1
|
Wang WM, Wang WL, Gan L, Huang Y, Shuai D, Lee MY, Wu QY. Self-replenishing neutral Fenton-like treatment for emerging contaminants through single Fe atom electron configuration regulation. WATER RESEARCH 2025; 276:123251. [PMID: 39952075 DOI: 10.1016/j.watres.2025.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Fenton technology is promising for removing recalcitrant and toxic organic contaminants for wastewater purification. Neutral Fenton technology is preferred for its reduced acid usage and improved operational convenience. However, the challenges are the low production of reactive species and the limited conversion of high-valent iron (Fe) to low-valent Fe. This study introduced a new cycle employing high-valent iron-oxo species [Fe(IV)=O], which directly participates in degradation, facilitating Fe regeneration. To achieve it, we developed an O-doped single Fe atom catalyst (SACs, Fe-N3O1) to promote the efficient Fe(IV)=O generation. The O-doping improved the acetaminophen degradation rate constant and turnover frequency of Fe-N3O1 by approximately tenfold, and elevated the steady-state concentration of Fe(IV)=O 65 times over. The normalized degradation rate constant of Fe-N3O1/H2O2 was superior to other reported catalysts. Density functional theory calculations indicated that O-doping decreased the charge density of Fe site, enhanced the metal-oxygen bond strength, and reduced the energy barrier for the key reaction intermediate (*O + *H2O), facilitating the efficient and selective formation of Fe(IV)=O. Fe-N3O1/H2O2 demonstrated wide pH tolerance, high resistance to complex water matrices, and excellent stability, making it promising for practical applications. This study provides a new perspective on controlling the selective generation of reactive species to achieve sustainable neutral Fenton-like reactions.
Collapse
Affiliation(s)
- Wen-Min Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Lin Gan
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuxiong Huang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Liu W, Zhou F, Yang H, Shi Y, Qin Y, Sun H, Zhang L. CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136171. [PMID: 39413521 DOI: 10.1016/j.jhazmat.2024.136171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Huan Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunxiao Shi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
3
|
Tian Q, Chang J, Yu B, Jiang Y, Gao B, Yang J, Li Q, Gao Y, Xu X. Co-catalysis strategy for low-oxidant-consumption Fenton-like chemistry: From theoretical understandings to practical applications and future guiding strategies. WATER RESEARCH 2024; 267:122488. [PMID: 39306932 DOI: 10.1016/j.watres.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Recently, great effects have been made for the co-catalysis strategy to solve the bottlenecks of Fenton system. A series of co-catalysis strategies using various inorganic metal co-catalysts and organic co-catalysts have been developed in various oxidant (i.e., hydrogen peroxide (H2O2) and persulfate) systems with significantly promotion of catalytic performances and lower oxidant consumption (only 5-10 % of conventional Fenton/Fenton-like systems). However, the developments of these co-catalysis strategies from theoretical understandings to practical applications and future guiding strategies were overlooked, which was an essential problem that must be considered for the future scale-up applications of co-catalysis systems. In this paper, these co-catalysis strategies with low-oxidant-consumption characteristics have been reviewed by the comparison of their co-catalysis mechanisms, as well as their advantages and disadvantages. We also discussed the recent developments of amplifying devices based on the co-catalysis systems. The scale-up performances of co-catalysis strategies based on these amplifying devices have also been assessed. In addition, future guiding strategies for the development of co-catalysis strategy with low-oxidant-consumption characteristics have also been first time outlined by the combination of the technical-economic analysis (TEA), life cycle assessment (LCA) and machine learning (ML). Finally, the paper systematically discusses the development opportunities, technical bottlenecks and future development directions of co-catalysis strategies with the prospect of large-scale applications. Basically, this work provides a systematic review on co-catalysis strategy with low-oxidant-consumption characteristic from theoretical understandings to practical applications and future guiding strategies.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiale Chang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Bingliang Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Zheng T, Hou J, Wu T, Jin H, Dai Y, Xu J, Yang K, Lin D. Ferric Oxide Nanomaterials and Plant-Rhizobacteria Symbionts Cogenerate Iron Plaque for Removing Highly Chlorinated Contaminants in Dryland Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11063-11073. [PMID: 38869036 DOI: 10.1021/acs.est.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.
Collapse
Affiliation(s)
- Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
5
|
Zhao Y, Wang A, Ren S, Zhang Y, Zhang N, Song Y, Zhang Z. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe 2+/Fe 3+ cycling for improved removal of antibiotic cefaclor via electro-Fenton process using a gas diffusion electrode. ENVIRONMENTAL RESEARCH 2024; 249:118254. [PMID: 38301762 DOI: 10.1016/j.envres.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Ni Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
6
|
Fu BG, Zhou X, Lu Y, Quan WZ, Li C, Cheng L, Xiao X, Yu YY. Interfacial OOH* mediated Fe(II) regeneration on the single atom Co-N-C catalyst for efficient Fenton-like processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134214. [PMID: 38603908 DOI: 10.1016/j.jhazmat.2024.134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.
Collapse
Affiliation(s)
- Bao-Gang Fu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yilin Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Wen-Zhu Quan
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Yu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Liu H, Tang S, Wang Z, Zhang Q, Yuan D. Organic cocatalysts improved Fenton and Fenton-like processes for water pollution control: A review. CHEMOSPHERE 2024; 353:141581. [PMID: 38430936 DOI: 10.1016/j.chemosphere.2024.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In recent times, organic compounds have been extensively utilized to mitigate the limitations associated with Fe(Ⅲ) reduction and the narrow pH range in Fenton and Fenton-like processes, which have garnered considerable attention in relevant studies. This review presents the latest advancements in the comprehensive analysis and applications of organic agents as assistant/cocatalysts during Fenton/Fenton-like reactions for water pollution control. The primary focus includes the following: Firstly, the mechanism of organic co-catalytic reactions is introduced, encompassing both complexation and reduction aspects. Secondly, these organic compounds are classified into distinct categories based on their functional group structures and applications, namely polycarboxylates, aminopolycarboxylic acids, quinones, phenolic acids, humic substances, and sulfhydryl compounds, and their co-catalytic functions and mechanisms of each category are discussed in meticulous detail. Thirdly, a comprehensive comparison is conducted among various types of organic cocatalysts, considering their relative merits, cost implications, toxicity, and other pertinent factors. Finally, the review concludes by addressing the universal challenges and development prospects associated with organic co-catalytic systems. The overarching objective of this review is to provide insights into potential avenues for the future advancement of organic co-catalytic Fenton/Fenton-like reactions in the context of water purification.
Collapse
Affiliation(s)
- Huilin Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shoufeng Tang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Zhibin Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Deling Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
8
|
Sciscenko I, Vione D, Minella M. Infancy of peracetic acid activation by iron, a new Fenton-based process: A review. Heliyon 2024; 10:e27036. [PMID: 38495153 PMCID: PMC10943352 DOI: 10.1016/j.heliyon.2024.e27036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The exacerbated global water scarcity and stricter water directives are leading to an increment in the recycled water use, requiring the development of new cost-effective advanced water treatments to provide safe water to the population. In this sense, peracetic acid (PAA, CH3C(O)OOH) is an environmentally friendly disinfectant with the potential to challenge the dominance of chlorine in large wastewater treatment plants in the near future. PAA can be used as an alternative oxidant to H2O2 to carry out the Fenton reaction, and it has recently been proven as more effective than H2O2 towards emerging pollutants degradation at circumneutral pH values and in the presence of anions. PAA activation by homogeneous and heterogeneous iron-based materials generates - besides HO• and FeO2+ - more selective CH3C(O)O• and CH3C(O)OO• radicals, slightly scavenged by typical HO• quenchers (e.g., bicarbonates), which extends PAA use to complex water matrices. This is reflected in an exponential progress of iron-PAA publications during the last few years. Although some reviews of PAA general properties and uses in water treatment were recently published, there is no account on the research and environmental applications of PAA activation by Fe-based materials, in spite of its gratifying progress. In view of these statements, here we provide a holistic review of the types of iron-based PAA activation systems and analyse the diverse iron compounds employed to date (e.g., ferrous and ferric salts, ferrate(VI), spinel ferrites), the use of external ferric reducing/chelating agents (e.g., picolinic acid, l-cysteine, boron) and of UV-visible irradiation systems, analysing the mechanisms involved in each case. Comparison of PAA activation by iron vs. other transition metals (particularly cobalt) is also discussed. This work aims at providing a thorough understanding of the Fe/PAA-based processes, facilitating useful insights into its advantages and limitations, overlooked issues, and prospects, leading to its popularisation and know-how increment.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, plaza Ferrándiz y Carbonell S/N, 03801, Alcoy, Spain
| | - Davide Vione
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Marco Minella
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| |
Collapse
|
9
|
Dai Y, Yang S, Wu L, Cao H, Chen L, Zhong Q, Xu C, He H, Qi C. Converting peracetic acid activation by Fe 3O 4 from nonradical to radical pathway via the incorporation of L-cysteine. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133303. [PMID: 38141297 DOI: 10.1016/j.jhazmat.2023.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.
Collapse
Affiliation(s)
- Yinhao Dai
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China; Suzhou Furong Environmental Engineering Co., Ltd, Suzhou 215500, PR China
| | - Leliang Wu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Hui Cao
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Longjiong Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhong
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chenmin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Zhang Q, Peng Y, Peng Y, Zhang J, Yuan X, Zhang J, Cheng C, Ren W, Duan X, Xiao X, Luo X. Mineralization versus polymerization pathways in heterogeneous Fenton-like reactions. WATER RESEARCH 2024; 249:120931. [PMID: 38101051 DOI: 10.1016/j.watres.2023.120931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (H2O2/Fe3+ and persulfate/Fe3+) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from H2O2 and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in H2O2/Fe3+/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe3+/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe3+/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.
Collapse
Affiliation(s)
- Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianzhi Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xinkai Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jie Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Cheng Cheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia; Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
11
|
Zheng M, Li Y, Cao M, Guo Y, Qiu G, Tu S, Xiong S, Fang D. Amino acid promoted oxidation of atrazine by Fe 3O 4/persulfate. Heliyon 2024; 10:e23371. [PMID: 38163114 PMCID: PMC10757014 DOI: 10.1016/j.heliyon.2023.e23371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In the present study, we demonstrated that the presence of cysteine could remarkably enhance the degradation of atrazine by Fe3O4/persulfate system. The results of electron paramagnetic resonance (EPR) spectra confirmed the combination of cysteine and Fe3O4 exhibited much higher activity on activation of persulfate to generate more SO4•- and •OH than Fe3O4 alone. At pH of 3.0, SO4•- and •OH contributed to about 58.2 % and 41.8 % of atrazine removal respectively, while •OH gradually dominated the oxidation of atrazine from neutral condition to alkaline condition. The co-existing Cl- and HCO3- could quench SO4•-, resulting in the inhibition of atrazine degradation. The presence of low natural organic matters (NOM) concentration (0-2 mg L-1) could enhance the atrazine removal, and high concentration (>5 mg L-1) of NOM restrained the atrazine degradation. During the Cysteine/Fe3O4/Persulfate process, cysteine served as a complexing reagent and reductant. Through acidolysis and complexation, Fe3O4 could release dissolved and surface bound Fe2+, both of which contributed to the activation of persulfate together. Meanwhile, cysteine was not rapidly consumed due to a regeneration process, which was beneficial for maintaining Fe2+/Fe3+ cycle and constantly accelerating the activation of persulfate for atrazine degradation. The reused Fe3O4 and cysteine in the Cysteine/Fe3O4/Persulfate process exhibited high stability for the atrazine degradation after three cycles. The degradation pathway of atrazine included alkylic-oxidation, dealkylation, dechlorination-hydroxylation processes. The present study indicates the novel Cysteine/Fe3O4/Persulfate process might be a high potential for treatment of organic polluted water.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Yinghao Li
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxin Guo
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guohong Qiu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dun Fang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| |
Collapse
|
12
|
Song Z, Xu Y, Wu H, Huang J, Zhang Y. Superior photo-Fenton degradation of acetamiprid by α- Fe 2O 3-pillared bentonite/L-cysteine complex: Synergy of L-cysteine and visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118523. [PMID: 37393869 DOI: 10.1016/j.jenvman.2023.118523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Acetamiprid is a potential threat to human health, aquatic life, soil microorganisms and beneficial insects as a recalcitrant pollutant in wastewater treatment plant effluents. In this work, the synthesized α-Fe2O3-pillared bentonite (FPB) was used to degrade acetamiprid in the photo-Fenton process with the assistance of L-cysteine (L-cys) existing in natural aquatic environment. The kinetic constant k of acetamiprid degradation by FPB/L-cys in the photo-Fenton process was far more than that in the Fenton process of FPB/L-cys lacking light and the photo-Fenton process of FPB without L-cys. The positive linear correlation between k and ≡Fe(II) content indicated the synergy of L-cys and visible light accelerated the cycle of Fe(III) to Fe(II) in FPB/L-cys during the degradation of acetamiprid by elevating the visible light response of FPB, and promoting the interfacial electron transfer from the active sites of FPB to hydrogen peroxide and photo-generated electron transfer from conduction band of α-Fe2O3 to the active sites of FPB. The boosting •OH and 1O2 were predominantly responsible for acetamiprid degradation. Acetamiprid could be efficiently degraded into less toxic small molecules in the photo-Fenton process via C-N bond breaking, hydroxylation, demethylation, ketonization, dechlorination, and ring cleavage.
Collapse
Affiliation(s)
- Zhelin Song
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Xu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jiahui Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanlin Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Chen C, Zuo Y, Hu H, Shao Y, Dong S, Zeng J, Huang L, Liu Z, Shen Q, Liu F, Liao X, Cao Z, Zhong Z, Lu H, Bi Y, Chen J. Cysteamine hydrochloride affects ocular development and triggers associated inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132175. [PMID: 37517235 DOI: 10.1016/j.jhazmat.2023.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Si Dong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China; Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Junquan Zeng
- Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ziyi Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Qinyuan Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Xing SF, Tian HF, Yan Z, Song C, Wang SG. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131937. [PMID: 37421856 DOI: 10.1016/j.jhazmat.2023.131937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui-Fang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
15
|
Feng C, Zhang H, Ren Y, Luo M, Yu S, Xiong Z, Liu Y, Zhou P, Lai B. Enhancing zerovalent iron-based Fenton-like chemistry by copper sulfide: Insight into the active sites for sustainable Fe(II) supply. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131355. [PMID: 37027922 DOI: 10.1016/j.jhazmat.2023.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Zerovalent iron (ZVI)-based Fenton-like processes have been widely applied in degrading organic contaminants. However, the surface oxyhydroxide passivation layer produced during the preparation and oxidation of ZVI hinders its dissolution and Fe(III)/Fe(II) cycling, and restricts the generation of reactive oxygen species (ROS). In this study, copper sulfide (CuS) was found to effectively enhance the degradation of diverse organic pollutants in the ZVI/H2O2 system. Moreover, the degradation performance for the actual industrial wastewater (i.e., dinitrodiazophenol wastewater) in the ZVI/H2O2 system was impressively improved by 41% with CuS addition, and the COD removal efficiency could reach 97% after 2 h of treatment. Mechanism investigation revealed that the introduction of CuS accelerated the sustainable supply of Fe(II) in the ZVI/H2O2 system. Specifically, Cu(I) and reductive sulfur species (i.e., S2-, S22-, Sn2- and H2S (aq)) from CuS directly induced efficient Fe(III)/Fe(II) cycling. The iron-copper synergistic effect between Cu(II) from CuS and ZVI expedited Fe(II) generation from ZVI dissolution and Fe(III) reduction by formed Cu(I). This study not only elucidates the promotion effects of CuS on ZVI dissolution and Fe(III)/Fe(II) cycling in ZVI-based Fenton-like processes, but also provides a sustainable and high-efficiency iron-based oxidation system for removal of organic contaminants.
Collapse
Affiliation(s)
- Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Siying Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Luo M, Zhang H, Shi Y, Zhao J, Feng C, Yin J, Liu Y, Zhou P, Xiong Z, Lai B. Electrochemical activation of periodate with graphite electrodes for water decontamination: Excellent applicability and selective oxidation mechanism. WATER RESEARCH 2023; 240:120128. [PMID: 37247436 DOI: 10.1016/j.watres.2023.120128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Advanced oxidation technologies based on periodate (PI, IO4-) have garnered significant attention in water decontamination. In this work, we found that electrochemical activation using graphite electrodes (E-GP) can significantly accelerate the degradation of micropollutants by PI. The E-GP/PI system achieved almost complete removal of bisphenol A (BPA) within 15 min, exhibited unprecedented pH tolerance ranging from pH 3.0 to 9.0, and showed more than 90% BPA depletion after 20 h of continuous operation. Additionally, the E-GP/PI system can realize the stoichiometric transformation of PI into iodate, dramatically decreasing the formation of iodinated disinfection by-products. Mechanistic studies confirmed that singlet oxygen (1O2) is the primary reactive oxygen species in the E-GP/PI system. A comprehensive evaluation of the oxidation kinetics of 1O2 with 15 phenolic compounds revealed a dual descriptor model based on quantitative structure-activity relationship (QSAR) analysis. The model corroborates that pollutants exhibiting strong electron-donating capabilities and high pKa values are more susceptible to attack by 1O2 through a proton transfer mechanism. The unique selectivity induced by 1O2 in the E-GP/PI system allows it to exhibit strong resistance to aqueous matrices. Thus, this study demonstrates a green system for the sustainable and effective elimination of pollutants, while providing mechanistic insights into the selective oxidation behaviour of 1O2.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jia Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jialong Yin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Zhou F, Liu Q, Qin Y, Liu W, Zhang L. Efficient Fe(III)/Fe(II) cycling mediated by L-cysteine functionalized zero-valent iron for enhancing Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131717. [PMID: 37245369 DOI: 10.1016/j.jhazmat.2023.131717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Herein, L-cysteine (Cys) was modified on zero-valent iron (C-ZVIbm) by using a mechanical ball-milling method to improve the surface functionality and the Cr(VI) removal efficiency. Characterization results indicated that Cys was modified on the surface of ZVI by the specific adsorption of Cys on the oxide shell to form a -COO-Fe complex. The Cr(VI) removal efficiency of C-ZVIbm (99.6%) was much higher than that of ZVIbm (7.3%) in 30 min. The attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis inferred that Cr(VI) was more likely to be adsorbed on the surface of C-ZVIbm to form bidentate binuclear inner-sphere complexes. The adsorption process was well-matched to the Freundlich isotherm and the pseudo-second-order kinetic model. Electrochemical analysis and electron paramagnetic resonance (ESR) spectroscopy revealed that Cys on the C-ZVIbm lowered the redox potential of Fe(III)/Fe(II), and favored the surface Fe(III)/Fe(II) cycling mediated by the electrons from Fe0 core. These electron transfer processes were beneficial to the surface reduction of Cr(VI) to Cr(III). Our findings provide new understandings into the surface modification of ZVI with a low-molecular weight amino acid to promote in-situ Fe(III)/Fe(II) cycling, and have great potential for the construction of efficient systems for Cr(VI) removal.
Collapse
Affiliation(s)
- Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Qiangling Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
18
|
Yuan Y, Chen S, Yao B, Chen A, Peng L, Luo S, Zhou Y. Fe 3+-cysteine enhanced persulfate fenton-like process for quinclorac degradation: A wide pH tolerance and reaction mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115447. [PMID: 36758919 DOI: 10.1016/j.envres.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
A green, high-efficiency, and wide pH tolerance water remediation process has been urgently acquired for the increasingly exacerbating contaminated water. In this study, a Fe3+/persulfate (Fe3+/PS) system was employed and enhanced with a green natural ligand cysteine (Cys) for the degradation of quinclorac (QNC). The introduction of Cys into the Fe3+/PS system widened the effective pH range to 9 with a superior removal rate for QNC. The mechanism revealed that the Fe3+/Cys/PS system can enhance the ability of degrading QNC by accelerating the Fe3+/Fe2+ redox cycle, maintaining Fe2+ concentration and thereby generating more HO• and SO4•-. The impact factors (i.e., pH, concentrations of PS, Fe3+ and Cys) were optimized as well. This work provides a promising strategy with high catalytic activity and wide pH tolerance for organic contaminated water remediation.
Collapse
Affiliation(s)
- Yawen Yuan
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Shutong Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Peng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Wu Y, Tan X, Zhao J, Ma J. α-Fe 2O 3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131506. [PMID: 37146324 DOI: 10.1016/j.jhazmat.2023.131506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Periodate (PI)-photoactivated advanced oxidation process (AOP) has recently received increasing attention for the removal of micropollutants from water. However, periodate is mainly driven by high-energy ultraviolet light (UV) in most cases, and few studies have extended it to the visible range. Herein, we proposed a new PI visible light activation system employing α-Fe2O3 as catalyst. It is completely different from traditional PI-AOP based on hydroxyl radicals (•OH) and iodine radical (•IO3). The vis-α-Fe2O3/PI system can selectively degrade the phenolic compounds via non-radical pathway under the visible range. Notably, the designed system not only shows a well pH tolerance and environmental stability, but also exhibits a strong substrate-dependent reactivity. Both quenching experiments and electron paramagnetic resonance (EPR) experiments demonstrate that photogenerated holes are the main active species in this system. Moreover, a series of photoelectrochemical experiments reveal that PI can effectively inhibit the carrier recombination on the α-Fe2O3 surface, thereby improving the utilization of photogenerated charges and increasing the number of photogenerated holes, which effectively reacts with 4-CP through electron transfer way. In a word, this work proposes a cost-effective, green and mild mean to activate PI, and provides a facile way to solve the fatal shortcomings (i.e., inappropriate band edge position, rapid charge recombination and short hole diffusion length) of traditional iron oxide semiconductor photocatalysts.
Collapse
Affiliation(s)
- Yuhao Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaonan Tan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiayang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiahai Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
20
|
Zhang Y, Zhou P, Huang R, Zhou C, Liu Y, Zhang H, Huo X, Zhao J, Xiong Z, Lai B. Iron boride boosted Fenton oxidation: Boron species induced sustainable Fe III/Fe II redox couple. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130386. [PMID: 36444072 DOI: 10.1016/j.jhazmat.2022.130386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The regeneration of Fe(II) is the rate-limiting step in the Fenton/Fenton-like chain reactions that seriously hinder their scientific progress towards practical application. In this study, we proposed iron boride (FeB) for the first time as a new material to sustainably decompose H2O2 to generate hydroxyl radicals, which can non-selectively degrade a wide array of refractory organic pollutants. Fe(II) can be steadily released by the stepwise oxidation of FeB to stimulate Fenton reaction, meanwhile, B-B bonds as electron donors on the surface of FeB effectively promote the regeneration of Fe(II) from Fe(III) species and significantly accelerate the production of hydroxyl radicals. The low generation of toxic by-products and the high utilization rate of iron species validly avoid the secondary organic/metal pollution in the FeB/H2O2 system. Therefore, FeB mediated Fenton oxidation provides a novel strategy to realize a green and long-lasting environmental remediation.
Collapse
Affiliation(s)
- Yuchen Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Rongfu Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xiaowei Huo
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430074, China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Poblete R, Cortes E, Pérez N, Maldonado MI. Use of vinasse and coffee waste as chelating agent of photo-Fenton landfill leachate treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5037-5046. [PMID: 35974283 DOI: 10.1007/s11356-022-22573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This research studies the use of vinasse (VS) coming from Pisco and caffeic acid (Caa) from solid coffee waste as chelating agents of this process, to carry out a photo-Fenton process using UVc lamps of 254-nm wavelength for 60 min, at the natural pH of the landfill leachate (8.9). Without the chelating agent, there was a removal of UV 254 and COD of 54.2% and 54.7%, respectively, when the photo-Fenton reaction was carried out at pH 3; at pH 6, the removal of UV 254 and COD was 13.1% and 39.2%, respectively, and at pH 8.9, the elimination of UV 254 and COD was 10.8% and 16.1%, respectively. When Caa was used in the landfill leachate (LL) for the photo-catalytic processes carried out at pH 8.9, a removal of 24.1%, 43.0%, and 47.4% of UV 254 was obtained using 5 mg/L, 50 mg/L, and 100 mg/L of Caa. The removal of UV 254 was 27.3%, 30.7%, and 36.3% using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively, and the removal of COD was 32.2%, 35.4%, and 39.2% using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively. When Caa was used in the LL at pH 8.9, the concentration of total Fe went from 37.5 to 33.2, from 40.2 to 36.8, and from 45.2 to 42.1, using 5 mg/L, 50 mg/L, and 100 mg/L of caffeic acid, respectively. Using VS in the LL at pH 8.9, the concentration of total Fe along the run went from 35.1 to 32.2, from 39.4 to 34.8, and from 42.1 to 40.2, using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively. As a result of these processes, it was noted that the use of Caa and VS increases the solubility of Fe at a higher pH.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile.
| | - Ernesto Cortes
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile
| | - Norma Pérez
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile
| | - Manuel I Maldonado
- Plataforma Solar de Almería (CIEMAT), 04200, Tabernas, Almeria, Spain
- CIESOL, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
22
|
Shi B, Li H, Fu X, Zhao C, Li M, Liu M, Yan W, Yang H. Fe Single-Atom Catalyst for Cost-Effective yet Highly Efficient Heterogeneous Fenton Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53767-53776. [PMID: 36409839 DOI: 10.1021/acsami.2c15232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High energy consumption in pyrolyzing precursors for catalyst preparation would limit the application of nitrogen-doped carbon-based single-atom catalysts in actual pollutant remediation. Herein, we report an Fe single atom (7.67 wt %) loaded polyaniline catalyst (Fe-PANI) prepared via a simple impregnation process without pyrolysis. Both experimental characterizations and density functional theory calculations demonstrated that isolated -N═ group sites can fasten Fe atoms through Fe-N coordination in PANI, leading to a high stability of Fe atoms in a heterogeneous Fenton reaction. Highly dispersive yet dense -N═ groups in PANI can be protonated to be adsorption sites, which largely reduce the migration distance between reactive radicals and organics. More significantly, frontier molecular orbitals and spin-density distributions reveal that electrons can transfer from reduction groups of PANI to an Fe(III) site to accelerate its reduction. As a result, a remarkably boosted degradation behavior of organics under near-neutral conditions (pH 6), with low H2O2 concentration, was achieved. This cost-effective Fe-PANI catalyst with high catalytic activity, stability, and adsorption performance has great potential for industrial-level wastewater treatment.
Collapse
Affiliation(s)
- Bofang Shi
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Hang Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaojie Fu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| | - Chengcheng Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Maochang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Wei Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Honghui Yang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
23
|
He Z, Wang Q, Rao P, Dong L, Zhang M, Zhang X, Gao N, Deng J. WS 2 significantly enhances the degradation of sulfachloropyridazine by Fe(III)/persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157987. [PMID: 35964753 DOI: 10.1016/j.scitotenv.2022.157987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The use of antibiotics has become an indispensable part of the production and life of human society. Among them, sulfonamide antibiotics widely used in humans and animals are considered to be one of the most crucial antibiotics. However, antibiotics are difficult to degrade naturally, leading to an accumulation in the environment and a potential hazard to human health. In this paper, WS2 as a co-catalyst could reduce trace Fe(III) to Fe(II) which exhibited a great activating ability to PS through the exposed W(IV) active sites, and formed the Fe(III)/Fe(II) cycle to degrade sulfachloropyridazine (SCP) continuously. This paper systematically discussed the degradation of SCP under different conditions in the PS/WS2/Fe(III) system, including the amount of WS2, Fe(III) concentration, PS concentration, initial pH, natural organic matter (NOM) and common anions (NO3-, Cl-, HCO3-, HPO42- and H2PO4-). The experimental results showed that PS/WS2/Fe(III) system possessed a strong degradation ability for SCP in a wide pH range. NO3- and Cl- could promote the degradation of SCP a little. HCO3-, HPO42- and H2PO4- could significantly inhibit the degradation of SCP. The main types of free radicals that degraded SCP were explored. In addition, the stability and reusability of WS2 were examined, and two possible degradation pathways of SCP were proposed.
Collapse
Affiliation(s)
- Zedi He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China.
| | - Pinhua Rao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Lei Dong
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai 200092, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
24
|
The enhanced mechanism of Fe(III)/H2O2 system by N, S-doped mesoporous nanocarbon for the degradation of sulfamethoxazole. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Jing J, Liu Y, Jing L, Zhou P, Xie M, He M, Yuan J, Song Y, Xu Y. A novel Bi3.64Mo0.36O6.55/MIL-88A(Fe) nanorod composite material for enhancing photocatalytic activity in photo-Fenton system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts 2022. [DOI: 10.3390/catal12111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The activation of persulfate (PS) by Fe(III) for the removal of environmental organic pollutants was severely limited by the low reduction rate from Fe(III) to Fe(II). In present study, we reported that reducing sulfur species (i.e., SO32−, HSO3−, S2−, and HS−) under low concentration could significantly accelerate the Fe(III)/Fe(II) cycle in the Fe(III)/PS system. Under the condition of 1.0 mM Fe(III) and 4.0 mM PS, the removal performance of Fe(III)/PS system was poor, and only 21.6% of BPA was removed within 40 min. However, the degradation efficiency of BPA increased to 66.0%, 65.5%, 72.9% and 82.7% with the addition of 1.0 mM SO32−, HSO3−, S2−, and HS−, respectively. The degradation efficiency of BPA was highly dependent on solution pH and the concentration of reducing sulfur species. When the reductant was excessive, the removal efficiency would be significantly inhibited due to the elimination of reactive species. This study provided some valuable insights for the treatment of organic wastewater containing these inorganic reducing ions.
Collapse
|
27
|
Activated Carbon Assisted Fenton-like Treatment of Wastewater Containing Acid Red G. Catalysts 2022. [DOI: 10.3390/catal12111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fenton reaction as an effective advanced oxidation technology has been widely used in wastewater treatment for its stable effluent quality, simple operation, mild condition, and higher organic degradation with non-selectivity. However, the traditional Fenton reaction is limited by the sluggish regeneration of Fe2+, resulting in a slower reaction rate, and it is necessary to further increase the dosage of Fe2+, which will increase the production of iron sludge. Activated carbon (AC) has a strong adsorption property, and it cannot be ignored that it also can reduce Fe3+. In this study, the degradation of acid red G (ARG) by adding AC to the Fe3+/H2O2 system, the role of the reducing ability, and the reason why AC can reduce Fe3+ were studied. By adding three kinds of ACs, including coconut shell-activated carbon (CSPAC), wood-activated carbon (WPAC), and coal-activated carbon (CPAC), the ability of ACs to assist the Fe3+/H2O2 Fenton-like system to degrade ARG was clarified. Through the final treatment effect and the ability to reduce Fe3+, the type of AC with the best promotion effect was CSPAC. The different influence factors of particle size, the concentration of CSPAC, concentration of H2O2, concentration of Fe3+, and pH value were further observed. The best reaction conditions were determined as CSPAC powder with a particle size of 75 μm and dosage of 0.6 g/L, initial H2O2 concentration of 0.4 mmol/L, Fe3+ concentration of 0.1 mmol/L, and pH = 3. By reducing the adsorption effect of CSPAC, it was further observed that CSPAC could accelerate the early reaction rate of the degradation process of ARG by the Fe3+/H2O2 system. FT-IR and XPS confirmed that the C-O-H group on the surface of CSPAC could reduce Fe3+ to Fe2+. This study can improve the understanding and role of AC in the Fenton reaction, and further promote the application of the Fenton reaction in sewage treatment.
Collapse
|
28
|
Xiang Y, Liu H, Zhu E, Yang K, Yuan D, Jiao T, Zhang Q, Tang S. Application of inorganic materials as heterogeneous cocatalyst in Fenton/Fenton-like processes for wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Meng S, Zhou P, Sun Y, Zhang P, Zhou C, Xiong Z, Zhang H, Liang J, Lai B. Reducing agents enhanced Fenton-like oxidation (Fe(III)/Peroxydisulfate): Substrate specific reactivity of reactive oxygen species. WATER RESEARCH 2022; 218:118412. [PMID: 35453031 DOI: 10.1016/j.watres.2022.118412] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/13/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Reduction of Fe(III) is the rate-limiting step of iron induced Fenton-like systems, such as the iron/peroxydisulfate system, reducing agents (RAs) were frequently employed as electron donors to directly reduce Fe(III) to further promote the formation of reactive oxygen species (ROS), mainly including hydroxyl radical (•OH), sulfate radical (SO4•-), and ferryl ion (Fe(IV)). However, the intrinsic distinctions among these ROS cause the substrate specific reactivity towards oxidation of diverse organic contaminants. In this study, various RAs (representative solid amorphous boron (A-Boron) and dissolved hydroxylamine (HA)) were added to enhance the Fe(III)/PDS system for investigating the substrate specific reactivity of ROS. It is demonstrated that RAs remarkably boost the Fe(III)/Fe(II) cycles to produce •OH, SO4•-, and Fe(IV) in the RAs/Fe(III)/PDS systems, based on the results of EPR analysis, quenching tests, and chemical probe analysis. Furthermore, the different yields of methyl phenyl sulfone (PMSO2) indicate that the distribution of multiple oxidizing species changed with various factors (i.e., type and dosage of RAs added, solution pH, Fe(III) and PDS dosage). This work provides the possibility for the adjustment of oxidation selectivity of RAs/Fe(III)/PDS systems by regulating contribution of radicals and non-radical for oxidizing organic contaminants due to the substrate specific reactivity of •OH, SO4•-, and Fe(IV), moreover, the comparison of homogeneous and heterogeneous RAs provides assistance in the application of RAs for environmental remediation.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Yiming Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China
| | - Juan Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
30
|
Liu Y, Sheng X, Zhou Z, Wang P, Lu Z, Dong J, Sun Y, Lyu S. Efficient naphthalene degradation in FeS 2-activated nano calcium peroxide system: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128693. [PMID: 35338930 DOI: 10.1016/j.jhazmat.2022.128693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Naphthalene (NAP) has received increasing concern due to frequent detection in groundwater and harm to humans. In this study, FeS2 was selected as a novel catalyst to activate nano calcium peroxide (nCP) for NAP degradation. Batch experiments were conducted in a 250 mL glass reactor containing 0.1 mM NAP solution to investigate the effect of reagents dosage, pH, air conditions (with or without N2 purge), and different solution matrixes on NAP degradation. Scavenging tests, electron paramagnetic resonance (EPR) spectrum, and radical probe tests were conducted to identify the main radicals. Results indicated that over 96% NAP was removed in a wide pH range (3.0-9.0) within 180 min at optimal dosage of nCP = 1.0 mM and FeS2 = 5.0 g L-1 in nCP/FeS2 system. Aerobic condition was more beneficial to NAP degradation and the system could tolerate complex solution conditions. Moreover, HO• was determined to be responsible for NAP degradation. NAP degradation intermediates were detected by gas chromatography-mass spectrometry (GC-MS) and the possible degradation pathways were revealed. Finally, the efficient degradation of other organic pollutants confirmed the broad-spectrum reactivity of the nCP/FeS2 system. Overall, these findings strongly demonstrated the potential applicability of nCP/FeS2 system in remediating organic contaminated groundwater.
Collapse
Affiliation(s)
- Yulong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhikang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanpeng Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yong Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
31
|
Efficient peroxymonosulfate activation through a simple physical mixture of FeS2 and WS2 for carbamazepine degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Liang L, Duan Y, Xiong Y, Zuo W, Ye F, Zhao S. Synergistic cocatalytic effect of MoO3 and creatinine on Cu–Fenton reactions for efficient decomposition of H2O2. MATERIALS TODAY CHEMISTRY 2022; 24:100805. [DOI: 10.1016/j.mtchem.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
33
|
Novel nanoparticle-assembled tetrakaidekahedron Bi25FeO40 as efficient photo-Fenton catalysts for Rhodamine B degradation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Yang J, Yao H, Guo Y, Yang B, Shi J. Enhancing Tumor Catalytic Therapy by Co-Catalysis. Angew Chem Int Ed Engl 2022; 61:e202200480. [PMID: 35143118 DOI: 10.1002/anie.202200480] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Fenton reactions have been recently applied in tumor catalytic therapy, whose efficacy suffers from the unsatisfactory reaction kinetics of Fe3+ to Fe2+ conversion. Here we introduce a co-catalytic concept in tumor catalytic therapy by using a two-dimensional molybdenum disulfide (MoS2 ) nanosheet atomically dispersed with Fe species. The single-atom Fe species act as active sites for triggering Fenton reactions, while the abundant sulfur vacancies generated on the nanosheet favor electron capture by hydrogen peroxide for promoting hydroxyl radical production. Moreover, the 2D MoS2 support also acts as a co-catalyst to accelerate the conversion of Fe3+ to Fe2+ by the oxidation of active Mo4+ sites to Mo6+ , thereby promoting the whole catalytic process. The 2D nanocatalyst exhibits a desirable catalytic performance, as well as a significantly enhanced anticancer efficacy both in vitro and in vivo, which indicates the feasibility for applying such a co-catalytic concept in tumor therapy.
Collapse
Affiliation(s)
- Jiacai Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China.,Tenth People's Hospital and Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
35
|
High 1T phase and sulfur vacancies in C-MoS2@Fe induced by ascorbic acid for synergistically enhanced contaminants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Qi C, Wen Y, Zhao Y, Dai Y, Li Y, Xu C, Yang S, He H. Enhanced degradation of organic contaminants by Fe(III)/peroxymonosulfate process with l-cysteine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Zhang Z, Zhang J, Fan L, Kilmartin PA. Degradation of cyanidin-3-O-glucoside induced by antioxidant compounds in model Chinese bayberry wine: Kinetic studies and mechanisms. Food Chem 2022; 373:131426. [PMID: 34717084 DOI: 10.1016/j.foodchem.2021.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/28/2021] [Accepted: 10/16/2021] [Indexed: 11/26/2022]
Abstract
The degradation kinetic of cyanidin-3-O-glucoside was determined in combination with different antioxidants, namely ascorbic acid, cysteine, reduced glutathione, and sodium sulfite at different concentrations and temperatures (4, 20, and 37 °C) in model Chinese bayberry wine. Ascorbic acid, cysteine, and reduced glutathione accelerated cyanidin-3-O-glucoside degradation; half-life times decreased by ca. 46 ∼ 93%, 0.39 ∼ 88%, and 1.6 ∼ 92% respectively when the concentrations of antioxidants were 0.1 ∼ 5 mM. Thiols with more -SH groups lead to faster degradation of cyanidin-3-O-glucoside. Interactions of oxidized cyanidin-3-O-glucoside with antioxidants were evaluated in aqueous solution and methanol to investigate the degradation mechanism of anthocyanin after oxidation. An anthocyanin-cysteine adduct was identified by LC-MS and formation pathways are proposed, along with mechanisms of anthocyanin degradation induced by antioxidants.
Collapse
Affiliation(s)
- Zhengwei Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
38
|
Liu K, Li F, Pang Y, Fang L, Hocking R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127780. [PMID: 34801297 DOI: 10.1016/j.jhazmat.2021.127780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yan Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
39
|
Song X, Ni J, Liu D, Shi W, Yuan Y, Cui F, Tian J, Wang W. Molybdenum disulfide as excellent Co-catalyst boosting catalytic degradation of sulfamethoxazole by nZVI/PDS process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Yang J, Yao H, Guo Y, Yang B, Shi J. Enhancing Tumor Catalytic Therapy by Co‐Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacai Yang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory CHINA
| | - Heliang Yao
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory CHINA
| | - Yuedong Guo
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory CHINA
| | - Bowen Yang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory CHINA
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure 1295 Ding-Xi Road 200050 Shanghai CHINA
| |
Collapse
|
41
|
Dang Y, Bai Y, Zhang Y, Yang X, Sun X, Yu S, Zhou Y. Tannic acid reinforced electro-Fenton system based on GO-Fe 3O 4/NF cathode for the efficient catalytic degradation of PNP. CHEMOSPHERE 2022; 289:133046. [PMID: 34883130 DOI: 10.1016/j.chemosphere.2021.133046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In order to overcome the sluggish kinetics of the redox conversion between Fe3+ and Fe2+ in Fenton process, we established a novel electro-Fenton system based on GO-Fe3O4 cathode and tannic acid (TA) for the efficient degradation of p-nitrophenol (PNP). Under the optimal degradation parameters (including the initial PNP concentration of 20 mg L-1, pH = 5, current density of 30 mA cm-2 and feeding ratio of PNP: TA = 1:2), the TA reinforced GO-Fe3O4 electro-Fenton system exhibited the removal rate of PNP over 90.1 ± 0.2%, the COD removal rate of 69.5 ± 0.84% and satisfactory reusability (with the removal rate of ∼80% after 5 recycles). The excellent degradation performance of the proposed TA reinforced GO-Fe3O4 electro-Fenton system was partly attributed to the optimized morphology (with the particle size of Fe3O4 reduced to tens of nanometers, pore size decreased by ∼80% and pore volume increased by 24.3 times) and larger specific surface area (increased by 72.7 times) after compositing GO with Fe3O4, which exposed more active sites. In return, the electron transfer process, the two-electron oxygen reduction reaction (ORR) and the degradation efficiency were promoted in the cooperation of GO and Fe3O4. Moreover, the incorporated TA would form a TA-Fe(III) complex to promote the reduction reaction from Fe3+ to Fe2+, which strengthened the self-circulation of Fe2+ and Fe3+ and indirectly enhanced the conversion of H2O2 to ROS to decompose PNP into smaller organic fragments or mineralize into CO2, H2O, NO2- or NO3-, etc. Obviously, the incorporation of TA provided a promising strategy to improve the electro-Fenton efficiency and realize the efficient removal of PNP in wastewater.
Collapse
Affiliation(s)
- Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yangyang Bai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaohan Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
42
|
Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. Int J Mol Sci 2022; 23:ijms23031033. [PMID: 35162964 PMCID: PMC8835132 DOI: 10.3390/ijms23031033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response—to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.
Collapse
|
43
|
Song G, Du X, Zheng Y, Su P, Tang Y, Zhou M. A novel electro-Fenton process coupled with sulfite: Enhanced Fe 3+ reduction and TOC removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126888. [PMID: 34416701 DOI: 10.1016/j.jhazmat.2021.126888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
To promote the reduction of Fe3+ and improve the mineralization of organic pollutants, a novel electro-Fenton coupled with sulfite (Fe3+-EF/sulfite) process was constructed, which was superior to Fe3+-EF process in terms of carbamazepine (CBZ) degradation and mineralization with 5.99 times enhancement in degradation rate constant and 15.7 times enhancement on TOC removal. The complexation of Fe3+ and sulfite prevented the precipitation of Fe3+, reduced Fe3+ to Fe2+, and accelerated the iron cycle, so that H2O2 utilization efficiency (0.051 mgTOC mgH2O2-1) was greatly improved and electric energy consumption was greatly reduced (0.081 kWh g-1 TOC). The quenching experiments and EPR test confirmed that the reactive species, such as SO3•-, SO4•-, •OH, O2•- and 1O2 were responsible for the degradation of CBZ. This process also expanded the pH application range from 3 to 9 with satisfactory CBZ removal efficiency. This work verified the suitability of the Fe3+-EF/sulfite process for different sulfites (sulfite and bisulfite), typical pollutants (atrazine, sulfamethazine, rhodamine B) and real wastewater with 2.1-18.7 folds enhancement in degradation rate. The Fe3+-EF/sulfite process can achieve deep mineralization with low cost and simple operation, which has a broad and cost-effective application prospect in removal of refractory organic pollutants.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Zheng
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yunping Tang
- Tianjin Academy for Eco-environmental Sciences, Tianjin 300191, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Nicodemos Ramos MD, Sousa LA, Aguiar A. Effect of cysteine using Fenton processes on decolorizing different dyes: a kinetic study. ENVIRONMENTAL TECHNOLOGY 2022; 43:70-82. [PMID: 32466719 DOI: 10.1080/09593330.2020.1776402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Amino acid cysteine has been used as reducing mediator with the aim of improving dye degradation by homogeneous Fenton processes (Fe2+/H2O2 and Fe3+/H2O2). Through its known Fe3+-reducing activity, this amino acid can enhance the production of reactive oxygen species as HO• (hydroxyl radical) and its pro-oxidant properties have been verified while decolorizing diverse dyes in the present work. Its presence enhanced decolorization of Methyl Orange, Phenol Red, Safranin T, Rhodamine B, Reactive Black 5 and Reactive Yellow 2, mainly in reactions initially containing Fe3+ as a catalyst (Fe3+-reactions). E.g. Fe3+/H2O2 and Fe3+/H2O2/cysteine systems decolorized 27% and 44% of Phenol Red after 60 min, respectively. A kinetic modeling analysis has revealed that 1st-order and mainly 2nd-order kinetic models were well fitted to both Fe2+- and Fe3+-reactions data. Improvements in reaction rate constants have been observed by adding cysteine. In experiments performed at varied temperatures, it was found a decrease in activation energy (Ea) due to cysteine addition while decolorizing Safranin T: Ea decreased from 104.6 to 88.9 kJ mol-1 for Fe3+-reactions and from 81.0 to 52.2 kJ mol-1 for Fe2+-reactions. Therefore, it was found that cysteine decreases the energy barrier so as to improve Fenton-based decolorization reactions.
Collapse
Affiliation(s)
| | - Larissa Aquino Sousa
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá-MG, Brazil
| | - André Aguiar
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá-MG, Brazil
| |
Collapse
|
45
|
Zhao M, Xiang Y, Jiao X, Cao B, Tang S, Zheng Z, Zhang X, Jiao T, Yuan D. MoS2 co-catalysis promoted CaO2 Fenton-like process: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Cheng F, Zhou P, Liu Y, Huo X, Zhang J, Yuan Y, Zhang H, Lai B, Zhang Y. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H 2O 2 Fenton and photo-Fenton oxidation toward chloramphenicol degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149097. [PMID: 34298366 DOI: 10.1016/j.scitotenv.2021.149097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Slow reduction of Fe(III) in iron-mediated Fenton-like systems strongly limits the decomposition of H2O2 to produce hydroxyl radicals (•OH). Here, we report that graphene oxide (GO) possesses excellent reactivity to enhance the Fe(III)/H2O2 Fenton and photo-Fenton oxidation for degrading chloramphenicol (CAP). EPR analysis and quenching tests reveal that •OH is the primary oxidant for CAP degradation. The characterization analysis and iron species transformation experiments demonstrate that Fe(III) can combine with the functional groups on the GO surface to form GO-Fe(III) complexes. The chronopotentiometry and cyclic voltammogram suggest that GO can donate electrons to Fe(III) via intramolecular electron transfer and promote H2O2 induced Fe(III) reduction by increasing the oxidation capability of Fe(III) due to the formation of GO-Fe(III) complexes, resulting in the strong promotion of the Fe(III)/Fe(II) cycle for producing OH. Moreover, the dark- and vis-GO/Fe(III)/H2O2 systems can effectively degrade CAP at initial pH ranging from 2.0 to 4.7. The reusability and stability of GO were evaluated by performing the cyclic degradation experiments of CAP. The OH induced degradation pathway of CAP was proposed involving three stages, based on intermediates analysis of UPLC-QTOF-MS/MS system. Therefore, the GO/Fe(III)/H2O2 system with or without visible light shows high potential for application in environmental remediation.
Collapse
Affiliation(s)
- Feng Cheng
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xiaowei Huo
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Jian Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Chengdu Engineering Corporation Ltd., Power China, Chengdu 611130, China
| | - Yue Yuan
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610065, China
| | - Heng Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
47
|
Co-catalysis of metal sulfides accelerating Fe2+/Fe3+ cycling for the removal of tetracycline in heterogeneous electro-Fenton using an novel rolled NPC/CB cathodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Shi Z, Zhang R, Zhang J. Role of weak magnetic field for enhanced oxidation of orange G by magnetic Fenton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59834-59843. [PMID: 34146327 DOI: 10.1007/s11356-021-14887-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The role of weak magnetic field (WMF) on the degradation of a common textile azo-dye, orange G (OG), by magnetic Fenton system was investigated in detail. The results showed that the presence of WMF can provide better performance of the Fe3O4/H2O2 system for OG degradation. The optimized reaction conditions were contained at 1 mM Fe3O4 as Fe, 20 mT of magnetic field intensity, 20 mM H2O2, and initial pH of 3.0. The removal efficiency of OG by Fe3O4/H2O2 coupling with WMF increased largely from 56.3 to 82.3% compared with Fe3O4/H2O2 process. Both the electron paramagnetic resonance (EPR) analysis and the quenching effect of tert-butyl alcohol (TBA) confirmed that hydroxyl radical (•OH) was the primary reactive oxygen species in WMF-Fe3O4/H2O2 system. The improving effect of WMF was explained by the magnetoconvection theory. The presence of WMF could accelerate the corrosion rate of Fe3O4 and thus promoted the release of Fe(II), which led to the increased production of •OH and enhanced the degradation of OG. Moreover, it was surprising to observe that the WMF induced improvement in OG degradation by heterogeneous Fenton involving the iron sludge, namely FeOOH and Fe2O3, as catalysts. These results indicated that WMF could be utilized as an efficient and cost-effective strategy to improve the removal of organic pollutants by iron oxide-based Fenton process.
Collapse
Affiliation(s)
- Zhenyu Shi
- College of Environment & Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
- Environment Monitoring Center of Jiangsu Province, Nanjing, 210036, People's Republic of China
| | - Ruijia Zhang
- Xuzhou Municipal Engineering Design Institute Co., Ltd., Xuzhou, 221000, People's Republic of China
| | - Jing Zhang
- College of Environment & Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
49
|
Huang W, Fu B, Fang S, Wang F, Shao Q, Du W, Fang F, Feng Q, Cao J, Luo J. Insights into the accelerated venlafaxine degradation by cysteine-assisted Fe 2+/persulfate: Key influencing factors, mechanisms and transformation pathways with DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148555. [PMID: 34171809 DOI: 10.1016/j.scitotenv.2021.148555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The effective removal of refractory antidepressant in wastewater is challenging. In this study, a novel strategy of cysteine-assisted Fe2+/persulfate system (Fe2+/Cys/PS) was applied for the venlafaxine (Ven, as a typical antidepressant) degradation. The obtained results revealed that the Ven removal was evidently accelerated and enhanced in Fe2+/Cys/PS process, and achieved complete degradation in 5 min with optimal dosage. Further analysis indicated that the Ven degradation efficiency was associated with the chemical concentrations (i.e. Fe2+, Cys and PS) and operational conditions (i.e. pH and temperature). Moreover, the reactions were not impacted by the co-occurring organic matters (i.e. fulvic acid) and inorganic ions (i.e. Cl-) potentially existing in real wastewater matrices. Mechanistic explorations demonstrated that the presence of Cys promoted the Fe3+/Fe2+ redox cycle, and thus enhanced the reactive oxygen species yields (ROS). The OH was considered as the primary ROS in Fe2+/Cys/PS process for Ven degradation via the radical scavenger verification. Also, the main intermediates of Ven degradation were identified, and the possible transformation pathway was proposed, in which the hydroxylation attacked by the OH was the main reaction. Moreover, the active reaction sites in Ven were calculated with the density function theory (DFT), which was consistent with the observed metabolic routes.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Boming Fu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
50
|
Zhang C, Li F, Zhang H, Wen R, Yi X, Yang Y, He J, Ying GG, Huang M. Crucial roles of 3D-MoO 2-PBC cocatalytic electrodes in the enhanced degradation of imidacloprid in heterogeneous electro-Fenton system: Degradation mechanisms and toxicity attenuation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126556. [PMID: 34280723 DOI: 10.1016/j.jhazmat.2021.126556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid (IMI), as the most-consumed pesticide, has posed a severe threat to the water ecosystem due to its recalcitrance and inefficient elimination in the traditional wastewater treatment. Herein, a heterogeneous electro-Fenton (EF) system coupled with 3D-MoO2-porous biochar (PBC) cocatalytic electrodes, abbreviated as 3D-MPE-EF, is initially applied to promote the elimination of IMI in the agrochemical wastewater from pesticide production. The elimination rate of IMI by 3D-MPE-EF system is 18.15 times higher than that by traditional EF system at pH 7.0. The utilization of 3D-MoO2-PBC electrodes sufficiently compensates for inherent deficiencies of traditional EF system. The circular utilization of Fe is also addressed by 3D-MoO2-PBC cocatalytic electrodes to reduce the consumption of Fe2+ and the deposition of iron mud. Through comparison, MoO2 is considered the most appropriate cocatalyst in terms of the reutilization of Fe and degradation of IMI. Eight mechanisms are identified in the degradation pathways of IMI by UPLC-Q-TOF-MS. The ecotoxicities of IMI are remarkably attenuated in the 3D-MPE-EF system. This study provides insights into the roles of 3D-MoO2-PBC cocatalytic electrodes in the enhanced elimination of IMI in heterogeneous EF system.
Collapse
Affiliation(s)
- Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Feng Li
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Huike Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Rubing Wen
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yujie Yang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Junyi He
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; School of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|