1
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
2
|
Ahmadpour E, Hallé S, Valois I, Ryan PE, Haddad S, Rodriguez M, Tardif R, Debia M. Comparison of sampling collection strategies for assessing airborne trichloramine levels in indoor swimming pools. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36012-36022. [PMID: 36539665 DOI: 10.1007/s11356-022-24790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since 1995, Hery's trichloramine sampling procedure has been widely used to determine trichloramine exposure in indoor swimming pools. This method consists of pumping air at a 1 L/min flow rate for 2 h through a Teflon prefilter and two quartz fiber filters. Modified Hery methods have been reported using different sampling pump flow rates and types of prefilters. It is possible that the prefilter type or sample collection pump flow rate influenced the results of these studies. This study is designed to evaluate the effects of different cassette assemblies and sampling flow rates on the levels of measured trichloramine. Laboratory tests were performed using a trichloramine production setup designed for this study. Workplace measurements were carried out at four indoor swimming pools. Different prefiltering strategies were used: no prefilter, glass prefilter or Teflon prefilter in the sampling cassette, and an original separable prefilter cassette is presented in this study. Laboratory tests indicated that at trichloramine concentrations higher than 1 mg/m3, the percentage of trichloramine captured on the first filter could be less than 75%, which demonstrated possible loss of the material during sampling. An investigation of the prefilter effect on the sampling strategy using different cassette assemblies revealed that using a separable cassette assembly prevented overestimations of trichloramine levels. Furthermore, there were no significant differences between trichloramine concentrations measured at flow rates (from 0.5 to 2 L/min) in swimming pools.
Collapse
Affiliation(s)
- Elham Ahmadpour
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada
| | - Stéphane Hallé
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada
| | - Patrick Eddy Ryan
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada
| | - Manuel Rodriguez
- École Supérieure d'aménagement du Territoire Et de Développement Régional (ESAD), Université Laval, Québec, Canada
| | - Robert Tardif
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, Canada.
| |
Collapse
|
3
|
Kinani S, Roumiguières A, Bouchonnet S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods. Crit Rev Anal Chem 2022; 54:1851-1870. [PMID: 36288103 DOI: 10.1080/10408347.2022.2135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Chlorination of seawater forms a range of secondary oxidative species, collectively termed "chlorine-produced oxidants" (CPOs). These compounds do not have the same biocidal efficacy, the same fate and behavior in the marine environment, the same potential formation of chlorination by-products (CBPs), nor the same effects on marine organisms. Their chemical speciation is an important step toward an accurate assessment of the effectiveness of chlorination and the potential impacts of its releases, among others. The aim of this paper - which is the second of a trilogy dedicated to the chemical speciation of CPOs in seawater - is to cover all aspects related to CPOs analysis in seawater, from sampling to instrumental determination. First, it discusses the procedures involved in synthesis, storage, and standardization of analytical standards. Second, it deals with sampling and sample preparation, addressing all relevant issues related to these two key steps. Third, it provides a comprehensive and up-to-date overview of the colorimetric, titrimetric, and electrochemical methods used for CPOs determination and thoroughly discusses their advantages and limitations. Finally, this review ends with some recommendations for progress in the field of CPO analysis with the three aforementioned approaches. Chromatographic and mass spectrometric-based methods will be covered in the third and final article (Part III).
Collapse
Affiliation(s)
- Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
| | - Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Route de Saclay, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Route de Saclay, Palaiseau, France
| |
Collapse
|
4
|
Mensah AT, Allard S, Berne F, Soreau S, Gallard H. Brominated trihalamines in chlorinated seawaters: Quantification of tribromamine and identification of bromochloramines by Membrane Introduction Mass Spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154667. [PMID: 35314219 DOI: 10.1016/j.scitotenv.2022.154667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
During chlorination of seawater, the presence of bromide and ammonia alters the speciation of the oxidant and lead to the formation of chlorinated and brominated amines. This can affect the effectiveness of the disinfection treatment and the formation of disinfection by-products released to the environment. In this study, a Membrane Introduction Mass Spectrometry (MIMS) analytical method was developed to differentiate brominated trihalamines (i.e. tribromamine NBr3, dibromochloramine NBr2Cl and bromodichloramine NBrCl2) in synthetic and natural chlorinated seawater. A mass-to-charge ratio of m/z = 253 corresponding to the parent ion was used for the quantification of NBr3 in absence of organic matter and the signal of the fragment at m/z = 177 was chosen in presence of high concentration of organic matter. Limits of detection were 0.23 μM (49 μg Cl2/L) and 0.18 μM (38 μg Cl2/L) for m/z 253 and m/z 177, respectively. Both NBr2Cl and NBrCl2 were monitored in chlorinated seawaters with their respective parent ion at m/z = 207 and m/z = 163 but were not quantified. MIMS results also showed that reaction of brominated trihalamines with natural organic matter (NOM) was a minor pathway for 1-2 mg C/L compared to their auto-decomposition in natural or synthetic seawater. Overall, MIMS was able to unambiguously differentiate and monitor brominated trihalamines for the first time in chlorinated seawater, which was not possible by using UV measurement, titration and colorimetric methods.
Collapse
Affiliation(s)
- Anette T Mensah
- Curtin Water Quality Research Centre, Department of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia; Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Sébastien Allard
- Curtin Water Quality Research Centre, Department of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Florence Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Sylvie Soreau
- EDF - Recherche et Développement, Laboratoire National d'Hydraulique et Environnement (LNHE), 6 quai Watier, 78401 Chatou Cedex, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France.
| |
Collapse
|
5
|
Mustapha S, Jimoh T, Ndamitso M, Abdulkareem SA, Taye SD, Mohammed AK, Amigun AT. The Occurrence of N-nitrosodimethylamine (NDMA) in Swimming Pools: An Overview. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211036520. [PMID: 34376989 PMCID: PMC8335839 DOI: 10.1177/11786302211036520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 05/23/2023]
Abstract
The occurrence of several disinfectant byproducts has been investigated in swimming pools. Until now, there are only a few studies on nitrosamine, particularly N-nitrosodimethylamine in swimming pool water. This could be due to the lack of a suitable method that is sensitive enough for the measurement of N-nitrosodimethylamine in pool waters. Other disinfectant byproducts formed in pool water widely documented are trihalomethanes, haloacetic acids, halonitromethanes, and chloramines but inadequate information on N-nitrosodimethylamine. This paper provides a review of the nitrogenous disinfectant byproduct in swimming pools and its health implications. Anthropogenic substances introduced by swimmers such as sweat, lotions, and urine contribute to the formation of N-nitrosodimethylamine. The reaction of secondary amines such as dimethylamine with mono/dichloroamines produced dimethyl hydrazine and further undergo oxidation to form N-nitrosodimethylamine. The reaction of chlorine and other disinfectants with these anthropogenic sources in swimming pools cause cancer and asthma in human tissues. Thus, the assessment of N-nitrosodimethylamine in the swimming pool is less well documented. Therefore, the health consequences, mutagenic, and genotoxic potentials of N-nitrosodimethylamine should be the focus of more research studies.
Collapse
Affiliation(s)
- Saheed Mustapha
- Department of Chemistry, Federal University of Technology, Minna, Nigeria
- Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology, Minna, Niger, Nigeria
| | - Tijani Jimoh
- Department of Chemistry, Federal University of Technology, Minna, Nigeria
- Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology, Minna, Niger, Nigeria
| | - Muhammed Ndamitso
- Department of Chemistry, Federal University of Technology, Minna, Nigeria
- Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology, Minna, Niger, Nigeria
| | - Saka Ambali Abdulkareem
- Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology, Minna, Niger, Nigeria
- Department of Chemical Engineering, Federal University of Technology, Minna, Niger, Nigeria
| | - Shuaib Damola Taye
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Abdul Kabir Mohammed
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, USA
| | - Azeezah Taiwo Amigun
- Department of Chemical and Geological Sciences, Al-Hikmah University, Ilorin, Nigeria
| |
Collapse
|
6
|
Hu W, Lauritsen FR, Allard S. Identification and quantification of chloramines, bromamines and bromochloramine by Membrane Introduction Mass Spectrometry (MIMS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142303. [PMID: 33182003 DOI: 10.1016/j.scitotenv.2020.142303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A Membrane Introduction Mass Spectrometry (MIMS) method was developed to differentiate and quantify the different chlorinated and brominated-amines, present in drinking water during chloramination. The representative mass to charge ratios (m/z) of 53, 85, 97, 175 and 131 corresponding to the mass of the parent compounds were selected to monitor NH2Cl, NHCl2, NH2Br, NHBr2 and NHBrCl and the detection limits were found to be 0.034, 0.034, 0.10, 0.12 and 0.36 mg/L as Cl2, respectively. NHCl2, NHBr2 and NHBrCl fragments interfere with the analysis/quantification of NH2Cl and NH2Br via protonation reactions at hot metal surfaces inside the mass spectrometer. To accurately quantify NH2Cl or NH2Br in mixtures of NH2Cl/NHCl2 or NH2Br/NHBr2, the interference from NHCl2 or NHBr2 was subtracted to the signal of the parent compound. If NHBrCl is present, NH2Br and NH2Cl cannot be accurately quantified since the interference from the NHBrCl fragment cannot be distinguished from the signal of the parent compound. Under drinking water conditions, the interference from NHBrCl on NH2Cl was negligible. The different halamines were monitored and quantified for the first time in two surface waters and one seawater that were chloraminated to mimic a realistic disinfection scenario.
Collapse
Affiliation(s)
- Wei Hu
- Curtin Water Quality Research Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | | | - Sébastien Allard
- Curtin Water Quality Research Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
7
|
Roumiguières A, Bouchonnet S, Kinani S. Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 2020; 413:885-900. [PMID: 33211126 DOI: 10.1007/s00216-020-03043-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
The present study reports the first evaluation of a MIMS device equipped with a high-resolution Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS) for comprehensive speciation of chlorine-produced oxidants (CPO) in seawater. A total of 40 model compounds were studied: 4 inorganic haloamines (mono-, di-, and trichloramine and monobromamine), 22 organic N-haloamines, 12 N-haloamino acids, and 2 free oxidants (HOCl/ClO- and HOBr/BrO-). The main key factors influencing the analytes' introduction and their detection were optimized. Under optimized conditions, the rise and fall times of the MIMS signal ranged from 8 to 79 min and from 7 to 73 min, respectively, depending on the compound. Free oxidants and N-haloamino acids, which are ionic or too polar at seawater pH, hardly crossed the membrane, and MIMS analysis was thus unsuitable. Nevertheless, better enrichment and therefore better sensitivity were achieved with organic N-haloamines than with inorganic haloamines. The observed detection limits ranged from tens of μM to sub-μM levels. Oxidant decomposition occurred inside the MIMS device, at a higher rate for N-bromamines than for chlorinated analogues.Graphical abstract.
Collapse
Affiliation(s)
- Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai Watier, 78401, Chatou Cedex 01, France
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France
| | - Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai Watier, 78401, Chatou Cedex 01, France.
| |
Collapse
|
8
|
Chehab R, Coulomb B, Boudenne JL, Robert-Peillard F. Development of an automated system for the analysis of inorganic chloramines in swimming pools via multi-syringe chromatography and photometric detection with ABTS. Talanta 2020; 207:120322. [PMID: 31594602 DOI: 10.1016/j.talanta.2019.120322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Inorganic chloramines are disinfection by-products resulting from the unwanted reaction between chlorine used as disinfectant in swimming pools and nitrogenous compounds brought by bathers. This parameter (total chloramines or combined chlorine) is currently measured on site by a colorimetric method that does not allow to measure only inorganic chloramines. In this paper, a multi-syringe chromatography system combined with a post column derivatization is applied for the first time for the specific detection of the three individual inorganic chloramines (monochloramine, dichloramine and trichloramine). These latter ones are separated using a low-pressure monolithic C18 column, and separately detected after a post-column reaction with the chromogenic reagent ABTS (2,2'-azino-bis-(3-ethyl-benzothiazoline)-6-sulfonic acid-diammonium salt). Development of two ABTS reagents provides discrimination of chlorine and monochloramine that are not separated on the column. Optimization of the experimental conditions enables determination of inorganic chloramines with very good detection limits (around 10 μg eq.Cl2 L-1) without interferences from other chlorinated compounds such as organic chloramines or free available chlorine. The validation of the whole procedure has been successfully applied to real swimming pools samples.
Collapse
Affiliation(s)
- Rana Chehab
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | | | | |
Collapse
|
9
|
Tracking Monochloramine Decomposition in MIMS Analysis. SENSORS 2019; 20:s20010247. [PMID: 31906242 PMCID: PMC6982842 DOI: 10.3390/s20010247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
Abstract
Membrane-introduction mass spectrometry (MIMS) has been presented as one of the promising approaches for online and real-time analysis of monochloramine (NH2Cl) in diverse matrices such as air, human breath, and aqueous matrices. Selective pervaporation of NH2Cl through the introduction membrane overcomes the need for sample preparation steps. However, both the selectivity and sensitivity of MIMS can be affected by isobaric interferences, as reported by several researchers. High-resolution mass spectrometry helps to overcome those interferences. Recent miniaturization of Fourier transform—ion cyclotron resonance—mass spectrometry (FT-ICR MS) technology coupled to the membrane-introduction system provides a potent tool for in field analysis of monochloramine in environmental matrices. Monochloramine analysis by MIMS based FT-ICR MS system demonstrated decomposition into ammonia. To further clarify the origin of this decomposition, headspace analyses after bypassing the membrane were undertaken and showed that monochloramine decomposition was not exclusively related to interactions within the membrane. Adsorption inside the MIMS device, followed by surface-catalyzed decomposition, was suggested as a plausible additional mechanism of monochloramine decomposition to ammonia.
Collapse
|
10
|
Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of Different Combinations of Water Treatment Processes on the Concentration of Disinfection Byproducts and Their Precursors in Swimming Pool Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8115-8126. [PMID: 31180210 DOI: 10.1021/acs.est.9b00491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To mitigate microbial activity in swimming pools and to ensure hygienic safety for bathers, pool systems have a recirculating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with precursor substances present in pool water to form harmful disinfection byproducts (DBPs). In this study, different combinations of conventional and advanced treatment processes were applied to lower the concentration of DBPs and their precursors in pool water by using a pilot-scale swimming pool model operated under reproducible and fully controlled conditions. The quality of the pool water was determined after stationary concentrations of dissolved organic carbon (DOC) were reached. The relative removal of DOC (Δc cin-1) across the considered treatment trains ranged between 0.1 ± 2.9% and 7.70 ± 4.5%, where conventional water treatment (coagulation and sand filtration combined with granular activated carbon (GAC) filtration) was revealed to be the most effective. Microbial processes in the deeper, chlorine-free regions of the GAC filter have been found to play an important role in the degradation of organic substances. Almost all treatment combinations were capable of removing trihalomethanes to some degree and trichloramine and dichloroacetonitrile almost completely. However, the results demonstrated that effective removal of DBPs across the treatment train does not necessarily result in low DBP concentrations in the basin of a pool. This raises the importance of the DBP formation potential of the organic precursors, which has been shown to depend strongly on the treatment concept applied. Irrespective of the filtration technique employed, treatment combinations employing UV irradiation as a second treatment step revealed higher concentrations of volatile DBPs in the pool compared to those employing GAC filtration as a second treatment step. In the particular case of trichloramine, results confirm that its removal across the treatment train is not a feasible mitigation strategy because it cannot compensate for the fast formation in the basin.
Collapse
Affiliation(s)
- Bertram Skibinski
- Chair of Urban Water Systems Engineering , Technical University of Munich , 85748 Garching , Germany
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Uhlig
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Pascal Müller
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Irene Slavik
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Wahnbachtalsperrenverband , 53721 Siegburg , Germany
| | - Wolfgang Uhl
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Norwegian Institute for Water Research (NIVA) , 0349 Oslo , Norway
- Norwegian University of Science and Technology (NTNU) , Institute of Civil and Environmental Engineering , 7491 Trondheim , Norway
| |
Collapse
|
11
|
Tsamba L, Correc O, Le Cloirec P, Cimetière N. Analysis of chlorination by-products in swimming pool water by membrane introduction mass spectrometry - Influence of water physicochemical parameters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:710-718. [PMID: 30707781 DOI: 10.1002/rcm.8399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Lucie Tsamba
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP82341, 44323, Nantes Cedex 3, France
| | - Olivier Correc
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP82341, 44323, Nantes Cedex 3, France
| | - Pierre Le Cloirec
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France
| | - Nicolas Cimetière
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France
| |
Collapse
|
12
|
Zhang R, Meng T, Huang CH, Ben W, Yao H, Liu R, Sun P. PPCP Degradation by Chlorine-UV Processes in Ammoniacal Water: New Reaction Insights, Kinetic Modeling, and DBP Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7833-7841. [PMID: 29906121 DOI: 10.1021/acs.est.8b00094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The combination of chlorine and UV (i.e., chlorine-UV process) has been attracting more attention in recent years due to its ready incorporation into existing water treatment facilities to remove PPCPs. However, limited information is available on the impact of total ammonia nitrogen (TAN). This study investigated two model PPCPs, N,N-diethyl-3-toluamide (DEET) and caffeine (CAF), in the two stages of the chlorine-UV process (i.e., chlorination and UV/chlor(am)ine) to elucidate the impact of TAN. During chlorination, the degradation of DEET and CAF was positively correlated with the overall consumption of total chlorine by TAN. Reactive nitrogen intermediates, including HNO/NO- and ONOOH/ONOO-, along with •OH were identified as major contributors to the removal of DEET and CAF. During UV irradiation, DEET and CAF were degraded under UV/chlorine or UV/NH2Cl conditions. •OH and •Cl were the major reactive species to degrade DEET and CAF under UV/NH2Cl conditions, whereas •OCl played a major role for degrading CAF under UV/chlorine conditions. Numerical models were developed to predict the removal of DEET and CAF under chlorination-UV process. Chlorinated disinfection byproducts were detected. Overall, this study presented kinetic features and mechanistic insights on the degradation of PPCPs under the chlorine-UV process in ammoniacal water.
Collapse
Affiliation(s)
- Ruochun Zhang
- Xiamen Urban Water Environmental Eco-Planning and Remediation Engineering Research Center (XMERC) , Xiamen 361021 , China
| | | | - Ching-Hua Huang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Weiwei Ben
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Hong Yao
- School of Civil Engineering , Beijing Jiaotong University , Beijing 100044 , China
| | | | | |
Collapse
|
13
|
Zhao X, Ma J, von Gunten U. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. WATER RESEARCH 2017; 119:126-135. [PMID: 28454008 DOI: 10.1016/j.watres.2017.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-107 M-1s-1, (4.0 ± 0.3) × 103 M-1s-1, (2.5 ± 0.2) × 103 M-1s-1 and <1 M-1s-1, respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds.
Collapse
Affiliation(s)
- Xiaodan Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Spahr S, Cirpka OA, von Gunten U, Hofstetter TB. Formation of N-Nitrosodimethylamine during Chloramination of Secondary and Tertiary Amines: Role of Molecular Oxygen and Radical Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:280-290. [PMID: 27958701 DOI: 10.1021/acs.est.6b04780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct from water chloramination. Despite the identification of numerous NDMA precursors, essential parts of the reaction mechanism such as the incorporation of molecular O2 are poorly understood. In laboratory model systems for the chloramination of secondary and tertiary amines, we investigated the kinetics of precursor disappearance and NDMA formation, quantified the stoichiometries of monochloramine (NH2Cl) and aqueous O2 consumption, derived 18O-kinetic isotope effects (18O-KIE) for the reactions of aqueous O2, and studied the impact of radical scavengers on NDMA formation. Although the molar NDMA yields from five N,N-dimethylamine-containing precursors varied between 1.4% and 90%, we observed the stoichiometric removal of one O2 per N,N-dimethylamine group of the precursor indicating that the oxygenation of N atoms did not determine the molar NDMA yield. Small 18O-KIEs between 1.0026 ± 0.0003 and 1.0092 ± 0.0009 found for all precursors as well as completely inhibited NDMA formation in the presence of radical scavengers (ABTS and trolox) imply that O2 reacted with radical species. Our study suggests that aminyl radicals from the oxidation of organic amines by NH2Cl and N-peroxyl radicals from the reaction of aminyl radicals with aqueous O2 are part of the NDMA formation mechanism.
Collapse
Affiliation(s)
- Stephanie Spahr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Federale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen , D-72074 Tübingen, Germany
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Federale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zürich, Switzerland
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zürich, Switzerland
| |
Collapse
|
15
|
Soltermann F, Canonica S, von Gunten U. Trichloramine reactions with nitrogenous and carbonaceous compounds: kinetics, products and chloroform formation. WATER RESEARCH 2015; 71:318-329. [PMID: 25655201 DOI: 10.1016/j.watres.2014.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
Trichloramine is a hazardous disinfection by-product that is of particular relevance in indoor swimming pools. To better understand its fate in pool waters, apparent second order rate constants (kapp) at pH 7 for its reaction with several model compounds were determined. kapp values at pH 7 for nitrogenous compounds were found to increase in the following order: ammonia ∼ amides (∼10(-2)-10(-1) M(-1) s(-1)) < primary amines (∼10(-1)-10(0) M(-1) s(-1)) < relevant body fluid compounds (l-histidine, creatinine) (∼10(0)-10(1) M(-1) s(-1)) < secondary amines (∼10(1)-10(2) M(-1) s(-1)) < trimethylamine (∼10(3) M(-1) s(-1)). kapp values at pH 7 of trichloramine with hydroxylated aromatic compounds (∼10(2)-10(5) M(-1) s(-1)) are higher than for the nitrogenous compounds and depend on the number and position of the hydroxyl groups (phenol < hydroquinone < catechol < resorcinol). The measurement of kapp as a function of pH revealed that mainly the deprotonated species react with trichloramine. The reaction of trichloramine with Suwannee River and Pony Lake fulvic acid standards showed a decrease of their reactivity upon chlorination, which can be related to the electron donating capacity and the SUVA254. Chlorinated nitrogenous compounds (e.g. uric acid) also have a reduced reactivity with trichloramine. Hence, the residual chlorine in pool water hinders a fast consumption of trichloramine. This explains why trichloramine degradation in pool water is lower than expected from the reactivity with the estimated bather input. Trichloramine also has the potential to form secondary disinfection by-products such as chlorinated aromatic compounds or chloroform by electron transfer or Cl(+)-transfer reactions. The chloroform formation from the reaction of trichloramine with resorcinol occurs with a similar yield and rate as for chlorination of resorcinol. Since the trichloramine concentration in pool water is commonly about one order of magnitude lower than the free chlorine concentration, its contribution to the disinfection by-product formation is assumed to be minor in most cases but might be relevant for few precursors (e.g. phenols) that react faster with trichloramine than with free chlorine.
Collapse
Affiliation(s)
- Fabian Soltermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|