure in a pilot-scale membrane bioreactor. J GEN APPL MICROBIOL 2015; 61:132-8. [DOI: 10.2323/jgam.61.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Navarro R. Ronald
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, AIST
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
27
|
Zhang C, Wang G, Hu Z. Changes in wastewater treatment performance and activated sludge properties of a membrane bioreactor at low temperature operation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2199-2207. [PMID: 25003580 DOI: 10.1039/c4em00174e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The membrane bioreactor (MBR) activated sludge process is being applied more and more for wastewater treatment due to its high treatment efficiency and low space requirement. However, the usefulness of the MBR process in low-temperature zones is less studied than that under normal conditions. This study determined the effect of low temperature (∼13 °C) operation on MBR performance and activated sludge characteristics. When the wastewater temperature decreased from 22 °C to 13 °C, the average effluent COD concentration increased from (10 ± 5) to (25 ± 4) mg L(-1) and the nitrogen removal efficiency appeared not to be affected. The abundance and diversity of nitrifying bacteria such as Nitrosospira (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) in the activated sludge were reduced under low temperature exposure. The total biomass concentration decreased from about 10 000 mg COD L(-1) at room temperature to 8200 mg COD L(-1) at 13 °C at the same solid retention time. Furthermore, the sludge became bulking at 13 °C with a significant increase in the sludge volume index. The resultant sludge bulking was accompanied by accelerated membrane fouling resulting in a two-fold increase in the frequency of membrane cleaning. The results suggest that the performance of the MBR activated sludge process deteriorated at low wastewater temperatures even though the effluent water quality was still good enough for its applications in low temperature zones.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
28
|
Yang K, Ji B, Wang H, Zhang H, Zhang Q. Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor. J Biosci Bioeng 2014; 117:763-8. [DOI: 10.1016/j.jbiosc.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|