1
|
Zhuang Z, Yu Y, Dong S, Sun X, Mao L. Carbon-based nanozymes: design, catalytic mechanisms, and environmental applications. Anal Bioanal Chem 2024; 416:5949-5964. [PMID: 38916795 DOI: 10.1007/s00216-024-05405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Carbon-based nanozymes are synthetic nanomaterials that are predominantly constituted of carbon-based materials, which mimic the catalytic properties of natural enzymes, boasting features such as tunable catalytic activity, robust regenerative capacity, and exceptional stability. Due to the impressive enzymatic performance similar to various enzymes such as peroxidase, superoxide dismutase, and oxidase, they are widely used for detecting and degrading pollutants in the environment. This paper presents an exhaustive review of the fundamental design principles, catalytic mechanisms, and prospective applications of carbon-based nanozymes in the environmental field. These studies not only serve to augment the comprehension on the intricate operational mechanism inherent in these synthetic nanostructures, but also provide essential guidelines and illuminating perspectives for advancing their development and practical applications. Future studies that are imperative to delve into the untapped potential of carbon-based nanozymes within the environmental domain was needed to be explored to fully harness their ability to deliver broader and more impactful environmental preservation and management outcomes.
Collapse
Affiliation(s)
- Zheqi Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yanni Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiaolin Sun
- Aviation Engineering Institute, Nanjing Vocational University of Industry Technology, Nanjing, 210023, P. R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
2
|
Yuan R, Salam M, Miao X, Yang Y, Li H, Wei Y. Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil. ENVIRONMENTAL RESEARCH 2023; 222:115383. [PMID: 36716806 DOI: 10.1016/j.envres.2023.115383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biochar has been widely applied in soil and water. However, the fate and transport of biochar are not yet fully understood. Here, biochar's disintegration, transport, and the effect of temperature on biochar transport in soil (purple soil)-water systems were investigated. The results showed that the potentially transportable components (PTC) of biochar for corn straw, wheat straw, rice straw, rice husk and wood biochar reached 6.22-7.60%, 5.96-12.29%, 11.77-12.45%, 5.34-6.26% and 5.08-6.14% by mass, respectively. An external force (ultrasound exposure) intensified the physical disintegration, including colloidal and nanoparticles from larger particles, thereby increasing the transport potential. The mass recovery rates of PTC for rice straw biochar after penetrating through soil at 5, 20 and 35 °C reached 44.25%, 32.97% and 10.98%, respectively, which was supported by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory results. Elevated temperatures increased the hydrodynamic average diameter of PTC, and the Zeta potential of PTC and soil at 35 °C were less negative than those at 5 and 20 °C. As a result, biochar's transportability decreases with increasing temperature in the soil-water system, during which the enhanced PTC aggregation and the decreased electrostatic repulsion between biochar and soil particles played a crucial role. The increase in electrical conductivity in the soil-water system may be the main reason for the decrease in electrostatic repulsion at higher temperatures. The findings are helpful for an in-depth understanding of the environmental fate and managing the transport risk of biochar.
Collapse
Affiliation(s)
- Ruoyu Yuan
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Wei X, Pan D, Tan Q, Shi X, Hou J, Tang Q, Xu Z, Wu W, Ma B. Surface charge property governing co-transport of illite colloids and Eu(III) in saturated porous media. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Xia T, Xie Y, Bai S, Guo X, Zhu L, Zhang C. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158724. [PMID: 36108856 DOI: 10.1016/j.scitotenv.2022.158724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Transport of graphene-based nanomaterials in porous media is closely related to background cations. This study examines the impacts of ionic specificity on the mobility of graphene oxide (GO) and reduced GO (RGOs) in saturated quartz sand. The transport of GO/RGOs as affected by monovalent cation Na+ followed extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, whereas in solutions containing multivalent cations Zn2+ and Al3+, cation bridging effect played a dominant role in the transport inhibition. Moreover, the adverse effects of the divalent cations on GO/RGOs migration obeyed the Hofmeister series, i.e. following the order of Pb2+ > Cd2+ > Zn2+. Batch adsorption experiments and DFT calculations further confirmed that cations of higher valences, and of the same valence but with larger ionic radii (smaller hydrated radii) interacted more strongly with GO/RGOs and sand grains via forming inner-sphere complexes. Thus, more favorable retention was observed through cation bridging between particles and collectors, and also via enhanced straining caused by particles aggregation. Furthermore, the sulfide-reduced GO (SR-GO) that contained more surface O-functional groups was impacted more remarkably by strong complexing cations than the pristine GO (P-GO), while the mobility of poorly functionalized irradiation-reduced GO (IR-GO) was less affected by cation bridging effect.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yao Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sai Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Xu Z, Niu Z, Pan D, Zhao X, Wei X, Li X, Tan Z, Chen X, Liu C, Wu W. Mechanisms of bentonite colloid aggregation, retention, and release in saturated porous media: Role of counter ions and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148545. [PMID: 34328966 DOI: 10.1016/j.scitotenv.2021.148545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In the subsurface environment, colloids play an important role in pollutant transport by acting as the carriers. Understanding colloid release, transport, and deposition in porous media is a prerequisite for evaluating the potential role of colloids in subsurface contaminant transport. In this work, the aggregation, retention, and release of bentonite colloid in saturated porous sand media were investigated by kinetic aggregation and column experiments, the correlation and mechanism of these processes were revealed by combining colloid filtration theory, interaction energy calculation and density functional theory. The results showed that the retention and release of colloids were closely related to the dispersion stability and filtration effect. Multivalent cations with higher mineral affinity reduced the colloid stability, and the dispersion stability and mobility of the colloid were greatly improved by humic acid due to the enhancement of electrostatic repulsion and steric hindrance effects. The primary minimum interaction was found to contribute more to irreversible colloid retention in a Ca2+ system, while the secondary energy minimum was found to be responsible for colloid release with the occurrence of transient solution chemistry. The deposited colloid aggregates could be redistributed and released when the solution chemistry became favorable towards dispersion. These findings provide essential insight into the environmental colloid fate as well as a vital reference for the risk of colloid-driven transport of contaminants in the subsurface aquifer environment.
Collapse
Affiliation(s)
- Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhiwei Niu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| | - Xiaodong Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Xiaoyan Wei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Li
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Zhaoyi Tan
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Xia T, Li S, Wang H, Guo C, Liu C, Liu A, Guo X, Zhu L. Insights into the transport of pristine and photoaged graphene oxide-hematite nanohybrids in saturated porous media: Impacts of XDLVO interactions and surface roughness. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126488. [PMID: 34214851 DOI: 10.1016/j.jhazmat.2021.126488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The transport behaviors of nanomaterials, in especial multifunctional nanohybrids have not been well disclosed until now. In this study, environmentally relevant conditions, including cation types, ionic strength and pH, were selected to investigate the transport and retention of graphene oxide-hematite (GO-Fe2O3) nanohybrids and a photoaged product in saturated sandy columns. Results show that more hybridization of hematite led to decreased negative surface charge, while increased particle size and hydrophobicity of the nanohybrids, which depressed their transport according to extented Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. However, the inhibitory transport of photoaged nanohybrids was attributed to their distinct surface roughness caused by relatively high hybridization and photoirradiation. Notably the restrained transport was alleviated in the CaCl2 saturated media, since the less surface O-functional groups of the corresponding nanohybrids reduced the cation bridging effect caused by Ca2+. Similarly, increasing pH promoted the transport of the nanohybrids in NaCl saturated media, particularly for the nanohybrids that contained rich O-functional groups, but exerted inconspicuous effect on mobility of the nanohybrids in CaCl2 saturated media. These observations highlight that both XDLVO interactions and surface roughness may work together to impact the transport and fate of the burgeoning, versatile nanohybrids in the environment.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanwei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenming Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anning Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
7
|
Sun B, Zhang Y, Li R, Wang K, Xiao B, Yang Y, Wang J, Zhu L. New insights into the colloidal stability of graphene oxide in aquatic environment: Interplays of photoaging and proteins. WATER RESEARCH 2021; 200:117213. [PMID: 34015575 DOI: 10.1016/j.watres.2021.117213] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Wide application leads to release of graphene oxide (GO) in aquatic environment, where it is subjected to photoaging and changes in physicochemical properties. As important component of natural organic matters, proteins may greatly affect the aggregation behaviors of photoaged GO. The effects of a typical model protein (bovine serum albumin, BSA) on the colloidal stability of photoaged GO were firstly investigated. Photoaging reduced the lateral size and oxygen-containing groups of GO, while the graphene domains and hydrophobicity increased as a function of irradiation time (0-24 h). Consequently, the photoaged GO became less stable than the pristine one in electrolyte solutions. Adsorption of BSA on the surface of the photoaged GO decreased as well, leading to thinner BSA coating on the photoaged GO. In the solutions with low concentrations of electrolytes, the aggregation rate constants (k) of all the photoaged GO firstly increased to the maximum agglomeration rate constants (kfast, regime I), maintained at kfast (regime Ⅱ) and then decreased to zero (regime Ⅲ) as the BSA concentration increased. In both regime I and III, the photoaged GO were less stable at the same BSA concentrations, and the impacts of BSA on the colloidal stability of the photoaged GO were less than the pristine one, which was attributed to the weaker interactions between the photoaged GO and BSA. This study provided new insights into the colloidal stability and fate of GO nanomaterials, which are subjected to extensive light irradiation, in wastewater and protein-rich aquatic environment.
Collapse
Affiliation(s)
- Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ruixuan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jingzhen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| |
Collapse
|
8
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111419. [PMID: 33126193 DOI: 10.1016/j.jenvman.2020.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia.
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| | - John L Hutson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| |
Collapse
|
9
|
Tang Z, Lu D, Gong J, Shi X, Zhong J. Self-Heating Graphene Nanocomposite Bricks: A Case Study in China. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E714. [PMID: 32033320 PMCID: PMC7040689 DOI: 10.3390/ma13030714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022]
Abstract
In cold climate regions, the energy associated with indoor heating constitutes a large portion of energy consumption. Increasing energy utilization efficiency is critically important for both economic and environmental reasons. Directly converting electrical energy to thermal energy using joule heating construction elements can save energy and investment to the water pipelines which have been extensively used for indoor heating in China. The fired brick has been extensively used to make pavements, walls and other masonry. Taking advantage of the high dispersion quality of graphene oxide (GO) in water, as well as the firing process used to make fired bricks, graphene nanocomposite bricks with excellent electrical properties and improved mechanical performance were prepared in China. The compressive strength of the bricks showed a substantial increase from 3.15 MPa to 7.21 MPa when GO concentration was 0.1 wt.%. Through applying 5 volts of electrical field within 5 minutes, the nanocomposites can be heated from room temperature to 60 °C, 110 °C and 160 °C for the nanocomposite bricks with graphene concentration of 3 wt.%, 4 wt.% and 5 wt.%, respectively, due to the extremely low percolation threshold (~0.5 wt.%) and high conductivity (10 Ω·cm at 1 wt.%). The sheets were connected more tightly when the GO content was increased. The thermal efficiency can reach up to 88% based on the applied voltage, measured resistance and temperature rise curves.
Collapse
Affiliation(s)
- Zhuo Tang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China;
- Key Lab of Structure Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin 150090, Heilongjiang, China;
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Lu
- Key Lab of Structure Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin 150090, Heilongjiang, China;
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Gong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Xianming Shi
- Department of Civil & Environmental Engineering, Washington State University, P.O. Box 642910, Pullman, WA 99164-2910, USA
| | - Jing Zhong
- Key Lab of Structure Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin 150090, Heilongjiang, China;
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Dong Z, Zhu L, Zhang W, Huang R, Lv X, Jing X, Yang Z, Wang J, Qiu Y. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113177. [PMID: 31521995 DOI: 10.1016/j.envpol.2019.113177] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The transport and retention of nanoplastics (NP, 200 nm nanopolystyrene) functionalized with surface carboxyl (NPC), sulfonic (NPS), low-density amino (negatively charged, NPA-), and high-density amino (positively charged, NPA+) groups in seawater-saturated sand with/without humic acid were examined to explore the role of NP surface functionalities. The mass percentages of NP recovered from the effluent (Meff) with a salinity of 35 practical salinity units (PSU) were ranked as follows: NPC (19.69%) > NPS (16.37%) > NPA+ (13.33%) > NPA- (9.78%). The homoaggregation of NPS and NPA- was observed in seawater. The transport of NPA- exhibited a ripening phenomenon (i.e., a decrease in the transport rate with time) due to the high attraction of NP with previously deposited NP, whereas monodispersed NPA+ presented a low Meff value because of the electrostatic attraction between NPA+ and negatively charged sand. Retention experiments showed that the majority of NPC, NPS and NPA+ accumulated in a monolayer on the sand surface, whereas NPA- accumulated in multiple layers. Suwannee River humic acid (SRHA) could remarkably improve the transportability of NPC, NPS, and NPA- by increasing steric repulsion. The strong attraction between NPA+ and the deposited NPA+ in the presence of SRHA triggered the weak ripening phenomenon. As seawater salinity decreased from 35 PSU to 3.5 PSU, the increase in electrostatic repulsion of NP-NP and NP-sand enhanced the transport of NPC, NPS, and NPA-, and the ripening of NPA- breakthrough curves disappeared. In deionized water, NPC, NPS, and NPA- achieved complete column breakthrough because the electrostatic repulsion between NP and sand intensified. However, the Meff values of NPA+ in 3.5 PSU seawater and deionized water presented limited increments of 15.49% and 23.67%, respectively. These results indicated that the fate of NP in sandy marine environments were strongly affected by NP surface functionalities, seawater salinity, and coexisting SRHA.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - XiangWei Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xinyu Jing
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhenglong Yang
- School of Materials Science and Engineering, Jiading Campus, Tongji University, Shanghai, 201804, China
| | - Junliang Wang
- College of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
11
|
Dong Z, Zhang W, Qiu Y, Yang Z, Wang J, Zhang Y. Cotransport of nanoplastics (NPs) with fullerene (C 60) in saturated sand: Effect of NPs/C 60 ratio and seawater salinity. WATER RESEARCH 2019; 148:469-478. [PMID: 30408733 DOI: 10.1016/j.watres.2018.10.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Nanoplastics (NPs) have been identified as newly emerging particulate contaminants. In marine environments, the interaction between NPs and other engineered nanoparticles remains unknown. This study investigated the cotransport of NPs with fullerene (C60) in seawater-saturated columns packed with natural sand as affected by the mass concentration ratio of NPs/C60 and the hydrochemical characteristics. In seawater with 35 practical salinity units (PSU), NPs could remarkably enhance C60 dispersion with a NPs/C60 ratio of 1. NPs behaved as a vehicle to facilitate C60 transport by decreasing colloidal ζ-potential and forming stable primary heteroaggregates. As the NPs/C60 ratio decreased to 1/3, NPs mobility was progressively restrained because of the formation of large secondary aggregates. When the ratio continuously decreased to 1/10, the stability and transport of colloids were governed by C60 rather than NPs. Under this condition, the transport trend of binary suspensions was similar to that of single C60 suspension, which was characterized by a ripening phenomenon. Seawater salinity is another key factor affecting the stability and associated transport of NPs and C60. In seawater with 3.5 PSU, NPs and C60 (1:1) in binary suspension exhibited colloidal dispersion, which was driven by a high-energy barrier. Thus, the profiles of the cotransport and retention of NPs/C60 resembled those of single NPs suspension. This work demonstrated that the cotransport of NPs/C60 strongly depended on their mass concentration ratios and seawater salinity.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China.
| | - Zhenglong Yang
- School of Materials Science and Engineering, Jiading Campus, Tongji University, Shanghai, 201804, China
| | - Junliang Wang
- School of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yidi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
12
|
Yang Y, Hou J, Wang P, Wang C, Wang X, You G. Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1206-1216. [PMID: 30118909 DOI: 10.1016/j.envpol.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/15/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
The presence of abundant extracellular polymeric substances (EPS) play a vital role in affecting heteroaggregation process and toxicity of nanoparticles (NPs) to Microcystis aeruginosa. Interactions between n-CeO2 and cyanobacteria with/without EPS and the toxicity of n-CeO2 to M. aeruginosa were investigated in this study. Aggregation kinetics of n-CeO2 under both soluble EPS (SEPS) and bound EPS (BEPS) indicated the presence of EPS could induced the formation of EPS-NPs aggregates. Heteroaggregation between cells and n-CeO2 was confirmed through co-settling experiment and SEM-EDS observation. SEPS contributed to the observable heteroaggregation using spectral measurement. Heteroaggregation between cells and n-CeO2 under no BEPS was hardly obtained through spectral measurement, but SEM-EDS observation convinced this process. And the DLVO theory explained this heteroaggregation process under various EPS conditions, where the energy barrier decreased with gradual EPS extraction. In addition, the order for 96 h half growth inhibition concentration (IC50) was Raw M9 > M9-SEPS > M9+BEPS > M9-BEPS. These results revealed that not all heteroaggregation between cell-NPs can lead to the NPs toxicity to cells. BEPS act more important role in buffering against the toxicity of NPs from ambient adverse factors, but SEPS increase the stability of NPs which could aggravate the adverse effects of NPs in the environment.
Collapse
Affiliation(s)
- Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
13
|
Sun B, Zhang Y, Chen W, Wang K, Zhu L. Concentration Dependent Effects of Bovine Serum Albumin on Graphene Oxide Colloidal Stability in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7212-7219. [PMID: 29894635 DOI: 10.1021/acs.est.7b06218] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The impacts of a model globular protein (bovine serum albumin, BSA) on aggregation kinetics of graphene oxide (GO) in aquatic environment were investigated through time-resolved dynamic light scattering at pH 5.5. Aggregation kinetics of GO without BSA as a function of electrolyte concentrations (NaCl, MgCl2, and CaCl2) followed the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and the critical coagulation concentration (CCC) was 190, 5.41, and 1.61 mM, respectively. As BSA was present, it affected the GO stability in a concentration dependent manner. At fixed electrolyte concentrations below the CCC values, for example 120 mM NaCl, the attachment efficiency of GO increased from 0.08 to 1, then decreased gradually and finally reached up to zero as BSA concentration increased from 0 to 66.5 mg C/L. The low-concentration BSA depressed GO stability mainly due to electrostatic binding between the positively charged lysine groups of BSA and negatively charged groups of GO, as well as double layer compression effect. With the increase of BSA concentration, more and more BSA molecules were adsorbed on GO, leading to strong steric repulsion which finally predominated and stabilized the GO. These results provided significant information about the concentration dependent effects of natural organic matters on GO stability under environmentally relevant conditions.
Collapse
Affiliation(s)
- Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Wei Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| |
Collapse
|
14
|
Wang M, Gao B, Tang D, Yu C. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:350-357. [PMID: 29304468 DOI: 10.1016/j.envpol.2017.12.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na+, 1 mM for Ca2+, 1.75 mM for Mg2+, and 0.03 and 0.05 mM for Al3+) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al3+ and from 27.11% to 0 for 0.05 mM Al3+. At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na+, surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well.
Collapse
Affiliation(s)
- Mei Wang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Deshan Tang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Congrong Yu
- State Key Lab of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, Jiangsu 210098, China; College of Hydrology and Water Conservancy and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Ye N, Wang Z, Wang S, Fang H, Wang D. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10956-10965. [PMID: 29399742 DOI: 10.1007/s11356-018-1326-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
Graphene-family nanomaterials (GFNs) exhibit universal applications and consequently will inevitably enter aquatic systems. However, both the fate and behavior of GFNs in aquatic environments have not been completely explored at field relevant conditions. Herein, we have systematically investigated the aqueous aggregation and stability of graphene nanoplatelets (GNPs), graphene oxide (GO), and reduced graphene oxide (RGO) under varied solution chemistry parameters (pH, divalent cations, and dissolved organic carbon (DOC)) during 21 days of incubation in simulated natural environmental conditions. Results indicate that pH values from 6 to 9 had a notable impact on the aqueous behaviors of the three GFNs. Divalent cations (Ca2+ and Mg2+) at the concentrations of 2.5 and 10 mM remarkably increased the extent of aggregation of the three GFNs and resulted in severe sedimentation, independently of surface chemical functionalization. The presence of only DOC ranging from 0.5 to 2 mg C/L significantly elevated the dispersion stability of GNPs and RGO in a dose-dependent manner, whereas no effects were observed on GO. Furthermore, DOC at the studied concentrations and surface functionality were insufficient to counterbalance the impact of the divalent cations. Direct visual and in situ observations further supported the conclusions on the effects of divalent cations or/and DOC. These findings further underline that the environmental behaviors of GFNs are controlled by the complex interplay between water chemistry parameters and GFN surface properties.
Collapse
Affiliation(s)
- Nan Ye
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Hao Fang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116023, People's Republic of China
| |
Collapse
|
16
|
Su Y, Huang C, Lu F, Tong X, Niu J, Mao L. Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:513-522. [PMID: 29216489 DOI: 10.1016/j.envpol.2017.11.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of 14C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl2) electrolytes. Enhanced agglomeration occurred at high CaCl2 concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca2+. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na+ competition for binding sites with Ca2+ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na+ and <5 mM Ca2+). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Chi Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Fenxiao Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Junfeng Niu
- Beijing Normal University, School of Environment, State Key Lab Water Environmental Simulation, Beijing 100875, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Su Y, Tong X, Huang C, Chen J, Liu S, Gao S, Mao L, Xing B. Green Algae as Carriers Enhance the Bioavailability of 14C-Labeled Few-Layer Graphene to Freshwater Snails. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1591-1601. [PMID: 29283255 DOI: 10.1021/acs.est.7b05796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The waterborne exposure of graphene to ecological receptors has received much attention; however, little is known about the contribution of food to the bioaccumulation potential of graphene. We investigated the effect of algal food on the uptake and distribution of 14C-labeled few-layer graphene (FLG) in freshwater snails, a favorite food for Asian people. In a water-only system, FLG (∼158 μg/L) was ingested by and accumulated in the snails. Adding algae to the water significantly enhanced FLG accumulation in the snails, with a bioaccumulation factor of 2.7 (48 h exposure). Approximately 92.5% of the accumulated FLG was retained in the intestine; in particular, the accumulated FLG in the intestine was able to pass through the intestinal wall and enter the intestinal epithelial cells. Of them, 1.3% was subsequently transferred/internalized to the liver/hepatocytes, a process that was not observed in the absence of the algae. Characterizations data further suggested that both of the extra- and intracellular FLG in the algae (the algae-bound fraction was 30.2%) significantly contributed to the bioaccumulation. Our results provide the first evidence that algae as carriers enhanced FLG bioavailability to the snails, as well as the potential of FLG exposure to human beings through consuming the contaminated snails.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Chi Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Jiani Chen
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210093, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|