1
|
Adams M, Issaka E, Chen C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J Environ Sci (China) 2025; 148:151-173. [PMID: 39095154 DOI: 10.1016/j.jes.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China; Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Eliasu Issaka
- School of Environmental and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China.
| |
Collapse
|
2
|
Luo E, Ouyang J, Zhang X, Lu Q, Wei D, Wang Y, Cha Z, Ye C, Li CY, Wei L. Study on the enhancement of low carbon-to-nitrogen ratio urban wastewater pollutant removal efficiency by adding sulfur electron acceptors. PLoS One 2024; 19:e0310222. [PMID: 39446715 PMCID: PMC11500869 DOI: 10.1371/journal.pone.0310222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024] Open
Abstract
The effective elimination of nitrogen and phosphorus in urban sewage treatment was always hindered by the deficiency of organic carbon in the low C/N ratio wastewater. To overcome this organic-dependent barrier and investigate community changes after sulfur electron addition. In this study, we conducted a simulated urban wastewater treatment plant (WWTP) bioreactor by using sodium sulfate as an electron acceptor to explore the removal efficiency of characteristic pollutants before and after the addition of sulfur electron acceptor. In the actual operation of 90 days, the removal rate of sulfur electrons' chemical oxygen demand (COD), ammonia nitrogen, and total phosphorus (TP) with sulfur electrons increased to 94.0%, 92.1% and 74%, respectively, compared with before the addition of sulfur electron acceptor. Compared with no added sulfur(phase I), the reactor after adding sulfur electron acceptor(phase II) was demonstrated more robust in nitrogen removal in the case of low C/N influent. the effluent ammonia nitrogen concentration of the aerobic reactor in Pahse II was kept lower than 1.844 mg N / L after day 40 and the overall concentration of total phosphorus in phase II (0.35 mg P/L) was lower than that of phase I(0.76 mg P/L). The microbial community analysis indicates that Rhodanobacter, Bacteroidetes, and Thiobacillus, which were the predominant bacteria in the reactor, may play a crucial role in inorganic nitrogen removal, complex organic degradation, and autotrophic denitrification under the stress of low carbon and nitrogen ratios. This leads to the formation of a distinctive microbial community structure influenced by the sulfur electron receptor and its composition. This study contributes to further development of urban low-carbon-nitrogen ratio wastewater efficient and low-cost wastewater treatment technology.
Collapse
Affiliation(s)
- Erming Luo
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Qian Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yongcheng Wang
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Zhengjiong Cha
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chengwei Ye
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chun ying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Zhou M, Han Y, Zhuo Y, Yu F, Hu G, Peng D. Effect of initial ammonium concentration on a one-stage partial nitrification/anammox biofilm system: Nitrogen removal performance and the microbial community. J Environ Sci (China) 2024; 143:176-188. [PMID: 38644015 DOI: 10.1016/j.jes.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 04/23/2024]
Abstract
One-stage partial nitrification coupled with anammox (PN/A) technology effectively reduces the energy consumption of a biological nitrogen removal system. Inhibiting nitrite-oxidizing bacteria (NOB) is essential for this technology to maintain efficient nitrogen removal performance. Initial ammonium concentration (IAC) affects the degree of inhibited NOB. In this study, the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor. The results showed that nitrogen removal efficiency decreased from 82.49% ± 1.90% to 64.57% ± 3.96% after the IAC was reduced from 60 to 20 mg N/L, while the nitrate production ratio increased from 13.87% ± 0.90% to 26.50% ± 3.76%. NOB activity increased to 1,133.86 mg N/m2/day after the IAC decreased, approximately 4-fold, indicating that the IAC plays an important inhibitory role in NOB. The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC. The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure. Ca. Brocadia and Ca. Jettenia were the main anammox bacteria, and Nitrosomonas and Nitrospira were the main AOB and NOB, respectively. IAC did not affect the difference in growth between Ca. Brocadia and Ca. Jettenia. Thus, modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fen Yu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gaoyuan Hu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Yuan Q, Lou Y, Chen S, Chen Y, Li X, Zhang X, Qian L, Zhang Y, Sun Y. Effect of long-term dosage of hydrazine on mainstream anammox process: Biofilm characteristics and microbial community. CHEMOSPHERE 2024; 363:142968. [PMID: 39074665 DOI: 10.1016/j.chemosphere.2024.142968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
The impact of the long-term trace hydrazine (N2H4) exogenous supplementation on activity of the anaerobic ammonium oxidation (anammox) biofilm was investigated in a moving bed biofilm reactor (MBBR) for mainstream wastewater treatment. The results of this study demonstrated that the addition of 2-5 mg/L N2H4 enhanced anammox biofilm activity, as evidenced by the augmented nitrogen removal rate (NRR), which increased from 113.4 g/(m3·d) to 126.7 g/(m3·d) with the introduction of 2 mg/L N2H4. However, a higher concentration of N2H4 (10 mg/L) suppressed anammox activity, leading to a reduced NRR of 91.5 g/(m3·d). Bioindicators revealed that the long-term addition of 2 mg/L N2H4 fostered the accumulation of anammox bacteria (AnAOB) biomass, elevating the volatile suspended solids (VSS) content by 12%. Moreover, the structural composition of extracellular polymeric substances (EPS) within the biofilm was altered, resulting in enhanced biofilm strength within the reactor. The protective mechanism of the biofilm was activated, and EPS secretion was stimulated by the continuous N2H4 supplementation. The introduction of an excess dosage of N2H4 led to alterations in the microbial communities, ultimately resulting in a decline in the performance of the reactor. These findings collectively illustrate that N2H4, as an intermediate product, can effectively enhance anammox activity within the MBBR for mainstream wastewater treatment. This study contributes to the understanding of the optimization strategies for anammox processes in wastewater treatment systems.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liang Qian
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
5
|
Volcke EI. Synergies from off-gas analysis and mass balances for wastewater treatment - Some personal reflections on our experiences. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100396. [PMID: 38487364 PMCID: PMC10937222 DOI: 10.1016/j.ese.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/17/2024]
Abstract
Looking back at over a decade of research by herself and her group, the author advocates the added value of gas phase measurements and the application of mass balances, as well as the synergetic benefits obtained when combining both. The increased application of off-gas measurements for greenhouse gas emission monitoring offers a great opportunity to look at other components in the gas phase, particularly oxygen. Mass balances should not be strictly reserved for modellers but also prove useful while conducting lab experiments and studying full-scale measurement data. Combining off-gas measurements with mass balances may serve not only to quantify greenhouse gas emission factors and aeration efficiency but also to follow dynamic concentration profiles of dissolved components without dedicated sensors and/or to calculate other unmeasured variables. Mass-balance-based data reconciliation allows for obtaining reliable and accurate data, and even more when combined with off-gas analysis.
Collapse
Affiliation(s)
- Eveline I.P. Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
6
|
Lin L, Song Y, Zhang Y, Luo Z, Li Q, Cao W, Li YY. Enhanced sludge granulation and stable performance of an anammox expanded granular sludge bed (EGSB) reactor through the utilization of hydroxyapatite (HAP) particles. BIORESOURCE TECHNOLOGY 2024; 406:131091. [PMID: 38986883 DOI: 10.1016/j.biortech.2024.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The reuse of hydroxyapatite particles (HAPs) as a granulation activator for anammox sludge was explored to address the remaining issues of time-consuming and unstable granular structure in anammox granulation. During the granulation, nitrogen removal capacity from 2.8 to 13.7 gN/L/d was obtained within 193 days, accompanied by an enhancement in bio-activity from 0.23 to 0.52 gN/gVSS/d. HAPs and anammox microorganisms coupled well to aggregate into granules for denser biomass, higher settleability, and stronger mechanical properties, which effectively improved the biomass retention capacity and structural strength of the sludge system. A skeleton structure formed by the HAPs was characterized during the transformation of the granules, playing a crucial role in strengthening the stability of the sludge. The intermediate processes of granulation were thus clarified to propose an evolutionary pathway for anammox-HAP granules. The pre-addition of HAPs is conducive to achieving faster anammox granulation and rapid process start-up for high-strength wastewater treatment.
Collapse
Affiliation(s)
- Lan Lin
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yanlong Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qian Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenzhi Cao
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Guo K, Li D, Hao T, Teng L, Li S, Zeng H, Zhang J. Potential directions for future development of mainstream partial nitrification-anammox processes: Ammonia-oxidizing archaea as novel functional microorganisms providing nitrite. BIORESOURCE TECHNOLOGY 2024; 399:130605. [PMID: 38499200 DOI: 10.1016/j.biortech.2024.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.
Collapse
Affiliation(s)
- Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Luyao Teng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhu Y, Wang H, Li J, Wang Z, Wang Y. Metabolic Profiles and Microbial Synergy Mechanism of Anammox Biomass Enrichment and Membrane Fouling Alleviation in the Anammox Dynamic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6284-6295. [PMID: 38488464 DOI: 10.1021/acs.est.3c10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.
Collapse
Affiliation(s)
- Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Zhang J, Xu Z, Deng X, Zhang Q, Ruan Y, Ji XM. Deciphering behaviors of 6:2 chlorinated polyfluorinated ether sulfonate (alternative-PFOS) on anammox processes: Nitrogen removal efficiency and microbial adaptability. BIORESOURCE TECHNOLOGY 2024; 397:130500. [PMID: 38423487 DOI: 10.1016/j.biortech.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
This study investigates the behaviors and effects of F-53B, an alternative to perfluorooctane sulfonate on anaerobic ammonium oxidation (anammox) processes. Results showed that the nitrogen removal efficiency (NRE) reached 83.8 % at a F-53B concentration of 0.5 mg·L-1, while NRE decreased to 66.9 % with 5 mg·L-1 of F-53B. The defluorination rates of 17.8 % (0.5 mg·L-1) and 9.3 % (5 mg·L-1) were observed, respectively, suggesting the occurrence of F-53B degradation. The relative abundance of Ca. Kuenenia decreased from 26.1 % to 16.2 % with the F-53B concentration increasing from 0.5 mg·L-1 to 5 mg·L-1. Meanwhile, Denitratisoma was selectively enriched with a relative abundance of 40.7 % at an F-53B concentration of 0.5 mg·L-1. Ca. Kuenenia could reduce reactive oxygen species induced by F-53B to maintain the balance of oxidative stress. This study gains insight into the behaviors and metabolic mechanisms of F-53B in anammox consortia, suggesting the feasibility of anammox processes for industrial wastewater.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangqi Deng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Zhang
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yang Ruan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Liu W, Li J, Lu H, Peng Y. Sponge iron strengthens the activity of anammox biofilm under low nitrogen conditions in a two-stage fixed-bed biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120194. [PMID: 38430875 DOI: 10.1016/j.jenvman.2024.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024]
Abstract
Strengthening the activity competitiveness of anaerobic ammonium oxidation (anammox) bacteria (AnAOB) under low nitrogen conditions is indispensable for mainstream anammox application. This study demonstrates that sponge iron addition (42.8 g/L) effectively increased apparent AnAOB activity and extracellular polymeric substance (EPS) production of low load anammox biofilms cultivated under low (influent of 60 mg N/L) and even ultra-low (influent of 10 mg N/L) nitrogen conditions. In-situ batch tests showed that after sponge iron addition the specific AnAOB activity in the low and ultra-low nitrogen systems further increased to 1.18 and 0.47 mmol/g VSS/h, respectively, with an apparent growth rate for AnAOB of 0.011 ± 0.001 d-1 and 0.004 ± 0.001 d-1, respectively. The averaged EPS concentration of anammox biofilm in both low (from 35.84 to 71.05 mg/g VSS) and ultra-low (from 44.14 to 57.59 mg/g VSS) nitrogen systems increased significantly, while a higher EPS protein/polysaccharide ratio, which was positively correlated with AnAOB activity, was observed in the low nitrogen system (3.54 ± 0.34) than that in the ultra-low nitrogen system (1.82 ± 0.10). In addition, Candidatus Brocadia was detected as dominant AnAOB in the anammox biofilm under the low (12.2 %) and ultra-low (24.7 %) nitrogen condition. Notably, the genus Streptomyces (26.3 %), capable for funge-like codenitrification, increased unexpectedly in the low nitrogen system, but not affecting the nitrogen removal performance. Therefore, using sponge iron to strengthen AnAOB activity under low nitrogen conditions is feasible, providing support for mainstream anammox applications.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
11
|
Chen Y, Guo G, Li YY. Kinetic and elemental characterization of HAP-based high-rate partial nitritation/anammox system orienting stability and inorganic elemental requirements. WATER RESEARCH 2024; 251:121169. [PMID: 38281335 DOI: 10.1016/j.watres.2024.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Anammox-based processes are attractive for biological nitrogen removal, and the combination of anammox and hydroxyapatite (HAP) is promising for the simultaneous removal of nitrogen and phosphorus from wastewater. However, the kinetics of one-stage partial nitritation/anammox (PNA) in which ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) exist in a reactor are poorly understood. Moreover, inorganic elements are required to promote microbial cell synthesis and growth; therefore, monitoring of elements to prevent the limitation and inhibition of the process is critical. The minimum amounts of inorganic elements required for a one-stage PNA process and the elemental flow remain unknown. Therefore, in this study, kinetics, stoichiometry, and element flow in the long-term, high-rate, continuous, one-stage HAP-PNA process with microaerobic granular sludge at 25 °C were determined using process modeling, parameter estimation, and mass balance. The biomass elemental composition was determined to be CH2.2O0.89N0.18S0.0091, and the biomass yield (Yobs) was calculated to be 0.0805 g/g NH4+-N. Therefore, a stoichiometric reaction equation for the one-stage HAP-PNA system was also proposed. The maximum specific growth rate (μm) of AnAOB and AOB were 0.0360 and 0.0982 d-1 with doubling times of 19 and 7.1 d, respectively. Finally, the elemental requirements for stable and high-rate performance were determined using element flow analysis. These findings are essential for developing the anammox-based process in a stable and resource-efficient manner and determining engineering applicability.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
12
|
Li B, Mao S, Zhang C, Xu T, Ma X, Lin H, Yin H, Qiu Y. Rapid anaerobic culture and reaction kinetic study of anammox bacteria on microfluidic chip. BIORESOURCE TECHNOLOGY 2024; 396:130422. [PMID: 38320714 DOI: 10.1016/j.biortech.2024.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Anammox bacteria are being increasingly investigated as part of an emerging nitrogen removal technology. However, due to the difficulty in culturing, current understanding of their behavior is limited. In this study, anaerobic microfluidic chips were used to study anammox bacteria, showing great advantages over reactors. On-chip fluorescence in situ hybridization (FISH) showed the relative abundance of free form anammox bacteria increased by 56.1 % after one week's culture, an increase that is three times higher than that of bioreactor (17.1 %). For granular form cultures, the nitrogen removal load reached 2.34 ∼ 2.51 kg-N/(m3·d), which was also substantially higher than the bioreactor (∼1.22 kg-N/(m3·d)). Furthermore, studying the kinetics of nitrite inhibition of granular sludge with different particle sizes (100-900 μm) showed that the maximum ammonia load and the nitrite semi-saturation coefficient noticeably decreased for smaller particle sizes. These results illustrate the usefulness of the microfluidic method for in-depth understanding anammox process and its implementation.
Collapse
Affiliation(s)
- Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Siyuan Mao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xueyan Ma
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Van Tendeloo M, Baptista MC, Van Winckel T, Vlaeminck SE. Recurrent multi-stressor floc treatments with sulphide and free ammonia enabled mainstream partial nitritation/anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169449. [PMID: 38123077 DOI: 10.1016/j.scitotenv.2023.169449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Selective suppression of nitrite-oxidising bacteria (NOB) over aerobic and anoxic ammonium-oxidising bacteria (AerAOB and AnAOB) remains a major challenge for mainstream partial nitritation/anammox implementation, a resource-efficient nitrogen removal pathway. A unique multi-stressor floc treatment was therefore designed and validated for the first time under lab-scale conditions while staying true to full-scale design principles. Two hybrid (suspended + biofilm growth) reactors were operated continuously at 20.2 ± 0.6 °C. Recurrent multi-stressor floc treatments were applied, consisting of a sulphide-spiked deoxygenated starvation followed by a free ammonia shock. A good microbial activity balance with high AnAOB (71 ± 21 mg N L-1 d-1) and low NOB (4 ± 17 % of AerAOB) activity was achieved by combining multiple operational strategies: recurrent multi-stressor floc treatments, hybrid sludge (flocs & biofilm), short floc age control, intermittent aeration, and residual ammonium control. The multi-stressor treatment was shown to be the most important control tool and should be continuously applied to maintain this balance. Excessive NOB growth on the biofilm was avoided despite only treating the flocs to safeguard the AnAOB activity on the biofilm. Additionally, no signs of NOB adaptation were observed over 142 days. Elevated effluent ammonium concentrations (25 ± 6 mg N L-1) limited the TN removal efficiency to 39 ± 9 %, complicating a future full-scale implementation. Operating at higher sludge concentrations or reducing the volumetric loading rate could overcome this issue. The obtained results ease the implementation of mainstream PN/A by providing and additional control tool to steer the microbial activity with the multi-stressor treatment, thus advancing the concept of energy neutrality in sewage treatment plants.
Collapse
Affiliation(s)
- Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Maria Catarina Baptista
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Tim Van Winckel
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium.
| |
Collapse
|
14
|
Chen X, Jiang L, Aghilinasrollahabadi K, Proano CA, Meisler S, Anderson MO, Xue J, Li G. Impacts of crude glycerol on anaerobic ammonium oxidation (Anammox) process in wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130271. [PMID: 38158091 DOI: 10.1016/j.biortech.2023.130271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
This work investigated the impact of a waste-derived carbon source, crude glycerol (CG), on Anammox. Batch bioassays were conducted to identify inhibitory component(s) in CG, and the relationship between Anammox activity and the concentration of CG, pure glycerol, and methanol were assessed. The results showed that the half-maximal inhibitory concentration of CG and methanol are 434.5 ± 51.8 and 143.0 ± 19.6 mg chemical oxygen demand (COD) L-1, respectively, while pure glycerol at 0-2283 mg COD L-1 had no significant adverse effect on Anammox. The results suggested methanol is the major inhibitor in CG via a non-competitive inhibition mechanism. COD/total inorganic nitrogen ratio of > 1.3 was observed to cause a significant Anammox inhibition (>20 %), especially at low substrate level. These results are valuable for evaluating the feasibility of using CG for nitrogen removal in water resource recovery facilities, promoting sustainable development.
Collapse
Affiliation(s)
- Xiaojue Chen
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Liu Jiang
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | | | - Camila A Proano
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Seth Meisler
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Marya O Anderson
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Guangbin Li
- Department of Civil and Environmental Engineering, University of Maryland, 4298 Campus Dr., College Park, MD 20742, USA.
| |
Collapse
|
15
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
16
|
Zhu W, Van Tendeloo M, De Paepe J, Vlaeminck SE. Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 387:129607. [PMID: 37544532 DOI: 10.1016/j.biortech.2023.129607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 °C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 ± 2.6 mg NH3-N L-1) or FNA (3.1 ± 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jolien De Paepe
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
17
|
Wang Y, Wang X, Niu J. Implemented impediment of extracellular electron transfer-dependent anammox process :Unstable nitrogen removal efficiency and decreased abundance of anammox bacteria. CHEMOSPHERE 2023; 337:139415. [PMID: 37414301 DOI: 10.1016/j.chemosphere.2023.139415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The present study investigates the extracellular electron transfer (EET)-dependent anammox process as a promising approach for sustainable wastewater treatment. The study examines the performance and metabolic pathway of the EET-dependent anammox process in comparison to the nitrite-dependent anammox process. The EET-dependent reactor successfully achieved nitrogen removal with a maximum removal efficiency of 93.2%, although it exhibited a lower ability to sustain high nitrogen removal load when compared to the nitrite-dependent anammox process, which poses opportunity and challenge for ammonia-wastewater treatment under applied voltage conditions. Nitrite was identified as a critical factor responsible for the changes in microbial community structure, resulting in a significant reduction in nitrogen removal load in the absence of nitrite. The study further suggests that the Candidatus Kuenenia species could dominate the EET-dependent anammox process, while nitrifying and denitrifying bacteria also contribute to the nitrogen removal in this system.
Collapse
Affiliation(s)
- Yameng Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Xiaojing Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
18
|
Qian Y, He S, Chen F, Shen J, Guo Y, Qin Y, Li YY. Coupled systems of pre-denitrification and partial nitritation/anammox improved functional microbial structure and nitrogen removal in treating swine manure digestate. BIORESOURCE TECHNOLOGY 2023; 386:129494. [PMID: 37460018 DOI: 10.1016/j.biortech.2023.129494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
This study evaluated the functional activity and microbial structure of a pre-denitrification and single-stage partial nitritation/anammox process (DB-SNAP) coupled system for effectively treating swine manure digestate (SMD). At influent ammonium concentrations of (1000 to 1500) mg/L, the pre-denitrification reactor increased the nitrogen removal efficiency (NRE) by 5%, resulting in an average NRE of 96%. The DB-SNAP and nitrogen-limited strategy facilitated the rapid adoption of anammox bacteria (AnAOB) in the SMD, maintaining a high specific rate of 0.3gN/gVSS/d. A high secretion of tightly bound extracellular polymeric substances (76 mg/gVSS to 102 mg/gVSS) promoted micro-granule aggregation and stability. Moreover, Ca. Kuenenia, an AnAOB genus, was highly enriched from 21% to (27 to 30) %, whereas Nitrospira, a nitrite-oxidizing bacteria, was significantly suppressed to (0 to 0.05) %. These findings will provide valuable guidance in implementing the anammox process in swine wastewater treatment.
Collapse
Affiliation(s)
- Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
19
|
Hu Z, Liu T, Su Z, Zhao J, Guo J, Hu S, Yuan Z, Zheng M. Adaptation of anammox process for nitrogen removal from acidic nitritation effluent in a low pH moving bed biofilm reactor. WATER RESEARCH 2023; 243:120370. [PMID: 37482002 DOI: 10.1016/j.watres.2023.120370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Acidic partial nitritation (PN) has emerged to be a promisingly stable process in wastewater treatment, which can simultaneously achieve nitrite accumulation and about half of ammonium reduction. However, directly applying anaerobic ammonium oxidation (anammox) process to treat the acidic PN effluent (pH 4-5) is susceptible to the inhibition of anammox bacteria. Here, this study demonstrated the adaptation of anammox process to acidic pH in a moving bed biofilm reactor (MBBR). By feeding the laboratory-scale MBBR with acidic PN effluent (pH = 4.6 ± 0.2), the pH of an anammox reactor was self-sustained in the range of pH 5 - 6. Yet, a high total nitrogen removal efficiency of over 80% at a practical loading rate of up to 149.7 ± 3.9 mg N/L/d was achieved. Comprehensive microbial assessment, including amplicon sequencing, metagenomics, cryosection-FISH, and qPCR, identified that Candidatus Brocadia, close to known neutrophilic members, was the dominant anammox bacteria. Anammox bacteria were found present in the inner layer of thick biofilms but barely present in the surface layer of thick biofilms and in thin biofilms. Results from batch tests also showed that the activity of anammox biofilms could be maintained when subjected to pH 5 at a nitrite concentration of 10 mg N/L, whereas the activity was completely inhibited after disturbing the biofilm structure. These results collectively indicate that the anammox bacteria enriched in the present acidic MBBR could not be inherently acid-tolerant. Instead, the achieved stable anammox performance under the acidic condition is likely due to biofilm stratification and protection. This result highlights the biofilm configuration as a useful solution to address nitrogen removal from acidic PN effluent, and also suggests that biofilm may play a critical role in protecting anammox bacteria found in many acidic nature environments.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jing Zhao
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Cai X, Wang A, Dai B, Wang Z, Xia S. Insights into the membrane biofouling behavior of planktonic anammox bacteria: Effect of solution pH and ionic strength. CHEMOSPHERE 2023; 329:138656. [PMID: 37040838 DOI: 10.1016/j.chemosphere.2023.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Understanding the effect of solution pH and ionic strength on membrane biofouling of anammox bacteria is essential for the widespread application of anammox MBRs. To provide an original elucidation, this study combined interfacial thermodynamics analysis and filtration experiments with an established planktonic anammox MBR to explore the biofouling behavior of anammox bacteria under varying solution pH and ionic strengths. Preliminary results showed that variation in solution pH and ionic strength has critical impacts on the thermodynamic properties of planktonic anammox bacteria and membrane surfaces. The further interfacial thermodynamics analysis and filtration experiments indicated that an increased pH and a decreased ionic strength could reduce membrane fouling by planktonic anammox bacteria. More specifically, a higher pH or lower ionic strength resulted in a stronger repulsive energy barrier due to the larger interaction distance covered by the dominant electrostatic double layer (EL) component compared to the Lewis acid-base (AB) and Lifshitz-van der Waals (LW) components, which corresponded to a reduction in the normalized flux (J/J0) decline and the accumulation of cake resistance (Rc) during the filtration process. Furthermore, the aforementioned effect mechanism was verified by a correlation analysis of the thermodynamic properties and filtration behavior. These findings have generalized significance for understanding the biofouling or aggregation behavior of anammox bacteria.
Collapse
Affiliation(s)
- Xiang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
21
|
Yao Y, Han B, Liu B, Wang Y, Su X, Ma L, Zhang T, Niu S, Chen X, Li Z. Global variations and controlling factors of anammox rates. GLOBAL CHANGE BIOLOGY 2023; 29:3622-3633. [PMID: 37040076 DOI: 10.1111/gcb.16715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 06/06/2023]
Abstract
Soil anammox is an environmentally friendly way to eliminate reactive nitrogen (N) without generating nitrous oxide. Nevertheless, the current earth system models have not incorporated the anammox due to the lack of parameters in anammox rates on a global scale, limiting the accurate projection for N cycling. A global synthesis with 1212 observations from 89 peer-reviewed papers showed that the average anammox rate was 1.60 ± 0.17 nmol N g-1 h-1 in terrestrial ecosystems, with significant variations across different ecosystems. Wetlands exhibited the highest rate (2.17 ± 0.31 nmol N g-1 h-1 ), followed by croplands at 1.02 ± 0.09 nmol N g-1 h-1 . The lowest anammox rates were observed in forests and grasslands. The anammox rates were positively correlated with the mean annual temperature, mean annual precipitation, soil moisture, organic carbon (C), total N, as well as nitrite and ammonium concentrations, but negatively with the soil C:N ratio. Structural equation models revealed that the geographical variations in anammox rates were primarily influenced by the N contents (such as nitrite and ammonium) and abundance of anammox bacteria, which collectively accounted for 42% of the observed variance. Furthermore, the abundance of anammox bacteria was well simulated by the mean annual precipitation, soil moisture, and ammonium concentrations, and 51% variance of the anammox bacteria was accounted for. The key controlling factors for soil anammox rates differed from ecosystem type, for example, organic C, total N, and ammonium contents in croplands, versus soil C:N ratio and nitrite concentrations in wetlands. The controlling factors in soil anammox rate identified by this study are useful to construct an accurate anammox module for N cycling in earth system models.
Collapse
Affiliation(s)
- Yanzhong Yao
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bingbing Han
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yini Wang
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaoxuan Su
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lihua Ma
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tong Zhang
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xinping Chen
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhaolei Li
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Zhu W, Van Tendeloo M, Alloul A, Vlaeminck SE. Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation: creating optimal conditions for anammox to recover and grow in a parallel tank. BIORESOURCE TECHNOLOGY 2023:129359. [PMID: 37343792 DOI: 10.1016/j.biortech.2023.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
To overcome limiting anammox activity, a return-sludge nursery concept is proposed. This concept blends reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and EC of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community dominated by "Candidatus Brocadia" was observed. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
23
|
Cheng H, Qin H, Liang L, Li YY, Liu J. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective. BIORESOURCE TECHNOLOGY 2023; 381:129117. [PMID: 37141995 DOI: 10.1016/j.biortech.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this paper, the state-of-the-art information on the anammox-HAP process is summarized. The mechanism of this process is systematically expounded, the enhancement of anammox retention by HAP precipitation and the upgrade of phosphorus recovery by anammox process are clarified. However, this process still faces several challenges, especially how to deal with the ∼ 11% nitrogen residues and to purify the recovered HAP. For the first time, an anaerobic fermentation (AF) combined with partial denitrification (PD) and anammox-HAP (AF-PD-Anammox-HAP) process is proposed to overcome the challenges. By AF of the organic impurities of the anammox-HAP granular sludge, organic acid is produced to be used as carbon source for PD to remove the nitrogen residues. Simultaneously, pH of the solution drops, which promotes the dissolution of some inorganic purities such as CaCO3. In this way, not only the inorganic impurities are removed, but the inorganic carbon is supplied for anammox bacteria.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
24
|
Cao S, Koch K, Duan H, Wells GF, Ye L, Zhao Y, Du R. In a quest for high-efficiency mainstream partial nitritation-anammox (PN/A) implementation: One-stage or two-stage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163540. [PMID: 37086997 DOI: 10.1016/j.scitotenv.2023.163540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Partial nitritation-anammox (PN/A) process is known as an energy-efficient technology for wastewater nitrogen removal, which possesses a great potential to bring wastewater treatment plants close to energy neutrality with reduced carbon footprint. To achieve this goal, various PN/A processes implemented in a single reactor configuration (one-stage system) or two separately dedicated reactors configurations (two-stage system) were explored over the past decades. Nevertheless, large-scale implementation of these PN/A processes for low-strength municipal wastewater treatment has a long way to go owing to the low efficiency and effectiveness in nitrogen removal. In this work, we provided a comprehensive analysis of one-stage and two-stage PN/A processes with a focus on evaluating their engineering application potential towards mainstream implementation. The difficulty for nitrite-oxidizing bacteria (NOB) out-selection was revealed as the critical operational challenge to achieve the desired effluent quality. Additionally, the operational strategies of low oxygen commonly adopted in one-stage systems for NOB suppression and facilitating anammox bacteria growth results in a low nitrogen removal rate (NRR). Introducing denitrification into anammox system was found to be necessary to improve the nitrogen removal efficiency (NRE) by reducing the produced nitrate with in-situ utilizing the organics from wastewater itself. However, this may lead to part of organics oxidized with additional oxygen consumed in one-stage system, further compromising the NRR. By applying a relatively high dissolved oxygen in PN reactor with residual ammonium control, and followed by a granules-based anammox reactor feeding with a small portion of raw municipal wastewater, it appeared that two-stage system could achieve a good effluent quality as well as a high NRR. In contrast to the widely studied one-stage system, this work provided a unique perspective that more effort should be devoted to developing a two-stage PN/A process to evaluate its application potential of high efficiency and economic benefits towards mainstream implementation.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
25
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
26
|
Yang Y, Jiang Y, Long Y, Xu J, Liu C, Zhang L, Peng Y. Insights into the mechanism of the deterioration of mainstream partial nitritation/anammox under low residual ammonium. J Environ Sci (China) 2023; 126:29-39. [PMID: 36503757 DOI: 10.1016/j.jes.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox (PN/A), but the underlying mechanism remains unclear. In this study, mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria (AOB) in the outer layer. Second, the complete ammonia oxidizer (comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations, nitrite-oxidizing bacteria (NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation (0.15-0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Yiming Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
27
|
Vilardi K, Cotto I, Bachmann M, Parsons M, Klaus S, Wilson C, Bott CB, Pieper KJ, Pinto AJ. Co-Occurrence and Cooperation between Comammox and Anammox Bacteria in a Full-Scale Attached Growth Municipal Wastewater Treatment Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5013-5023. [PMID: 36913533 PMCID: PMC10061930 DOI: 10.1021/acs.est.2c09223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cooperation between comammox and anammox bacteria for nitrogen removal has been recently reported in laboratory-scale systems, including synthetic community constructs; however, there are no reports of full-scale municipal wastewater treatment systems with such cooperation. Here, we report intrinsic and extant kinetics as well as genome-resolved community characterization of a full-scale integrated fixed film activated sludge (IFAS) system where comammox and anammox bacteria co-occur and appear to drive nitrogen loss. Intrinsic batch kinetic assays indicated that majority of the aerobic ammonia oxidation was driven by comammox bacteria (1.75 ± 0.08 mg-N/g TS-h) in the attached growth phase, with minimal contribution by ammonia-oxidizing bacteria. Interestingly, a portion of total inorganic nitrogen (∼8%) was consistently lost during these aerobic assays. Aerobic nitrite oxidation assays eliminated the possibility of denitrification as a cause of nitrogen loss, while anaerobic ammonia oxidation assays resulted in rates consistent with anammox stoichiometry. Full-scale experiments at different dissolved oxygen (DO = 2 - 6 mg/L) setpoints indicated persistent nitrogen loss that was partly sensitive to DO concentrations. Genome-resolved metagenomics confirmed the high abundance (relative abundance 6.53 ± 0.34%) of two Brocadia-like anammox populations, while comammox bacteria within the Ca. Nitrospira nitrosa cluster were lower in abundance (0.37 ± 0.03%) and Nitrosomonas-like ammonia oxidizers were even lower (0.12 ± 0.02%). Collectively, our study reports for the first time the co-occurrence and cooperation of comammox and anammox bacteria in a full-scale municipal wastewater treatment system.
Collapse
Affiliation(s)
- Katherine Vilardi
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Irmarie Cotto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| | - Megan Bachmann
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Mike Parsons
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Stephanie Klaus
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Christopher Wilson
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Charles B. Bott
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Kelsey J. Pieper
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| |
Collapse
|
28
|
Yuan Q, Jia Z, Roots P, Wells G. A strategy for fast anammox biofilm formation under mainstream conditions. CHEMOSPHERE 2023; 318:137955. [PMID: 36702412 DOI: 10.1016/j.chemosphere.2023.137955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
One of the bottlenecks to applying anaerobic ammonium oxidation (Anammox) is the long start-up time, especially under mainstream conditions. This study proposed a strategy for fast anammox biofilm formation under mainstream conditions. By first cultivating an aerobic heterotrophic biofilm, and then transferring to anoxic conditions, a pre-cultivated heterotrophic biofilm can be formed in 12 days. The pre-cultivated heterotrophic biofilm then functions as a "glue" to accelerate anammox bacteria adhesion and biofilm formation. Secondary settled effluent with externally added 15-30 mg-N·L-1 ammonium and nitrite was applied as reactor influent. With a single inoculation of suspended growth anammox-laden biomass and no bioaugmentation, an anammox-enriched biofilm formed after 5 months of operation under uncontrolled temperature of 15-20 °C. Both the nitrogen removal rate and specific anammox activity exponentially increased over the course of study, corresponding to an estimated anammox doubling time of 10.8 days. The biofilm thickness on primed carriers was 2-3 times higher than on the non-primed carriers over the first 5 months of operation, and the hszA gene copy number in primed biofilms revealed was consistently 1 to 2 times higher than the non-primed carrier biofilm, indicating that biofil m carrier priming via selection for a pre-cultivated heterotrophic biofilm base can effectively improve the anammox enrichment rate at early stages of reactor operation. Time, rather than the type of biofilm (primed versus non-primed), had a stronger influence on microbial community structure over the full 230 days of reactor operation. Candidatus Brocadia was the only detected anammox bacteria genus. Overall, pre-cultivation of heterotrophs on biofilm carriers provides a simple route to accelerate anammox-enriched biofilm formation under mainstream conditions.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China; Department of Civil & Environmental Engineering, Northwestern University, Evanston, USA
| | - Zhen Jia
- Department of Civil & Environmental Engineering, Northwestern University, Evanston, USA
| | - Paul Roots
- Department of Civil & Environmental Engineering, Northwestern University, Evanston, USA
| | - George Wells
- Department of Civil & Environmental Engineering, Northwestern University, Evanston, USA.
| |
Collapse
|
29
|
Evaluating the suitability of granular anammox biomass for nitrogen removal from vegetable tannery wastewater. Biodegradation 2023; 34:253-262. [PMID: 36797384 PMCID: PMC10148767 DOI: 10.1007/s10532-023-10017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
In the present study, the potential inhibitory effect of biologically pre-treated vegetable tannery wastewater (TW) on anammox granular biomass was evaluated. Beside high organic and chemicals load, vegetable TW are characterised by high salinity and high tannins concentration, the latter belonging to a group of bio-refractory organic compounds, potentially inhibitory for several bacterial species. Recalcitrant tannin-related organic matters and salinity were selected as the two potential inhibitory factors and studied either for their separate and combined effect. Parallel batch tests were performed, with biomass acclimated and non-acclimated to salinity, testing three different conditions: non-saline control test with non-acclimated biomass (CT); saline control test with acclimated biomass (SCT); vegetable tannery wastewater test with acclimated biomass (TWT). Compared with non-saline CT, the specific anammox activity in tests SCT and TWT showed a reduction of 28 and 14%, respectively, suggesting that salinity, at conductivity values of 10 mS/cm (at 25 °C), was the main impacting parameter. As a general conclusion, the study reveals that there is no technical limitation for the application of the anammox process to vegetable TW, but preliminary biomass acclimation as well as regular biomass activity monitoring is recommended in case of long-term applications. To the best of our knowledge, this is the first work assessing the impact of vegetable TW on anammox biomass.
Collapse
|
30
|
Song Y, Ni J, Guo Y, Kubota K, Qi WK, Li YY. Anammox upflow hybrid reactor: Nitrogen removal performance and potential for phosphorus recovery. CHEMOSPHERE 2023; 313:137580. [PMID: 36529167 DOI: 10.1016/j.chemosphere.2022.137580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Echoing to the call of recovering high-value-added chemicals from wastewater and achieving carbon-neutral operation in wastewater treatment, an anammox upflow hybrid reactor was successfully applied for nitrogen removal, and the potential for phosphorus recovery was put forward. Moreover, the spatial pattern of removal capacities, and distribution of biomass and HAP precipitates were recognized and demonstrated as height-oriented. The intensity of HAP precipitates was highly consistent with the amount of anammox biomass and the relative abundance of the Candidatus Kuenenia, indicating that HAP formation was encouraged by the anammox reaction itself and heterogeneous nucleation induced by organic matters (proteins and polysaccharides). The fixed bed also played an important role in immobilizing the anammox biomass, secreted organic matrix, and HAP precipitates. This finding also provoked the thought that in the anammox process, HAP precipitation was more achievable, effective and practicable using the fixed-carrier system.
Collapse
Affiliation(s)
- Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
31
|
Liu Q, Li J, Zhao Y, Li X, Zhang Q, Sui J, Wang C, Peng Y. Mechanism of suspended sludge impact on anammox enrichment in anoxic biofilm through long term operation and microbial analysis. WATER RESEARCH 2023; 229:119412. [PMID: 36459890 DOI: 10.1016/j.watres.2022.119412] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The basic premise of anammox-technical application reliability in municipal wastewater treatment is substantially enriched anammox bacteria. To enrich the anammox, the special interaction mechanism between the suspended sludge (SS) and anoxic biofilm was investigated over three months in a partial denitrification/anammox biosystem subjected to dynamic changes in SS (absence→ presence→ absence). Results show that the introduction of SS significantly decreased the anammox nitrogen removal efficiency (83.8 ± 6.5%→ 48.7 ± 17.0%). With the presence or absence of SS, the spatial distribution of anammox bacteria within the anoxic biofilm gradually changed between the inner and outer layers, as detected by CLSM-FISH. qPCR and metagenomic sequencing show that changes in the presence and absence status of SS significantly reduced the abundance of the NO reducing functional gene, while the NO supply capacity (NO3-→NO) was improved, further favoring the anammox process. Batch tests and typical cycles further demonstrated that the anammox bacteria can stably acquire NO2-, and anammox bacteria in the anoxic biofilm competed far more NO2- than denitrifying bacteria according to the typical pH curve. Accordingly, the abundance of Candidatus Brocadia, as detected by high throughput sequencing, decreased in the anoxic biofilms with the introduction of SS, but greatly increased (0.82%→2.22%) after SS discharge. This study sheds new light on the high in-situ enrichment of anammox in mainstream.
Collapse
Affiliation(s)
- Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, 510075, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, 510075, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
32
|
Chen F, Qian Y, Cheng H, Shen J, Qin Y, Li YY. Recent developments in anammox-based membrane bioreactors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159539. [PMID: 36265633 DOI: 10.1016/j.scitotenv.2022.159539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The anammox-based process has been considered a promising biological nitrogen elimination method for the treatment of nitrogen-rich wastewater ever since its discovery 40 years ago. However, the slow growth rate of anammox bacteria and severe sludge washout result in a long startup period and limit its widespread industrial application. A membrane bioreactor (MBR) is considered an ideal reactor for the operation of the anammox-based process because the membranes allow for 100 % biomass retention. According to a systematic review of the literature, anammox-based MBR is becoming a research hotspot in the field of nitrogen wastewater treatment. The fundamental understanding of anammox-based MBR and its membrane fouling situation is essential for the development and application of anammox-based MBR. In this paper, the application of MBR in different kinds of anammox process are reviewed. The membrane fouling mechanism and strategies to control membrane fouling are also proposed. It is expected that this review will serve as an invaluable guide for future research and in the engineering applications of anammox-based MBR process.
Collapse
Affiliation(s)
- Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yunzhi Qian
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
33
|
Ochs P, Martin B, Germain-Cripps E, Stephenson T, van Loosdrecht M, Soares A. Techno-economic analysis of sidestream ammonia removal technologies: Biological options versus thermal stripping. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100220. [PMID: 36437889 PMCID: PMC9691913 DOI: 10.1016/j.ese.2022.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 05/26/2023]
Abstract
Over the past twenty years, various commercial technologies have been deployed to remove ammonia (NH4-N) from anaerobic digestion (AD) liquors. In recent years many anaerobic digesters have been upgraded to include a pre-treatment, such as the thermal hydrolysis process (THP), to produce more biogas, increasing NH4-N concentrations in the liquors are costly to treat. This study provides a comparative techno-economic assessment of sidestream technologies to remove NH4-N from conventional AD and THP/AD dewatering liquors: a deammonification continuous stirred tank reactor (PNA), a nitrification/denitrification sequencing batch reactor (SBR) and thermal ammonia stripping process with an ammonia scrubber (STRIP). The SBR and PNA were based on full-scale data, whereas the STRIP was designed using a computational approach to achieve NH4-N removals of 90-95%. The PNA presented the lowest whole-life cost (WLC) over 40 years, with £7.7 M, while the STRIP had a WLC of £43.9 M. This study identified that THP dewatering liquors, and thus a higher ammonia load, can lead to a 1.5-3.0 times increase in operational expenditure with the PNA and the SBR. Furthermore, this study highlighted that deammonification is a capable and cost-effective nitrogen removal technology. Processes like the STRIP respond to current pressures faced by the water industry on ammonia recovery together with targets to reduce nitrous oxide emissions. Nevertheless, ammonia striping-based processes must further be demonstrated in WWTPs and WLC reduced to grant their wide implementation and replace existing technologies.
Collapse
Affiliation(s)
- Pascal Ochs
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Ben Martin
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Eve Germain-Cripps
- Thames Water, Reading STW, Island Road, RG2 0RP, Reading, United Kingdom
| | - Tom Stephenson
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
| | - Mark van Loosdrecht
- Delft University of Technology, Building 58, Van der Maasweg 9, 2629, Delft, Netherlands
| | - Ana Soares
- Cranfield University, College Road, Cranfield, Bedford, MK43 0AL, United Kingdom
| |
Collapse
|
34
|
Hong S, De Clippeleir H, Goel R. Response of mixed community anammox biomass against sulfide, nitrite and recalcitrant carbon in terms of inhibition coefficients and functional gene expressions. CHEMOSPHERE 2022; 308:136232. [PMID: 36055592 DOI: 10.1016/j.chemosphere.2022.136232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has evolved as a carbon and energy-efficient nitrogen management bioprocess. However, factors such as inhibitory chemicals still challenge the easy operation of this powerful bioprocess. This research systematically evaluated the inhibition kinetics of sulfide, nitrite, and recalcitrant carbon under a genomic framework. The inhibition at the substrate and genetic levels of sulfide, nitrite and recalcitrant carbon on anammox activity was studied using batch tests. Nitrite inhibition of anammox followed substrate inhibition and was best described by the Aiba model with an inhibition coefficient [Formula: see text] of 324.04 mg N/L. Hydrazine synthase (hzsB) gene (anammox biomarker) expression was increased over time when incubated with nitrite up to 400 mg N/L. However, despite having the highest specific nitrite removal (SNR), the expression of hzsB at 100 and 200 mg N/L of nitrite was more muted than in most other samples with lower SNRs. Sulfide severely inhibited anammox activities. The inhibition was fitted with a Monod-based model with a [Formula: see text] of 4.39 mg S/L. At a sulfide concentration of 5 mg/L, the hzsB expression decreased throughout the experiment from its original value at he beginning. Recalcitrant carbon of filtrate from thermal hydrolysis process pretreated anaerobic digester had a minimal effect on maximum specific anammox activity (MSAA), and thus the value of the inhibition coefficient could not be calculated. At the same time, its hzsB expression profile was similar to that in the control. Resiliency and recovery tests indicated that the inhibition of nitrite (up to 400 mg N/L) and recalcitrant carbon (in 100% filtrate) were reversible. About 32% of MSAA was recovered after repeated exposures to sulfide at 2.5 mg/L, while at 5 mg/L, the inhibition was irreversible. Findings from this study will be helpful for the successful design and implementation of anammox in full-scale applications.
Collapse
Affiliation(s)
- Soklida Hong
- Civil and Environmental Engineering Department, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| | | | - Ramesh Goel
- Civil and Environmental Engineering Department, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
35
|
Sari T, Akgul D, Mertoglu B. Accumulation of TiO2 nanoparticles in the anammox bioreactor: Their effects on treatment performance and microbial dynamics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Zhu Z, Qin J, Chen Z, Chen Y, Chen H, Wang X. Sulfammox forwarding thiosulfate-driven denitrification and anammox process for nitrogen removal. ENVIRONMENTAL RESEARCH 2022; 214:113904. [PMID: 35863443 DOI: 10.1016/j.envres.2022.113904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The coupled process of thiosulfate-driven denitrification (NO3-→NO2-) and Anammox (TDDA) was a promising process for the treatment of wastewater containing NH4+-N and NO3--N. However, the high concentration of SO42- production limited its application, which needs to be alleviated by an economical and effective way to promote the application of TDDA process. In this study, TDDA process was started in a relatively short time by stepwise replacing nitrite with nitrate and operated continuously for 146 days. Results presented that the average total nitrogen removal efficiency of 82.18% can be acquired at a high loading rate of 1.98 kg N/(m3·d) with maximum nitrogen removal efficiency up to 87.04%. It was observed that the increase of S/N ratio improved the denitrification efficiency and slightly inhibit the Anammox process. Batch tests showed that Sulfammox process appeared in TDDA process under certain conditions, further contributing 2.59% nitrogen removal and 10.46% sulfur removal (14.42 mg/L NH4+-N and 37.68 mg/L SO42--S were removed). This finding was mainly attributed to the reduction of sulfate in TDDA system to elemental S0 or HS-, which subsequently was used as an electron donor to realize the recycling of sulfate (SO42--S) pollutants and promote the sulfur-nitrogen (S-N) cycle. High-throughput analysis displayed that Anammox bacteria (Candidatus_Kuenenia), Sulfur-oxidizing bacteria (Thiobacillus) with relatively high abundance of 5.37%, 7.74%, respectively, guaranteeing the excellent nitrogen and sulfate removal performance in the reactor. The enrichment of phyla Chloroflexi (31.79%), Proteobacteria (31.82%), class Ignavibacteriales (10.55%), genus Planctomycetes (13.57%) further verified the exitence of Sulfammox process in the TDDA reactor. This study provides a new perspective for the practical application of TDDA in terms of reducing the production of high concentration SO42- and saving operational cost and strengthening deeply nitrogen removal.
Collapse
Affiliation(s)
- Zijian Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Haochuan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| |
Collapse
|
37
|
Jia T, Li X, Jiang H, Dan Q, Sui J, Wang S, Peng Y. Advanced nitrogen removal from municipal sewage via partial nitrification-anammox process under two typical operation modes and seasonal ambient temperatures. BIORESOURCE TECHNOLOGY 2022; 363:127864. [PMID: 36055540 DOI: 10.1016/j.biortech.2022.127864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A novel two-stage partial nitrification-anammox (PN-A) process was developed, achieving nitrogen removal from low carbon/nitrogen ratio municipal sewage under two typical operational modes and seasonal ambient temperatures. When complete nitritation-anammox was performed at temperatures greater than 19.4 °C, the effluent concentration of total inorganic nitrogen (TIN) was 4.1 mg/L, corresponding to a nitrogen removal efficiency (NRE) of 94.3 %. In contrast, when partial nitritation-anammox was performed at temperatures below 19.4 °C, the effluent TIN was 12.3 mg/L, corresponding to a NRE of 83.6 %. The relative abundance of Nitrosomonas and Nitrosomonadaceae increased from 0.02 % to 0.28 %, while Ca. Brocadia decreased from 1.85 % to 1.30 %, with the contribution of anammox to nitrogen removal being highest under low temperatures (19.4℃ to 13.8℃), at 59.0 %. This novel two-stage PN-A process provides a new approach for the stable operation of wastewater treatment plants (WWTPs) under low ambient temperatures.
Collapse
Affiliation(s)
- Tong Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
38
|
Sun Z, Li J, Fan Y, Meng J. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater. WATER RESEARCH 2022; 225:119112. [PMID: 36166999 DOI: 10.1016/j.watres.2022.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
39
|
Deng YF, Zan FX, Huang H, Wu D, Tang WT, Chen GH. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. WATER RESEARCH 2022; 224:119051. [PMID: 36113234 DOI: 10.1016/j.watres.2022.119051] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Anoxic ammonium oxidation (anammox) is an energy-efficient nitrogen removal process for wastewater treatment. However, the unstable nitrite supply and residual nitrate in the anammox process have limited its wide application. Recent studies have proven coupling of sulfur-based denitrification with anammox (SDA) can achieve an effective nitrogen removal, owing to stable provision of substrate nitrite from the sulfur-based denitrification, thus making its process control more efficient in comparison with that of partial nitrification and anammox process. Meanwhile, the anammox-produced nitrate can be eliminated through sulfur-based denitrification, thereby enhancing SDA's overall nitrogen removal efficiency. Nonetheless, this process is governed by a complex microbial system that involves both complicated sulfur and nitrogen metabolisms as well as multiple interactions among sulfur-oxidising bacteria and anammox bacteria. A comprehensive understanding of the principles of the SDA process is the key to facilitating the development and application of this novel process. Hence, this review is conducted to systematically summarise various findings on the SDA process, including its associated biochemistry, biokinetic reactions, reactor performance, and application. The dominant functional bacteria and microbial interactions in the SDA process are further discussed. Finally, the advantages, challenges, and future research perspectives of SDA are outlined. Overall, this work gives an in-depth insight into the coupling mechanism of SDA and its potential application in biological nitrogen removal.
Collapse
Affiliation(s)
- Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Fei-Xiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Center for Environmental and Energy Research, Ghent University Global Campus, Republic of Korea
| | - Wen-Tao Tang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
40
|
Ji S, Gu N, Li YY, Liu J. Rapid proliferation of anaerobic ammonium oxidizing bacteria using anammox-hydroxyapatite technology in a pilot-scale expanded granular sludge bed reactor. BIORESOURCE TECHNOLOGY 2022; 362:127845. [PMID: 36031118 DOI: 10.1016/j.biortech.2022.127845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The practical application of anaerobic ammonium oxidation (anammox) technology was seriously limited by lack of anammox seeding sludge. In this work, a pilot-scale expanded granular sludge bed (EGSB) reactor was used for rapid proliferation of anaerobic ammonium oxidizing bacteria (AnAOB) using anammox-hydroxyapatite (anammox-HAP) technology. The excellent settleability of anammox-HAP granular sludge (with an excellent settling velocity of 395 m/h) supported the up-flow velocity of 9.6 m/h with recirculation ratio of 19. A high nitrogen loading rate (NLR) of 26.4 g N/L/d was achieved in the pilot-scale reactor, with a cell yield of 0.23 g VSS/g NH4+-N. The high recirculation ratio and up-flow velocity brought about the efficient mass transfer for anammox, eliminating free ammonia inhibition, resulting in the high NLR and cell yield. Results of microbial community revealed that the relative abundance of unclassified Brocadiaceae increased from 18.55% to 82.80%, illustrating the rapid proliferation of AnAOB.
Collapse
Affiliation(s)
- Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Nannan Gu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
41
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
42
|
Li J, Ran X, Zhou M, Wang K, Wang H, Wang Y. Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156454. [PMID: 35667421 DOI: 10.1016/j.scitotenv.2022.156454] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In-depth understanding of the molecular mechanisms and physiological consequences of oxidative stress is still limited for anaerobes. Anaerobic biotechnology has become widely accepted by the wastewater/sludge industry as a better alternative to more conventional but costly aerobic processes. However, the functional anaerobic microorganisms used in anaerobic biotechnology are frequently hampered by reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative stress caused by exposure to stressful factors (e.g., oxygen and heavy metals), which negatively impact treatment performance. Thus, identifying stressful factors and understanding antioxidative defense mechanisms of functional obligate anaerobes are crucial for the optimization of anaerobic bioprocesses. Herein, we present a comprehensive overview of oxidative stress and antioxidant mechanisms of obligate anaerobes involved in anaerobic bioprocesses; as examples, we focus on anaerobic ammonium oxidation bacteria and methanogenic archaea. We summarize the primary stress factors in anaerobic bioprocesses and the cellular antioxidant defense systems of functional anaerobes, a consortia of enzymatic and nonenzymatic mechanisms. The dual role of ROS/RNS in cellular processes is elaborated; at low concentrations, they have vital cell signaling functions, but at high concentrations, they cause oxidative damage. Finally, we highlight gaps in knowledge and future work to uncover antioxidant and damage repair mechanisms in obligate anaerobes. This review provides in-depth insights and guidance for future research on oxidative stress of obligate anaerobes to boost the accurate regulation of anaerobic bioprocesses in challenging and changing operating conditions.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
43
|
Elsayed A, Yu J, Lee T, Kim Y. Model study on real-time aeration based on nitrite for effective operation of single-stage anammox. ENVIRONMENTAL RESEARCH 2022; 212:113554. [PMID: 35644493 DOI: 10.1016/j.envres.2022.113554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia oxidation (Anammox) is an innovative technology for cost-efficient nitrogen removal without intensive aeration. However, effective control of the competition between nitrite oxidizing bacteria (XNOB) and Anammox bacteria (XANA) for nitrite is a key challenge for broad applications of single-stage Anammox processes in real wastewater treatment. Therefore, a real-time aeration scheme was proposed to determine dissolved oxygen (DO) based on nitrite concentration for effective control of XNOB growth while maintaining the XANA activity in a single-stage Anammox process. In this study, a non-steady state mathematical model was developed and calibrated using previously reported lab-scale Anammox results to investigate the efficiency of the proposed real-time aeration scheme in enhancing the Anammox process. Based on the calibrated model simulation results, DO of about 0.10 mg-O2/L was found to be ideal for maintaining effective nitrite creation by ammonia oxidizing bacteria (XAOB) while slowing down the growth of XNOB. If DO is too low (e.g., 0.01 mg-O2/L or lower), the overall rate of the ammonia removal is limited due to slow growth of XAOB. On the other hand, high DO (e.g., 1.0 mg-O2/L or higher) inhibits the growth of XANA, resulting in dominancy of XAOB and XNOB. According to the simulation results, nitrite concentration was found to be a rate-limiting parameter on effective nitrogen removal in single-stage Anammox processes. We also found that nitrite concentration can be used as a real-time switch for aeration in a single-stage Anammox process. A schematic aeration method based on real-time nitrite concentration was proposed and examined to control the competition between XANA and XNOB. In the model simulation, the XANA activity was successfully maintained because the schematic aeration prevented an outgrowth of XNOB, allowing energy-efficient nitrogen removal using single-stage Anammox processes.
Collapse
Affiliation(s)
- Ahmed Elsayed
- Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada; Irrigation and Hydraulics Department, Cairo University, Giza, Egypt
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Republic of Korea
| | - Younggy Kim
- Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
44
|
Naufal M, Wu JH, Shao YH. Glutamate Enhances Osmoadaptation of Anammox Bacteria under High Salinity: Genomic Analysis and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11310-11322. [PMID: 35913201 DOI: 10.1021/acs.est.2c01104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An osmoprotectant that alleviates the bacterial osmotic stress can improve the bioreactor treatment of saline wastewater. However, proposed candidates are expensive, and osmoprotectants of anammox bacteria and their ecophysiological roles are not fully understood. In this study, a comparative analysis of 34 high-quality public metagenome-assembled genomes from anammox bacteria revealed two distinct groups of osmoadaptation. Candidatus Scalindua and Kuenenia share a close phylogenomic relation and osmoadaptation gene profile and have pathways for glutamate transport and metabolisms for enhanced osmoadaptation. The batch assay results demonstrated that the reduced Ca. Kuenenia activity in saline conditions was substantially alleviated with the addition and subsequent synergistic effects of potassium and glutamate. The operational test of two reactors demonstrated that the reduced anammox performance under brine conditions rapidly recovered by 35.7-43.1% as a result of glutamate treatment. The Ca. Kuenenia 16S rRNA and hydrazine gene expressions were upregulated significantly (p < 0.05), and the abundance increased by approximately 19.9%, with a decrease in dominant heterotrophs. These data demonstrated the effectiveness of glutamate in alleviating the osmotic stress of Ca. Kuenenia. This study provides genomic insight into group-specific osmoadaptation of anammox bacteria and can facilitate the precision management of anammox reactors under high salinity.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Yung-Hsien Shao
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| |
Collapse
|
45
|
Hausherr D, Niederdorfer R, Bürgmann H, Lehmann M, Magyar P, Mohn J, Morgenroth E, Joss A. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N 2O emissions. WATER RESEARCH X 2022; 16:100145. [PMID: 35789883 PMCID: PMC9250041 DOI: 10.1016/j.wroa.2022.100145] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
For two decades now, partial nitritation anammox (PNA) systems were suggested to more efficiently remove nitrogen (N) from mainstream municipal wastewater. Yet to date, only a few pilot-scale systems and even fewer full-scale implementations of this technology have been described. Process instability continues to restrict the broad application of PNA. Especially problematic are insufficient anammox biomass retention, the growth of undesired aerobic nitrite-oxidizers, and nitrous oxide (N2O) emissions. In this study, a two-stage mainstream pilot-scale PNA system, consisting of three reactors (carbon pre-treatment, nitritation, anammox - 8 m3 each), was operated over a year, treating municipal wastewater. The aim was to test whether both, robust autotrophic N removal and high effluent quality, can be achieved throughout the year. A second aim was to better understand rate limiting processes, potentially affecting the overall performance of PNA systems. In this pilot study, excellent effluent quality, in terms of inorganic nitrogen, was accomplished (average effluent concentrations: 0.4 mgNH4-N/L, 0.1 mgNO2-N/L, 0.9 mgNO3-N/L) even at wastewater temperatures previously considered problematic (as low as 8 °C). N removal was limited by nitritation rates (84 ± 43 mgNH4-N/L/d), while surplus anammox activity was observed at all times (178 ± 43 mgN/L/d). Throughout the study, nitrite-oxidation was maintained at a low level (<2.5% of ammonium consumption rate). Unfortunately, high N2O emissions from the nitritation stage (1.2% of total nitrogen in the influent) were observed, and, based on natural isotope abundance measurements, could be attributed to heterotrophic denitrification. In situ batch experiments were conducted to identify the role of dissolved oxygen (DO) and organic substrate availability in N2O emission-mitigation. The addition of organic substrate, to promote complete denitrification, was not successful in decreasing N2O emission, but increasing the DO from 0.3 to 2.9 mgO2/L decreased N2O emissions by a factor of 3.4.
Collapse
Affiliation(s)
- D. Hausherr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Corresponding author:
| | - R. Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - H. Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - M.F. Lehmann
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - P. Magyar
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - J. Mohn
- Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Air Pollution / Environmental Technology, Dübendorf 8600, Switzerland
| | - E. Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - A. Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
46
|
Macmanus J, Long C, Klaus S, Parsons M, Chandran K, De Clippeleir H, Bott C. Nitrogen removal capacity and carbon demand requirements of partial denitrification/anammox MBBR and IFAS processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10766. [PMID: 35915389 DOI: 10.1002/wer.10766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
A pilot study was conducted to investigate the carbon demand requirements and nitrogen removal capabilities of two mainstream partial denitrification/anammox (PdNA) processes: a two-zone, moving bed biofilm reactor (MBBR) process and an integrated fixed-film activated sludge (IFAS) process. The first MBBR zone conducted PdNA, while the second operated as an anammox zone. Operation of the IFAS process was conducted in two phases. The first phase of the operation involved minor external carbon addition, while the second phase of the operation involved controlled external carbon addition. The MBBR process produced an average effluent TIN concentration and chemical oxygen demand (COD)/TIN ratio of 2.81 ± 1.21 mg/L and 2.42 ± 0.77 g/g. The average effluent TIN concentrations and COD/TIN ratios for the IFAS process were 4.07 ± 1.66 mg/L and 1.08 ± 0.38 g/g during phase 1 and 3.30 ± 0.96 mg/L and 2.18 ± 0.99 g/g during phase 2. Despite having relatively low and unstable partial denitrification (PdN) efficiencies, both mainstream PdNA processes exhibited low effluent TIN concentrations and carbon requirements compared to nitrification/denitrification. Successful operation of the PdNA IFAS process indicates that mainstream PdNA can be implemented with minimal capital costs in a water resource recovery facility's second anoxic zone. PRACTITIONER POINTS: Low effluent TIN concentrations can be maintained in mainstream PdNA MBBR and IFAS processes with low external carbon demand. MBBR and IFAS PdNA processes do not require consistent or high PdN efficiencies to maintain low effluent TIN concentrations. IFAS and MBBR PdNA processes exhibit similar TIN and NH3 removal efficiencies. PdNA can be implemented in a second anoxic zone, using IFAS technology for anammox retention, with minimal capital costs.
Collapse
Affiliation(s)
- Justin Macmanus
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Michael Parsons
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Haydee De Clippeleir
- District of Columbia Water and Sewer Authority, Washington, District of Columbia, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| |
Collapse
|
47
|
Gu X, Huang W, Xie Y, Huang Y, Zhang M. Simulation and experimental verification of nitrite-oxidizing bacteria inhibition by alternating aerobic/anoxic strategy. BIORESOURCE TECHNOLOGY 2022; 358:127441. [PMID: 35680091 DOI: 10.1016/j.biortech.2022.127441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (ANAMMOX) is a promising technology for sewage treatment. Alternating aerobic/anoxic conditions have been widely adopted to achieve partial nitrification (PN), so as to provide substrates for ANAMMOX. In this study, the feasibility of PN with the strategy of intermittent aeration was investigated under mainstream conditions. At a low dissolved oxygen (DO) concentration, the nitrogen conversion characteristic under different intermittent aeration modes was evaluated by mathematical simulation and experimental method with (1) ordinary activated sludge, (2) mixed sludge with anaerobic ammonia-oxidizing bacteria (AnAOB), and (3) PN sludge, as seed sludge. The existence of functional microorganisms, such as AnAOB and denitrifying bacteria, which can utilize nitrites, was the prerequisite for NOB activity inhibition in the alternating aerobic/anoxic condition. Therefore, low nitrite may be an important factor in NOB activity inhibition under alternating aerobic/anoxic conditions. This study demonstrated a key controlling factor for NOB activity inhibition with alternating aerobic/anoxic condition.
Collapse
Affiliation(s)
- Xiaodan Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Wenhui Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yiyi Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Miao Zhang
- College of Environmental Science and Engineering, Yangzhou Universtiy, Yangzhou 225127, China
| |
Collapse
|
48
|
Palomo A, Azevedo D, Touceda-Suárez M, Domingo-Félez C, Mutlu AG, Dechesne A, Wang Y, Zhang T, Smets BF. Efficient management of the nitritation-anammox microbiome through intermittent aeration: absence of the NOB guild and expansion and diversity of the NOx reducing guild suggests a highly reticulated nitrogen cycle. ENVIRONMENTAL MICROBIOME 2022; 17:39. [PMID: 35869541 PMCID: PMC9306079 DOI: 10.1186/s40793-022-00432-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Obtaining efficient autotrophic ammonia removal (aka partial nitritation-anammox, or PNA) requires a balanced microbiome with abundant aerobic and anaerobic ammonia oxidizing bacteria and scarce nitrite oxidizing bacteria. Here, we analyzed the microbiome of an efficient PNA process that was obtained by sequential feeding and periodic aeration. The genomes of the dominant community members were inferred from metagenomes obtained over a 6 month period. Three Brocadia spp. genomes and three Nitrosomonas spp. genomes dominated the autotrophic community; no NOB genomes were retrieved. Two of the Brocadia spp. genomes lacked the genomic potential for nitrite reduction. A diverse set of heterotrophic genomes was retrieved, each with genomic potential for only a fraction of the denitrification pathway. A mutual dependency in amino acid and vitamin synthesis was noted between autotrophic and heterotrophic community members. Our analysis suggests a highly-reticulated nitrogen cycle in the examined PNA microbiome with nitric oxide exchange between the heterotrophs and the anammox guild.
Collapse
Affiliation(s)
- Alejandro Palomo
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Daniela Azevedo
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - María Touceda-Suárez
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Carlos Domingo-Félez
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - A Gizem Mutlu
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- Hydrotech - Veolia Water Technologies, Vellinge, Sweden
| | - Arnaud Dechesne
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Barth F Smets
- Microbial Ecology and Technology Lab, Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.
| |
Collapse
|
49
|
Chen L, Zhao B, Palomo A, Sun Y, Cheng Z, Zhang M, Xia Y. Micron-scale biogeography reveals conservative intra anammox bacteria spatial co-associations. WATER RESEARCH 2022; 220:118640. [PMID: 35661503 DOI: 10.1016/j.watres.2022.118640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Micron-scale resolution can help to reliably identify true taxon-taxon interactions in complex microbial communities. Despite widespread recognition of the critical role of metabolic interactions in anaerobic ammonium oxidation (anammox) system performance, no studies have examined microbial interactions at the micron-scale in anammox consortia. To fill this gap, we extensively sampled (totally 242 samples) the consortia of a lab-scale anammox reactor at different length scales, including bulk-scale (∼cm), macro-scale (300-500 µm) and micron-scale (70-100 µm). We firstly observed evident micron-scale heterogeneity in anammox consortia, with the relative abundance of anammox bacteria fluctuated greatly across individual clusters (2.0%-79.3%), indicating that the biotic interactions play a significant role in the assembly of anammox communities under well-controlled and well-mixed condition. Importantly, by mapping the spatial associations in anammox consortia at micron-scale, we demonstrated that the conserved co-associations for anammox bacteria were restricted to three different Brocadia species over time, and their co-associations with heterotrophs were random, implying that there was no statistically significant symbiotic interaction between anammox bacteria and other heterotrophic populations. Further metagenomic binning revealed that the quorum sensing with secondary messenger c-di-GMP potentially holding on the conservative metabolic cooperation among Brocadia species. These results shed new light on the social behavior of the anammox community. Overall, delineating of biological structures at micron-scale opens a new way of monitoring the microbial spatial structure and interactions, paving the way for improved community engineering of biotreatment systems.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alejandro Palomo
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
50
|
Kouba V, Hůrková K, Navrátilová K, Kok D, Benáková A, Laureni M, Vodičková P, Podzimek T, Lipovová P, van Niftrik L, Hajšlová J, van Loosdrecht MCM, Weissbrodt DG, Bartáček J. Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154715. [PMID: 35337864 PMCID: PMC7612979 DOI: 10.1016/j.scitotenv.2022.154715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.
Collapse
Affiliation(s)
- Vojtěch Kouba
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia.
| | - Kamila Hůrková
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Klára Navrátilová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Dana Kok
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Andrea Benáková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Michele Laureni
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; TU Delft, Department of Water Management, Building 23, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Patricie Vodičková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia; University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Tomáš Podzimek
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Petra Lipovová
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Laura van Niftrik
- Radboud University, Department of Microbiology, Institute for Water and Wetland Research, 1Heyendaalseweg 135, 6525 ED AJ Nijmegen, the Netherlands
| | - Jana Hajšlová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Mark C M van Loosdrecht
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - David Gregory Weissbrodt
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jan Bartáček
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| |
Collapse
|