1
|
Epstein JA, Ramon GZ. In-situ measurement of the internal compaction of a soft material caused by permeation flow. J Colloid Interface Sci 2024; 673:883-892. [PMID: 38908287 DOI: 10.1016/j.jcis.2024.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
HYPOTHESIS The compaction of hydrogel films under permeation flow can be measured, in-situ, by tracking the internal displacements of their structure, thereby revealing the internal deformation profile. Additionally, monitoring the permeation flow rate and applied pressure over time enables determination of variations in the hydrogel's permeability due to flow-induced compaction. Hydrogels are soft porous materials capable of containing high amounts of water within their polymeric matrix. Flow-induced internal deformation can modify the hydrogel's permeability and selectivity, which are important attributes in separation processes, both industrial (e.g., membrane-based water purification) and natural (mucous filters in suspension feeders and intestinal lining) systems. Measuring the flow-induced compaction in thin hydrogels films can reveal the interplay between flow and permeability. However, the micro-scale internal compaction remains uncharted for due to experimental challenges. EXPERIMENTS A technique is demonstrated for analyzing the compaction and stratification of permeable soft materials, in-situ, created by a pressure-driven permeation flow. To this end, the internal deformations within a soft material layer are calculated, based on tracking the positions of fluorescent micro-tracers that are embedded within the soft material. We showcase the capabilities of this technique by examining a hundred-micron-thick calcium-alginate cake deposited on a nanofiltration membrane, emphasizing the achieved micro-scale resolution of the local compaction measurements. FINDINGS The results highlight the possibility to examine thin hydrogel films and their internal deformation produced by flow-induced stresses when varying the flow conditions. The method enables the simultaneous calculation of the soft material's permeance, as the pressure-driven flow conditions are continuously monitored. In summary, the proposed method provides a powerful tool for characterizing the behaviour of permeable soft materials under permeation conditions, with potential applications in engineering, biophysics and material science.
Collapse
Affiliation(s)
- José A Epstein
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Guy Z Ramon
- Department of Civil & Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
2
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Narciso DAC, Pereira A, Dias NO, Monteiro M, Melo LF, Martins FG. 3D Optical Coherence Tomography image processing in BISCAP: characterization of biofilm structure and properties. Bioinformatics 2024; 40:btae041. [PMID: 38265243 PMCID: PMC10868339 DOI: 10.1093/bioinformatics/btae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/24/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
MOTIVATION BISCAP is a state-of-the-art tool for automatically characterizing biofilm images obtained from Optical Coherence Tomography. Limited availability of other software tools is reported in the field. BISCAP's first version processes 2D images only. Processing 3D images is a problem of greater scientific relevance since it deals with the entire structure of biofilms instead of their 2D slices. RESULTS Building on the image-processing principles and algorithms proposed earlier for 2D images, these were adapted to the 3D case, and a more general implementation of BISCAP was developed. The primary goal concerns the extension of the initial methodology to incorporate the depth axis in 3D images; multiple improvements were also made to boost computational performance. The calculation of structural properties and visual outputs was extended to offer new insights into the 3D structure of biofilms. BISCAP was tested using 3D images of biofilms with different morphologies, consistently delivering accurate characterizations of 3D structures in a few minutes using standard laptop machines. Low user dependency is required for image analysis. AVAILABILITY AND IMPLEMENTATION BISCAP is available from https://github.com/diogonarciso/BISCAP. All images used in the tutorials and the validation examples are available from https://web.fe.up.pt/∼fgm/biscap3d.
Collapse
Affiliation(s)
- Diogo A C Narciso
- CERENA—Centro Recursos Naturais e Ambiente, Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Ana Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| | - Nuno O Dias
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| | - Manuel Monteiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| | - Luis F Melo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| | - Fernando G Martins
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| |
Collapse
|
4
|
Koroli S, Buss K, Blain JM, Nakka GS, Hong M, McLean RJ, Plugge CM, Yang J. Draft genome sequence of Sphingomonas paucimobilis strain Sph5, isolated from tap water filtration membrane. Microbiol Resour Announc 2024; 13:e0034523. [PMID: 38038463 DOI: 10.1128/mra.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Sphingomonadaceae are common membrane colonizers and biofilm formers. As part of our studies on long-term genetic changes in drinking water biofilm species, we report the draft genome sequence of Sphingomonas strain Sph5, isolated from a tap water filtration membrane. The isolate was determined as Sphingomonas paucimobilis through whole genome sequencing and de novo assembly.
Collapse
Affiliation(s)
- Sara Koroli
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University , Tempe, Arizona, USA
- College of Medicine, University of Arizona , Phoenix, Arizona, USA
| | - Kristina Buss
- Bioinformatics Core Facility, Biosciences, Knowledge Enterprise, Arizona State University , Tempe, Arizona, USA
| | - Joy M Blain
- Genomics Core Facility, Biosciences, Knowledge Enterprise, Arizona State University , Tempe, Arizona, USA
| | - Gautam Sai Nakka
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University , Tempe, Arizona, USA
| | - Mina Hong
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University , Tempe, Arizona, USA
| | - Robert Jc McLean
- Department of Biology, Texas State University , San Marcos, Texas, USA
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology , Leeuwarden, the Netherlands
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University , Tempe, Arizona, USA
| |
Collapse
|
5
|
Baburova PI, Kladko DV, Lokteva A, Pozhitkova A, Rumyantceva V, Rumyantceva V, Pankov IV, Taskaev S, Vinogradov VV. Magnetic Soft Robot for Minimally Invasive Urethral Catheter Biofilm Eradication. ACS NANO 2023; 17:20925-20938. [PMID: 37871301 DOI: 10.1021/acsnano.2c10127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design. In this work, we demonstrated magnetic soft robots as a minimally invasive, safe, and effective approach to eliminate biofilm from urethral catheters (20 Fr or 5.1 mm in diameter). Seven designs of the robot were fabricated (size 4.5 × 15 mm), characterized, and tested in the presence of a rotating magnetic field. As a proof-of-concept, we demonstrated the superior efficiency of biofilm removal on the model of a urethral catheter using a magnetic robot, reaching full eradication for the octagram-shaped robot (velocity 2.88 ± 0.6 mm/s) at a 15 Hz frequency and a 10 mT amplitude. These findings are helpful for the treatment of biofilm-associated catheter contamination, which allows an increase in the catheter wearing time without frequent replacement and treatment of catheter-associated infections.
Collapse
Affiliation(s)
- Polina I Baburova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Alina Lokteva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Anna Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Viktoriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Valeriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Ilya V Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergey Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| |
Collapse
|
6
|
Okebiorun M, Oberbeck C, Waite C, Clark S, Miller D, Barney Smith EH, Cornell KA, Browning J. Selective Optical Imaging for Detection of Bacterial Biofilms in Tissues. J Imaging 2023; 9:160. [PMID: 37623692 PMCID: PMC10455256 DOI: 10.3390/jimaging9080160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
SIGNIFICANCE The development of an imaging technique to accurately identify biofilm regions on tissues and in wounds is crucial for the implementation of precise surface-based treatments, leading to better patient outcomes and reduced chances of infection. AIM The goal of this study was to develop an imaging technique that relies on selective trypan blue (TB) staining of dead cells, necrotic tissues, and bacterial biofilms, to identify biofilm regions on tissues and wounds. APPROACH The study explored combinations of ambient multi-colored LED lights to obtain maximum differentiation between stained biofilm regions and the underlying chicken tissue or glass substrate during image acquisition. The TB imaging results were then visually and statistically compared to fluorescence images using a shape similarity measure. RESULTS The comparisons between the proposed TB staining method and the fluorescence standard used to detect biofilms on tissues and glass substrates showed up to 97 percent similarity, suggesting that the TB staining method is a promising technique for identifying biofilm regions. CONCLUSIONS The TB staining method demonstrates significant potential as an effective imaging technique for the identification of fluorescing and non-fluorescing biofilms on tissues and in wounds. This approach could lead to improved precision in surface-based treatments and better patient outcomes.
Collapse
Affiliation(s)
- Michael Okebiorun
- Biomedical Engineering Program, Boise State University, Boise, ID 83725, USA;
| | - Cody Oberbeck
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
| | - Cameron Waite
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA
| | - Samuel Clark
- Department of Mathematics, Boise State University, Boise, ID 83725, USA
| | - Dalton Miller
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA (K.A.C.)
| | - Elisa H. Barney Smith
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
- Autonomous Systems and Software Program, Luleå Tekniska Universitet, 97187 Luleå, Sweden
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA (K.A.C.)
| | - Jim Browning
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
| |
Collapse
|
7
|
Wu S, Ma B, Fan H, Hua X, Hu C, Ulbricht M, Qu J. Influence of water quality factors on cake layer 3D structures and water channels during ultrafiltration process. WATER RESEARCH 2023; 242:120226. [PMID: 37364354 DOI: 10.1016/j.watres.2023.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The three-dimensional (3D) structure of the cake layer, which could be influenced by water quality factors, plays a significant role in the ultrafiltration (UF) efficiency of water purification. However, it remains challenging to precisely reveal the variation of cake layer 3D structures and water channel characteristics. Herein, we systematically report the variation in the cake layer 3D structure at the nanoscale induced by key water quality factors and reveal its influence on water transport, in particular the abundance of water channels within the cake layer. In comparison with pH and Na+, Ca2+ played more significant role in determining cake layer structures. The sandwich-like cake layer, which was induced by the asynchronous deposition of humic acids and sodium alginate (SA), shifted to an isotropic structure when Ca2+ was present due to the Ca2+ bridging. In comparison with the sandwich-like structure, the isotropic cake layer has higher fractions of free volume (voids) and more water channels, leading to a 147% improvement in the water transport coefficient, 60% reduction in the cake layer resistance, and 21% increase in the final membrane specific flux. Our work elucidates a structure-property relationship where improving the isotropy of the cake layer 3D structure is conducive to the optimization of water channels and water transport within cake layers. This could inspire tailored regulation strategies for cake layers to enhance the UF efficiency of water purification.
Collapse
Affiliation(s)
- Siqi Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Hua
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wu S, Ma B, Hu C, Hua X, Fan H, Ulbricht M, Qu J. Cake layer 3D structure regulation to optimize water channels during Al-based coagulation-ultrafiltration process. WATER RESEARCH 2023; 236:119941. [PMID: 37054609 DOI: 10.1016/j.watres.2023.119941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The variation in cake layer three-dimensional (3D) structures and related water channel characteristics induced by coagulation pretreatment remains unclear; however, gaining such knowledge will aid in improving ultrafiltration (UF) efficiency for water purification. Herein, the regulation of cake layer 3D structures (3D distribution of organic foulants within cake layers) by Al-based coagulation pretreatment was analyzed at the micro/nanoscale. The sandwich-like cake layer of humic acids and sodium alginate induced without coagulation was ruptured, and foulants were gradually uniformly distributed within the floc layer (toward an isotropic structure) with increasing coagulant dosage (a critical dosage was observed). Furthermore, the structure of the foulant-floc layer was more isotropic when coagulants with high Al13 concentrations were used (either AlCl3 at pH 6 or polyaluminum chloride, in comparison with AlCl3 at pH 8 where small-molecular-weight humic acids were enriched near the membrane). These high Al13 concentrations lead to a 48.4% higher specific membrane flux than that seen for UF without coagulation. Molecular dynamics simulations revealed that with increasing Al13 concentration (Al13: 6.2% to 22.6%), the water channels within the cake layer were enlarged and more connected, and the water transport coefficient was improved by up to 54.1%, indicating faster water transport. These findings demonstrate that facilitating an isotropic foulant-floc layer with highly connected water channels by coagulation pretreatment with high-Al13-concentration coagulants (having a strong ability to complex organic foulants) is the key issue in optimizing the UF efficiency for water purification. The results should provide further understanding of the underlying mechanisms of coagulation-enhancing UF behavior and inspire precise design of coagulation pretreatment to achieve efficient UF.
Collapse
Affiliation(s)
- Siqi Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Hua
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Kim B, Madukoma CS, Shrout JD, Nerenberg R. Effect of EPS production on the performance of membrane-based biofilm reactors. WATER RESEARCH 2023; 240:120101. [PMID: 37224668 DOI: 10.1016/j.watres.2023.120101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
This study explored the effect of extracellular polymeric substance (EPS) production on the performance of membrane-based biofilm reactors. Changing EPS production was induced by eliminating one of the main EPS polysaccharides, i.e., Pel. The studies were carried out using a pure culture of either Pseudomonas aeruginosa or an isogenic P. aeruginosa mutant that was unable to produce the Pel polysaccharide. The biofilm cell density for both strains was compared to confirm the Pel deletion mutant decreased overall EPS production in a bioreactor system. When the Pel-deficient mutant was grown as a biofilm, its cell density, i.e., ratio of cells/(cells + EPS), was 74 % higher than the wild type, showing EPS production was reduced by eliminating pel production. The growth kinetics were determined for both strains. The Pel-deficient mutant had a maximum specific growth rate (μ^) that was 14% higher than the wild type. Next, the effects of EPS reduction on reactor performance were assessed for a membrane aerated biofilm reactor (MABR) and a membrane bioreactor (MBR). For the MABR, the organic removal with the Pel-deficient mutant was around 8% higher than for the wild type. For the MBR, the time to reach the fouling threshold was 65 % greater for the Pel-deficient mutant than for the wild type. These results suggest that amount of EPS production can have significant effects on bacterial growth kinetics and bacterial cell density, which in turn can affect the performance of the membrane-based biofilm reactors. In both cases, lower EPS production correlated with more efficient treatment processes.
Collapse
Affiliation(s)
- B Kim
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA; University of Wisconsin-Madison, Great Lakes Bioenergy Research Center (GLBRC), Madison, Wisconsin, USA
| | - C S Madukoma
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - J D Shrout
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - R Nerenberg
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Gierl L, Horn H, Wagner M. Impact of Fe 2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Bacillus subtilis Case Study. Microorganisms 2022; 10:2234. [PMID: 36422304 PMCID: PMC9699539 DOI: 10.3390/microorganisms10112234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe2+ ions within the cultivation medium on biofilm development, structure and stability, Bacillus subtilis biofilms were cultivated in mini-fluidic flow cells. Two different Fe2+ inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates (n = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe2+ inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe2+ addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe2+ inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe2+/L (44.8 µmol/L; high inflow concentration) compared to the low Fe2+ inflow concentration of 0.25 mg Fe2+/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of Bacillus subtilis biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe2+ inflow concentrations.
Collapse
Affiliation(s)
- Luisa Gierl
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Lu JJ, Zhang H, Li W, Yi JB, Sun FY, Zhao YW, Feng L, Li Z, Dong WY. Biofilm stratification in counter-diffused membrane biofilm bioreactors (MBfRs) for aerobic methane oxidation coupled to aerobic/anoxic denitrification: Effect of oxygen pressure. WATER RESEARCH 2022; 226:119243. [PMID: 36270147 DOI: 10.1016/j.watres.2022.119243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Aerobic methane oxidation coupled with denitrification (AME-D) executed in membrane biofilm bioreactors (MBfRs) provides a high promise for simultaneously mitigating methane (CH4) emissions and removing nitrate in wastewater. However, systematically experimental investigation on how oxygen partial pressure affects the development and characteristics of counter-diffusional biofilm, as well as its spatial stratification profiles, and the cooperative interaction of the biofilm microbes, is still absent. In this study, we combined Optical Coherence Tomography (OCT) with Confocal Laser Scanning Microscopy (CLSM) to in-situ characterize the development of counter-diffusion biofilm in the MBfR for the first time. It was revealed that oxygen partial pressure onto the MBfR was capable of manipulating biofilm thickness and spatial stratification, and then managing the distribution of functional microbes. With the optimized oxygen partial pressure of 5.5 psig (25% oxygen content), the manipulated counter-diffusional biofilm in the AME-D process obtained the highest denitrification efficiency, due mainly to that this biofilm had the proper dynamic balance between the aerobic-layer and anoxic-layer where suitable O2 gradient and sufficient aerobic methanotrophs were achieved in aerobic-layer to favor methane oxidation, and complete O2 depletion and accessible organic sources were kept to avoid constraining denitrification activity in anoxic-layer. By using metagenome analysis and Fluorescence in situ hybridization (FISH) staining, the spatial distribution of the functional microbes within counter-diffused biofilm was successfully evidenced, and Rhodocyclaceae, one typical aerobic denitrifier, was found to survive and gradually enriched in the aerobic layer and played a key role in denitrification aerobically. This in-situ biofilm visualization and characterization evidenced directly for the first time the cooperative path of denitrification for AME-D in the counter-diffused biofilm, which involved aerobic methanotrophs, heterotrophic aerobic denitrifiers, and heterotrophic anoxic denitrifiers.
Collapse
Affiliation(s)
- Jian-Jiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Yi
- Instrumental Analysis Center of Shenzhen University, Shenzhen University (Xili Campus), Shenzhen 518060, China
| | - Fei-Yun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yi-Wei Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Liang Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
13
|
Lin W, Li D, Wang Q, Wang XM, Huang X. Dynamic evolution of membrane biofouling in feed channels affected by spacer–membrane clearance and the induced hydrodynamic conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions. Appl Environ Microbiol 2022; 88:e0107222. [PMID: 36300948 PMCID: PMC9680615 DOI: 10.1128/aem.01072-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detachment is an important process determining the structure and function of bacterial biofilm, which has significant implications for biogeochemical cycling of elements, biofilm application, and infection control in clinical settings. Quantifying the responses of biofilm structure to hydrodynamics is crucial for understanding biofilm detachment mechanisms in aquatic environments.
Collapse
|
15
|
Zhang C, Bao Q, Chen Q, Wu H, Shao M, Wang N, Xu Q. Membrane fouling behaviors and evolution during food waste digestate treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Hou J, Shao G, Adyel TM, Li C, Liu Z, Liu S, Miao L. Can the carbon metabolic activity of biofilm be regulated by the hydrodynamic conditions in urban rivers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155082. [PMID: 35398435 DOI: 10.1016/j.scitotenv.2022.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Hydrodynamic regulation is widely used to improve the water quality of urban rivers. However, it is yet to explore substantially whether hydrodynamics could regulate the metabolic activity of biofilm in such aquatic systems. Herein, the pilot experiment of hydrodynamics in the rotation tanks was designed, including two experiment phases, namely constant flow and adjusting flow for 21 days and 14 days, respectively. In constant flow phase, biofilms grew in five shear stress gradients (R1-R5, 0.0044- 0.12 Pa). The carbon metabolic rate (k) of mature biofilms evaluated by BIOLOG ECO microplates showed a hump-shaped relationship with increasing shear stress, with R3 (0.049 Pa) the highest, while R5 (0.12 Pa) the lowest. To verify whether the metabolic activity of biofilm cultured at constant flow phase can be regulated by shear stress, we initiated the adjusting flow phase, and shear stress in reactors was reset uniformly at 0.049 Pa (with the highest k). Results showed the carbon metabolic activity of biofilm in reactor R4 and R5 increased rapidly by day 3, and there was no significant difference between the carbon metabolic rates among the five treatments by day 14. Meanwhile, the utilization levels of polymers and carbohydrates by biofilms were significantly different among the five treatments after hydrodynamic regulations. These results suggested that the total carbon metabolic activity of biofilm can be regulated by hydrodynamics, while the divergent changes of the specific carbon source category might affect the biofilm-mediated carbon biogeochemical processes, which should be considered for the application of hydrodynamic regulation in river ecological restoration projects.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoyi Shao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; State Key Lab Hydraul & Mt River Engn, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
17
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Stoffel D, Rigo E, Derlon N, Staaks C, Heijnen M, Morgenroth E, Jacquin C. Low maintenance gravity-driven membrane filtration using hollow fibers: Effect of reducing space for biofilm growth and control strategies on permeate flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152307. [PMID: 34914997 DOI: 10.1016/j.scitotenv.2021.152307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The implementation of centralized drinking water treatment systems necessitates lower operational costs and improved biopolymer removal during ultrafiltration (UF), which can be afforded by gravity-driven membrane (GDM) filtration. However, prior to implementing GDM filtration in centralized systems, biofilm growth in compacted membrane configurations, such as inside-out hollow fiber (HF), and its impact on permeate flux need to be investigated. To this end, we operated modules with distinct limits on available space for biofilm growth: (1) outside-in 1.5 mm 7-capillary HF (non-limited), (2) inside-out 1.5 mm 7-capillary HF (limited), and (3) inside-out 0.9 mm 7-capillary HF (very limited). Here, we observed that the lower the space available for biofilm growth, the lower the permeate flux. To improve GDM performance with inside-out HF, we applied daily shear stress to the biofilm surface with forward flush (FF) or combined relaxation and forward flush (R+FF). We showed that applying shear stress to the biofilm surface was insufficient for controlling flux loss due to low available space for biofilm growth. At the experimental endpoint, we backwashed with a stepwise transmembrane pressure (TMP) increase or a single TMP on all inside-out HF modules, which removed the biofilm from its base. Afterwards, higher fluxes were yielded. We also showed that all modules exhibited a gradual increase in biopolymer removal followed by stabilization between 70 and 90%. Additionally, control of biofilm growth with surface shear stress did not affect biopolymer removal. In summary, the implementation of inside-out HF with GDM filtration is challenged by low available space for biofilm growth, but may be remedied with a regular backwash to remove biofilm from its base. We showed that a wider range of GDM applications are available; making GDM potentially compatible with implementation in centralized systems, if space limitation is taken into consideration for operation optimization.
Collapse
Affiliation(s)
- Deborah Stoffel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Elvira Rigo
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | | | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Céline Jacquin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
19
|
Narciso DAC, Pereira A, Dias NO, Melo LF, Martins FG. Characterization of biofilm structure and properties via processing of 2D optical coherence tomography images in BISCAP. Bioinformatics 2022; 38:1708-1715. [PMID: 34986264 DOI: 10.1093/bioinformatics/btac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Processing of Optical Coherence Tomography (OCT) biofilm images is currently restricted to a set of custom-made MATLAB scripts. None of the tools currently available for biofilm image processing (including those developed for Confocal Laser Scanning Microscopy-CLSM) enable a fully automatic processing of 2D OCT images. RESULTS A novel software tool entitled Biofilm Imaging and Structure Classification Automatic Processor (BISCAP) is presented. It was developed specifically for the automatic processing of 2D OCT biofilm images. The proposed approach makes use of some of the key principles used in CLSM image processing, and introduces a novel thresholding algorithm and substratum detection strategy. Two complementary pixel continuity checks are executed, enabling very detailed pixel characterizations. BISCAP delivers common structural biofilm parameters and a set of processed images for biofilm analysis. A novel biofilm 'compaction parameter' is suggested. The proposed strategy was tested on a set of 300 images with highly satisfactory results obtained. BISCAP is a Python-based standalone application, not requiring any programming knowledge or property licenses, and where all operations are managed via an intuitive Graphical User Interface. The automatic nature of this image processing strategy decreases biasing problems associated to human-perception and allows a reliable comparison of outputs. AVAILABILITY AND IMPLEMENTATION BISCAP and a collection of biofilm images obtained from OCT scans can be found at: https://github.com/diogonarciso/BISCAP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Diogo A C Narciso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Nuno O Dias
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Luis F Melo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - F G Martins
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Cao L, Zhang Y, Ni L, Feng X. A novel loosely structured nanofiltration membrane bioreactor for wastewater treatment: Process performance and membrane fouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
|
22
|
Yu Z, Chu H, Zhang W, Gao K, Yang L, Zhang Y, Zhou X. Multi-dimensional in-depth dissection the algae-related membrane fouling in heterotrophic microalgae harvesting: Deposition dynamics, algae cake formation, and interaction force analysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Li S, Zhao S, Pei J, Wang H, Meng H, Vrouwenvelder JS, Li Z. Stimuli-Responsive Lysozyme Nanocapsule Engineered Microfiltration Membranes with a Dual-Function of Anti-Adhesion and Antibacteria for Biofouling Mitigation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32205-32216. [PMID: 34225456 DOI: 10.1021/acsami.1c07445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofouling remains as a persistent problem impeding the applications of membranes for water and wastewater treatment. Green anti-biofouling of membranes made of natural and environmentally friendly materials and methods is a promising strategy to tackle this problem. Herein, we have developed a functionalized PVDF membrane with stimuli-responsive lysozyme nanocapsules (NCP). These nanocapsules can responsively release lysozyme according to environmental stimuli (pH and redox) induced by bacteria. Results showed that (i) the surface of the functionalized membrane with NCP had enhanced hydrophilicity, reduced roughness, and negative charge, (ii) a remarkable reduction of adsorption of proteins, polysaccharides, and bacteria was achieved by the functionalized membrane, and (iii) the colony forming unit (CFU) of bacteria on a membrane surface was reduced more than 80% within 24 h of contact. In addition, the NCP membrane showed excellent anti-biofouling activity regarding the bacterial viability being 12.5 and 8.3% on the membrane after filtration with 108 CFU mL-1 Escherichia coli and Staphylococcus aureus solution as feed, respectively. The coating layer and assembled nanocapsules endowed the membrane with improved lysozyme stability, anti-adhesion performance, and antibacterial activity. Stimuli-responsive lysozyme nanocapsule engineered microfiltration membranes show great potential for anti-biofouling in future practical application.
Collapse
Affiliation(s)
- Sihang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuzhen Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfei Pei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haihua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanna Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhenyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Rehman ZU, Vrouwenvelder JS, Saikaly PE. Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates From Biofouled Reverse Osmosis Membranes. Front Microbiol 2021; 12:668761. [PMID: 34349735 PMCID: PMC8328090 DOI: 10.3389/fmicb.2021.668761] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
This work describes the chemical composition of extracellular polymeric substances (EPS) produced by three bacteria (RO1, RO2, and RO3) isolated from a biofouled reverse osmosis (RO) membrane. We isolated pure cultures of three bacterial strains from a 7-year-old biofouled RO module that was used in a full-scale seawater treatment plant. All the bacterial strains showed similar growth rates, biofilm formation, and produced similar quantities of proteins and polysaccharides. The gel permeation chromatography showed that the EPS produced by all the strains has a high molecular weight; however, the EPS produced by strains RO1 and RO3 showed the highest molecular weight. Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H NMR), and Carbon NMR (13C NMR) were used for a detailed characterization of the EPS. These physicochemical analyses allowed us to identify features of EPS that are important for biofilm formation. FTIR analysis indicated the presence of α-1,4 glycosidic linkages (920 cm-1) and amide II (1,550 cm-1) in the EPS, the presence of which has been correlated with the fouling potential of bacteria. The presence of α-glycoside linkages was further confirmed by 13C NMR analysis. The 13C NMR analysis also showed that the EPS produced by these bacteria is chemically similar to foulants obtained from biofouled RO membranes in previous studies. Therefore, our results support the hypothesis that the majority of substances that cause fouling on RO membranes originate from bacteria. Investigation using 1H NMR showed that the EPS contained a high abundance of hydrophobic compounds, and these compounds can lead to flux decline in the membrane processes. Genome sequencing of the isolates showed that they represent novel species of bacteria belonging to the genus Bacillus. Examination of genomes showed that these bacteria carry carbohydrates-active enzymes that play a role in the production of polysaccharides. Further genomic studies allowed us to identify proteins involved in the biosynthesis of EPS and flagella involved in biofilm formation. These analyses provide a glimpse into the physicochemical properties of EPS found on the RO membrane. This knowledge can be useful in the rational design of biofilm control treatments for the RO membrane.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Cirillo AI, Tomaiuolo G, Guido S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. MICROMACHINES 2021; 12:820. [PMID: 34357230 PMCID: PMC8305447 DOI: 10.3390/mi12070820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants' properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling.
Collapse
Affiliation(s)
- Andrea Iginio Cirillo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| |
Collapse
|
26
|
Lin W, Zhang Y, Li D, Wang XM, Huang X. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. WATER RESEARCH 2021; 198:117146. [PMID: 33945947 DOI: 10.1016/j.watres.2021.117146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Membrane technologies have been widely applied in water treatment, wastewater reclamation and seawater desalination. Feed spacer present in spiral wound membrane (SWM) modules plays a pivotal role in creating flow channels, promoting fluid mixing and enhancing mass transfer. However, it induces the increase of feed channel pressure (FCP) drop and localized stagnant zones that provokes membrane fouling. For the first time, we comprehensively review the research evolvement on feed spacer in SWM modules for water treatment over the last 20 years, to reveal the impacts of feed spacer on the hydrodynamics and biofouling in the spacer-filled channel, and to discuss the potential approaches and current limitations for the modification of feed spacer. The research process can be divided into three phases, with research focus shifting from hydrodynamics in Phase Ⅰ (the year of 2001-2008), to biofouling in Phase Ⅱ (the year of 2009-2015), and then to novel spacer designs in Phase Ⅲ (the year of 2016-2020). The spacer configuration has a momentous impact on the hydraulic performance regarding flow velocity field, shear stress, mass transfer and FCP drop. Biofouling initially occurs on feed spacer, especially around spacer filaments and the contact zones with membrane surface, and ultimately degrades the overall membrane performance indicating the importance of controlling spacer biofouling. The modification of feed spacer is mainly achieved by altering surface chemistry or introducing novel configurations. However, the stability of spacer coating and the economy and practicality of 3D-printed spacer remain a predicament to be tackled. Future studies are suggested to focus on the standardization of testing conditions for spacer evaluation, the effect of hydrodynamics on membrane fouling control, the design and fabrication of novel feed spacer adaptable for SWM modules, the application of feed spacer for drinking water production, organic fouling control in spacer-filled channel and the role of permeate spacer on membrane performance.
Collapse
Affiliation(s)
- Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Shim J, Park S, Cho KH. Deep learning model for simulating influence of natural organic matter in nanofiltration. WATER RESEARCH 2021; 197:117070. [PMID: 33831775 DOI: 10.1016/j.watres.2021.117070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/19/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Controlling membrane fouling in a membrane filtration system is critical to ensure high filtration performance. A forecast of membrane fouling could enable preliminary actions to relieve the development of membrane fouling. Therefore, we established a long short-term memory (LSTM) model to investigate the variations in filtration performance and fouling growth. For data acquisition, we first conducted lab-scale membrane fouling experiments to identify the diverse fouling mechanisms of natural organic matter (NOM) in nanofiltration (NF) systems. Four types of NOMs were considered as model foulants: humic acid, bovine-serum-albumin, sodium alginate, and tannic acid. In addition, real-time 2D images were acquired via optical coherence tomography (OCT) to quantify the cake layer formed on the membrane. Subsequently, experimental data were used to train the LSTM model to predict permeate flux and fouling layer thickness as output variables. The model performance exhibited root mean square errors of <1 L/m2/h for permeate flux and <10 µm for fouling layer thickness in both the training and validation steps. In this study, we demonstrated that deep learning can be used to simulate the influence of NOMs on the NF system and also be applied to simulate other membrane processes.
Collapse
Affiliation(s)
- Jaegyu Shim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sanghun Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
28
|
Bristow NW, Vogt SJ, Bucs SS, Vrouwenvelder JS, Johns ML, Fridjonsson EO. Novel Magnetic Resonance Measurements of Fouling in Operating Spiral Wound Reverse Osmosis Membrane Modules. WATER RESEARCH 2021; 196:117006. [PMID: 33744656 DOI: 10.1016/j.watres.2021.117006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
A novel magnetic resonance measurement (MRM) protocol for non-invasive monitoring of fouling in spiral wound reverse osmosis (SWRO) membrane modules is demonstrated. Sodium alginate was used to progressively foul a commercial SWRO membrane at industrially relevant operating conditions in a circulating flow loop. The MRM protocol showcased the following: (i) earlier, more sensitive detection and quantification of fouling in the membrane module compared to feed-channel pressure drop. This was achieved using appropriate detection of the total nuclear magnetic resonance (NMR) signal. (ii) 2D cross-sectional imaging of the location of the accumulated foulant material; this was preferentially located adjacent to the membrane spacer sheet nodes, which was subsequently confirmed by a module autopsy. This image contrast, which could also readily differentiate the membrane, feed spacer and permeate spacer regions, was realised based on differences in the NMR relaxation parameter, T2,eff. (iii) High frequency acquisition of 2D cross-sectional velocity images of the module revealing very localised flow channelling in response to gradual foulant accumulation which impacted significantly on the flow pattern within the central permeate tube. Collectively this NMR/MRI measurement protocol provides a powerful analysis tool for the evolution of fouling in such complex modules, thus ultimately enabling more informed module design.
Collapse
Affiliation(s)
- Nicholas W Bristow
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sarah J Vogt
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Szilard S Bucs
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Michael L Johns
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Einar O Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
29
|
Huang J, Wu X, Liang Z, Yu Y, Liu G. Water flushing irremovable biofilms on support material in dynamic membrane bioreactor: Formation, composition, and microbial community. CHEMOSPHERE 2021; 271:129813. [PMID: 33556632 DOI: 10.1016/j.chemosphere.2021.129813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Dynamic membrane bioreactors mainly rely on the in-situ formed biofilms on support materials to reject fine particles in water. The development of irremovable biofilms on support materials can decrease the cleaning efficiency when removing the unwanted biofilms with low permeability by water flushing. In the present study, the initial formed biofilms on support materials at 5-day solids retention time (SRT) were removable by water flushing. After repeated cleaning with off-line water flushing during operation, however, irremovable biofilms were developed gradually inside the mesh pores and thus, rapid rising in transmembrane pressure occurred in every one to three days. At 20-day SRT, the biofilms formed on support materials with the same operation time were still removable. Therefore, both low SRT and repeated water flushing promoted the formation of irremovable biofilms on support materials. Further study found that the composition and microbial community between the irremovable and removable biofilms were significantly different, which differentiated the biofilm adhesion and removability. The irremovable biofilms had a greater faction of proteins (49.0%) and β-d-glucopyranose polysaccharides (17.8%) in extracellular polymeric substance (EPS), while the removable biofilms had a greater fraction of α-d-glucopyranose polysaccharides. After repeated cleaning with off-line water flushing during operation, Nitrospiraceae was selectively enriched in the irremovable biofilms at a relative abundance of 39.1%, which could have resulted in the particular EPS matrix that strengthened the biofilm adhesion.
Collapse
Affiliation(s)
- Ju Huang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No 18 Ruihe Road, Guangzhou, 510530, China
| | - Xianwei Wu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, 510611, China
| | - Yang Yu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
|
31
|
Kim Y, Kim LH, Vrouwenvelder JS, Ghaffour N. Effect of organic micropollutants on biofouling in a forward osmosis process integrating seawater desalination and wastewater reclamation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123386. [PMID: 32653793 DOI: 10.1016/j.jhazmat.2020.123386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
This study systematically investigated the effect of organic micropollutants (OMPs) on biofouling in forward osmosis (FO) integrating wastewater treatment and seawater dilution. Synthetic seawater (0.6 M sodium chloride) was used as a draw solution and synthetic municipal wastewater as a feed solution. To evaluate the impact of OMPs in a replicate parallel study, wastewater was supplemented with a mixture of 7 OMPs (OMPs-feed) and without OMPs (control) during 8 batch filtration cycles with feed and draw solution replacement after each filtration. The FO performance (water flux), development and microbial composition properties of biofilm layers on the wastewater side of the FO membrane were studied. Compared to the control without OMPs, the FO fed with OMPs containing wastewater showed (i) initially the same water flux and flux decline during the first filtration cycle, (ii) with increasing filtration cycle a lower flux decline and (iii) lower concentrations for the total cells, ATP, EPS carbohydrates and proteins in biofilm layers, and (iv) a lower diversity of the biofilm microbial community composition (indicating selective pressure) and (v) increasing rejection of 6 of the 7 OMPs. In essence, biofouling on the FO membrane showed (i) a lower flux decline in the presence of OMPs in the feed water and (ii) a higher OMPs rejection, both illustrating better membrane performance. This study has a significant implication for optimizing osmotic dilution in terms of FO operation and OMPs rejection.
Collapse
Affiliation(s)
- Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Lan Hee Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
32
|
|
33
|
Yuan L, de Haan P, Peterson BW, de Jong ED, Verpoorte E, van der Mei HC, Busscher HJ. Visualization of Bacterial Colonization and Cellular Layers in a Gut-on-a-Chip System Using Optical Coherence Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1211-1219. [PMID: 33107427 DOI: 10.1017/s143192762002454x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Imaging of cellular layers in a gut-on-a-chip system has been confined to two-dimensional (2D)-imaging through conventional light microscopy and confocal laser scanning microscopy (CLSM) yielding three-dimensional- and 2D-cross-sectional reconstructions. However, CLSM requires staining and is unsuitable for longitudinal visualization. Here, we compare merits of optical coherence tomography (OCT) with those of CLSM and light microscopy for visualization of intestinal epithelial layers during protection by a probiotic Bifidobacterium breve strain and a simultaneous pathogen challenge by an Escherichia coli strain. OCT cross-sectional images yielded film thicknesses that coincided with end-point thicknesses derived from cross-sectional CLSM images. Light microscopy on histological sections of epithelial layers at the end-point yielded smaller layer thicknesses than OCT and CLSM. Protective effects of B. breve adhering to an epithelial layer against an E. coli challenge included the preservation of layer thickness and membrane surface coverage by epithelial cells. OCT does not require staining or sectioning, making OCT suitable for longitudinal visualization of biological films, but as a drawback, OCT does not allow an epithelial layer to be distinguished from bacterial biofilms adhering to it. Thus, OCT is ideal to longitudinally evaluate epithelial layers under probiotic protection and pathogen challenges, but proper image interpretation requires the application of a second method at the end-point to distinguish bacterial and epithelial films.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, 9713 AVGroningen, The Netherlands
| | - Pim de Haan
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, 9713 AVGroningen, The Netherlands
- TI-COAST, 1098 XHAmsterdam, The Netherlands
| | - Brandon W Peterson
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, 9713 AVGroningen, The Netherlands
| | - Ed D de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, 9713 AVGroningen, The Netherlands
| | - Elisabeth Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, 9713 AVGroningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, 9713 AVGroningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, 9713 AVGroningen, The Netherlands
| |
Collapse
|
34
|
Kalafatakis S, Zarebska A, Lange L, Hélix-Nielsen C, Skiadas IV, Gavala HN. Biofouling Mitigation Approaches during Water Recovery from Fermented Broth via Forward Osmosis. MEMBRANES 2020; 10:membranes10110307. [PMID: 33121090 PMCID: PMC7693741 DOI: 10.3390/membranes10110307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.
Collapse
Affiliation(s)
- Stavros Kalafatakis
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Agata Zarebska
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark; (A.Z.); (C.H.-N.)
| | - Lene Lange
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Claus Hélix-Nielsen
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark; (A.Z.); (C.H.-N.)
| | - Ioannis V. Skiadas
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
| | - Hariklia N. Gavala
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads 229, 2800 Kgs. Lyngby, Denmark; (S.K.); (L.L.); (I.V.S.)
- Correspondence: or
| |
Collapse
|
35
|
Gerbersdorf SU, Koca K, de Beer D, Chennu A, Noss C, Risse-Buhl U, Weitere M, Eiff O, Wagner M, Aberle J, Schweikert M, Terheiden K. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. WATER RESEARCH 2020; 185:116182. [PMID: 32763530 DOI: 10.1016/j.watres.2020.116182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment: i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Collapse
Affiliation(s)
- Sabine Ulrike Gerbersdorf
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Kaan Koca
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Christian Noss
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany.
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Olivier Eiff
- KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany.
| | - Michael Wagner
- KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Jochen Aberle
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany.
| | - Michael Schweikert
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Kristina Terheiden
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| |
Collapse
|
36
|
Lequette K, Ait-Mouheb N, Wéry N. Hydrodynamic effect on biofouling of milli-labyrinth channel and bacterial communities in drip irrigation systems fed with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139778. [PMID: 32531594 DOI: 10.1016/j.scitotenv.2020.139778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The clogging of drippers due to the development of biofilms reduces the benefits and is an obstacle to the implementation of drip irrigation technology in a reclaimed water context. The narrow section and labyrinth geometry of the dripper channel results the development of a heterogeneous flow behaviours with the vortex zones which it enhance the fouling mechanisms. The objective of this study was to analyse the influence of the three dripper types, defined by their geometric and hydraulic parameters, fed with reclaimed wastewater, on the biofouling kinetics and the bacterial communities. Using optical coherence tomography, we demonstrated that the inlet of the drippers (mainly the first baffle) and vortex zones are the most sensitive area for biofouling. Drippers with the lowest Reynolds number and average cross-section velocity v (1 l·h-1) were the most sensible to biofouling, even if detachment events seemed more frequent in this dripper type. Therefore, dripper flow path with larger v should be consider to improve the anti-clogging performance. In addition, the dripper type and the geometry of the flow path influenced the structure of the bacterial communities from dripper biofilms. Relative abundancy of filamentous bacteria belonging to Chloroflexi phylum was higher in 1 l·h-1 drippers, which presented a higher level of biofouling. However, further research on the role of this phylum in dripper biofouling is required.
Collapse
Affiliation(s)
- Kévin Lequette
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France; INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France.
| | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France
| | - Nathalie Wéry
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
37
|
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116919] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Fouling control in a gravity-driven membrane (GDM) bioreactor treating primary wastewater by using relaxation and/or air scouring. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Kim HW, Yun T, Hong S, Lee S, Jeong S. Retardation of wetting for membrane distillation by adjusting major components of seawater. WATER RESEARCH 2020; 175:115677. [PMID: 32179271 DOI: 10.1016/j.watres.2020.115677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Wetting by fouling is phenomenon specific to membrane distillation (MD) and are regarded as challenges to the seawater membrane distillation (SWMD) process. To understand fouling and wetting, the influence of Mg and Sr crystals, which can potentially cause scaling, as well as Ca crystals deposited on the membrane surface were investigated. Mg(OH)2 and CaSO4 had significant impact on fouling and wetting. Even if CaCO3 and SrSO4 had no effects on fouling and wetting as single salts, CaCO3 and CaSO4 were dominant in synthetic seawater without Mg(OH)2. However, the occurrence of Mg(OH)2 scales became a cause for concern if Ca ion was removed from seawater for the prevention of fouling and wetting. Therefore, Mg as well as Ca should be removed for proper fouling and wetting control. NaOH/Na2CO3 softening was used for the removal of Ca and Mg ions. In addition, based on the inhibition effects of Mg ions on Ca scales, a new pretreatment method involving the injection of MgCl2 to increase the Mg /Ca ratio was examined.
Collapse
Affiliation(s)
- Hye-Won Kim
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Taekgeun Yun
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seungkwan Hong
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seockheon Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Seongpil Jeong
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
40
|
Trinh TA, Li W, Chew JW. Internal fouling during microfiltration with foulants of different surface charges. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Park S, Kim S, Park J, Cho KH. Real-time monitoring the spatial distribution of organic fouling using fluorescence imaging technique. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Shao S, Li Y, Jin T, Liu W, Shi D, Wang J, Wang Y, Jiang Y, Li J, Li H. Biofouling layer maintains low hydraulic resistances and high ammonia removal in the UF process operated at low flux. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.
Collapse
|
44
|
Li W, Liu X, Li Z, Fane AG, Deng B. Unraveling the film‐formation kinetics of interfacial polymerization via low coherence interferometry. AIChE J 2019. [DOI: 10.1002/aic.16863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiyi Li
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Xin Liu
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Zhuo Li
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Anthony G. Fane
- Singapore Membrane Technology CentreNanyang Technological University Singapore Singapore
| | - Baolin Deng
- Department of Civil and Environmental EngineeringUniversity of Missouri Columbia Missouri
| |
Collapse
|
45
|
Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117221] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Guo H, Tang X, Ganschow G, Korshin GV. Differential ATR FTIR spectroscopy of membrane fouling: Contributions of the substrate/fouling films and correlations with transmembrane pressure. WATER RESEARCH 2019; 161:27-34. [PMID: 31170670 DOI: 10.1016/j.watres.2019.05.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
This study examined the formation of fouling films deposited on the surface of a polyethersulfone (PES) membrane during the filtration of alginate solutions with various ionic strengths. Membrane fouling was characterized by changes of the transmembrane pressure (TMP) and ex situ measured attenuated total reflectance (ATR) Fourier-transform IR (FTIR) spectra at varying stages of filtration runs. The ATR spectra that comprise the vibration bands characteristic of the PES substrate and the deposited film were processed taking into the gradual weakening of the PES substrate-specific bands, whose intensity was shown to depend on the wavenumber of IR radiation and the thickness of the deposited layer. Strongly linear correlations between ratios of first derivatives intensity and wavenumbers of the PES reference lines were established. Calculations of the PES bands' attenuation coefficients allowed determining the apparent thickness and ATR FTIR vibrations of the fouling films per se. Strong correlations between TMP development and ATR-determined apparent thickness of the fouling layers were observed. The intensity of ATR absorbance at 3200 cm-1 was linearly correlated with TMP development for small TMP values before the point of rapidly developing failure of the hydraulic permeability of the system was reached.
Collapse
Affiliation(s)
- Hongguang Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States; Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China.
| | - Xinyu Tang
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| | - Gilbert Ganschow
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| | - Gregory V Korshin
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| |
Collapse
|
47
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
48
|
Kerdi S, Qamar A, Alpatova A, Ghaffour N. An in-situ technique for the direct structural characterization of biofouling in membrane filtration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Hou J, Wang C, Rozenbaum RT, Gusnaniar N, de Jong ED, Woudstra W, Geertsema-Doornbusch GI, Atema-Smit J, Sjollema J, Ren Y, Busscher HJ, van der Mei HC. Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. Sci Rep 2019; 9:9794. [PMID: 31278369 PMCID: PMC6611762 DOI: 10.1038/s41598-019-46196-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.
Collapse
Affiliation(s)
- Jiapeng Hou
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Can Wang
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - René T Rozenbaum
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Niar Gusnaniar
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Willem Woudstra
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Gésinda I Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Jelly Atema-Smit
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
50
|
Jafari M, Derlon N, Desmond P, van Loosdrecht MCM, Morgenroth E, Picioreanu C. Biofilm compressibility in ultrafiltration: A relation between biofilm morphology, mechanics and hydraulic resistance. WATER RESEARCH 2019; 157:335-345. [PMID: 30965160 DOI: 10.1016/j.watres.2019.03.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Poroelastic fluid-structure interaction models were coupled to experimental data to determine the effects of biofilm spatial distribution of mechanical and hydraulic properties on the biofilm hydraulic resistance and compressibility in membrane filtration processes. Biofilms were cultivated on ultrafiltration membranes for 20 and 30 days under high (0.28 bar) and low (0.06 bar) transmembrane pressure (TMP), in dead-end filtration mode. Subsequently, biofilms were subjected to a compression/relaxation cycles by step-wise TMP changes. Structural deformation of biofilms during compression was observed in-situ using optical coherence tomography. Experimental results show that the observed increase in the biofilm hydraulic resistance during compression is not necessarily accompanied by a detectable biofilm thickness reduction. A dual-layer biofilm model with a dense base and porous top layer could explain these observed results. Because porosity controls indirectly the mechanical response of biofilms under compression, results could be described without assuming a gradient in mechanical properties within the biofilm. The biofilm surface roughness did not significantly influence the water flux in this study. However, the fraction of biofilm base layer directly exposed to bulk liquid could be a good indicator in the determination of water flux. The main implications of this study for the design and operation of low-pressure membrane systems (e.g., MF and UF with fouling layer being the main filtration resistance) lays in the selection of favorable operational TMP and biofilm morphology.
Collapse
Affiliation(s)
- Morez Jafari
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Cristian Picioreanu
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|