1
|
Shukla PK, Deshpande V, Raychoudhury T. In-situ groundwater treatment for arsenic removal: laboratory pilot scale study with 3-D tank packed porous media as subsurface. ENVIRONMENTAL TECHNOLOGY 2024; 45:4860-4873. [PMID: 37953741 DOI: 10.1080/09593330.2023.2283404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The ex-situ treatment of arsenic is widely adopted; however, there are emerging concerns related to system maintenance, material replacement, and waste generation. There is a scope to explore in-situ arsenite [As (III)] remediation in the aquifers. The main objective of this study is to evaluate the performance of in-situ synthesised FeS in immobilising As (III) in the natural groundwater when transported through a three-dimensional (3-D) porous media system. In this study, a 3-D tank of 0.50 m × 0.30 m × 0.30 m (L × W × H) was packed with natural sand to represent the subsurface porous media system. The homogeneous packing and uniform flow were ensured before synthesising FeS in-situ, where a total of 1.5 pore volumes (PVs) of 20 mM sodium sulfide (Na2S) and 20 mM ferrous sulfate (FeSO4) reagent solutions were injected alternatively into the pre-saturated porous media. Finally, 300 ± 15 μg/L of As (III) spiked natural groundwater was passed through the porous media, and the samples were collected through several sampling ports for analysing for total As and Fe. The result suggests that the concentration of As (III) reaches below 11 μg/L within 644 min (4 PVs) of injection of reagents. Furthermore, almost 88.4% of As (III) get immobilised after passing 31 PVs of contaminated water. In brief, almost 406 L of As contaminated groundwater can be treated by injecting 21 L of reagents with a reagent-to-treated water ratio of 1:20.
Collapse
Affiliation(s)
- Preetam Kumar Shukla
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India
| | - Vishal Deshpande
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India
| | - Trishikhi Raychoudhury
- Department of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| |
Collapse
|
2
|
Li J, Cao J, Jiang M, An L, Zeng G, Mai J, Su P, Jing B, Feng M, Ao Z, Ma J, Yang T. Role of bipyridyl in enhancing ferrate oxidation toward micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133982. [PMID: 38460256 DOI: 10.1016/j.jhazmat.2024.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, PR China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Binghua Jing
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, PR China.
| |
Collapse
|
3
|
Du Y, Liu T, Yang LL, Song ZM, Dai X, Wang WL, Lai B, Wu QY. Ferrate(VI) assists in reducing cytotoxicity and genotoxicity to mammalian cells and organic bromine formation in ozonated wastewater. WATER RESEARCH 2024; 253:121353. [PMID: 38401473 DOI: 10.1016/j.watres.2024.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Tong Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Min Song
- Michigan Technological University, 1400 Townsend Drive Houghton, MI 49931, United States
| | - Xin Dai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Nascimento ALA, Figueiredo IM, Botero WG, Santos JCC. Interaction between roxarsone, an organic arsenic compound, with humic substances in the soil simulating environmental conditions. CHEMOSPHERE 2023; 339:139688. [PMID: 37532198 DOI: 10.1016/j.chemosphere.2023.139688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
In environmental systems, the soil is a principal route of contamination by various potentially toxic species. Roxarsone (RX) is an arsenic (V) organic compound used to treat parasitic diseases and as an additive for animal fattening. When the animal excretes RX, the residues may lead to environmental contamination. Due to their physicochemical properties, the soil's humic substances (HS) are important in species distribution in the environment and are involved in various specific interaction/adsorption processes. Since RX, an arsenic (V) compound, is considered an emerging contaminant, its interaction with HS was evaluated in simulated environmental conditions. The HS-RX interaction was analyzed by monitoring intrinsic HS fluorescence intensity variations caused by complexation with RX, forming non-fluorescent supramolecular complexes that yielded a binding constant Kb (on the order of 103). The HS-RX interaction occurred through static quenching due to complex formation in the ground state, which was confirmed by spectrophotometry. The process was spontaneous (ΔG < 0), and the predominant interaction forces were van der Waals and hydrogen bonding (ΔH < 0 and ΔS < 0), with an electrostatic component evidenced by the influence of ionic strength in the interaction process. Structural changes in the HS were verified by synchronized and 3D fluorescence, with higher variation in the region referring to the protein-like fraction. In addition, metal ions (except ions Cu(II)) favored HS-RX interaction. When interacting with HS, the RX epitope was suggested by 1H NMR, which indicated that the entire molecule interacts with the superstructure. An enzyme inhibition assay verified the ability to reduce the alkaline phosphatase activity of free and complexed RX (RX-HS). Finally, this work revealed the main parameters associated with HS and RX interaction in simulated environmental conditions, thus, providing data that may help our understanding of the dynamics of organic arsenic-influenced soils.
Collapse
Affiliation(s)
- Amanda Luise A Nascimento
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, 57072-900, Maceió, Alagoas, Brazil
| | - Isis Martins Figueiredo
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, 57072-900, Maceió, Alagoas, Brazil
| | - Wander Gustavo Botero
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, 57072-900, Maceió, Alagoas, Brazil
| | - Josué Carinhanha Caldas Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, 57072-900, Maceió, Alagoas, Brazil.
| |
Collapse
|
5
|
Yang T, An L, Zeng G, Jiang M, Li J, Liu C, Jia J, Ma J. Efficient removal of p-arsanilic acid and arsenite by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. WATER RESEARCH 2023; 241:120091. [PMID: 37262947 DOI: 10.1016/j.watres.2023.120091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
The widespread occurrence of p-arsanilic acid (p-ASA) in natural environments poses big threats to the biosphere due to the generation of toxic inorganic arsenic (i.e., As(III) and As(V), especially As(III) with higher toxicity and mobility). Oxidation of p-ASA or As(III) to As(V) followed by precipitation of total arsenic using Fe-based advanced oxidation processes demonstrated to be a promising approach for the treatment of arsenic contamination. This study for the first time investigated the efficiency and inherent mechanism of p-ASA and As(III) oxidation by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. p-ASA was rapidly degraded by the Fe(II)/PAA process within 20 s at neutral to acidic pHs under different conditions, while it was insignificantly degraded by PAA oxidation alone. Lines of evidence suggested that hydroxyl radicals and organic radicals generated from the homolytic OO bond cleavage of PAA contributed to the degradation of p-ASA in the Fe(II)/PAA process. p-ASA was mainly oxidized to As (V), NH4+, and p-aminophenol by the Fe(II)/PAA process, wherein the aniline group and its para position were the most vulnerable sites. As(III) of concern was likely generated as an intermediate during p-ASA oxidation and it could be readily oxidized to As(V) by the Fe(II)/PAA process as well as PAA alone. The in-depth investigation demonstrated that PAA alone was effective in the oxidation of As(III) under varied conditions with a stoichiometric molar ratio of 1:1. Efficient removal (> 80%) of total arsenic during p-ASA oxidation by Fe(II)/PAA process or during As(III) oxidation by PAA process with additional Fe(III) in synthetic or real waters were observed, mainly due to the adsorptive interactions of amorphous ferric (oxy)hydroxide precipitates. This study systematically investigates the oxidation of p-ASA and As(III) by the Fe(II)/PAA and PAA processes, which is instructive for the future development of arsenic remediation technology.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Maoju Jiang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Evaluation of ferrate (VI) for enhanced coagulation of algae-rich water: Mechanisms of Microcystis aeruginosa cell dehydration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Wang N, Li W, Wang N, Li M, Wang H. Influence of Humic Acids on the Removal of Arsenic and Antimony by Potassium Ferrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4317. [PMID: 36901331 PMCID: PMC10001810 DOI: 10.3390/ijerph20054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the removal ability of potassium ferrate (K2FeO4) on aqueous heavy metals has been confirmed by many researchers, little information focuses on the difference between the individual and simultaneous treatment of elements from the same family of the periodic table. In this project, two heavy metals, arsenic (As) and antimony (Sb) were chosen as the target pollutants to investigate the removal ability of K2FeO4 and the influence of humic acid (HA) in simulated water and spiked lake water samples. The results showed that the removal efficiencies of both pollutants gradually increased along the Fe/As or Sb mass ratios. The maximum removal rate of As(III) reached 99.5% at a pH of 5.6 and a Fe/As mass ratio of 4.6 when the initial As(III) concentration was 0.5 mg/L; while the maximum was 99.61% for Sb(III) at a pH of 4.5 and Fe/Sb of 22.6 when the initial Sb(III) concentration was 0.5 mg/L. It was found that HA inhibited the removal of individual As or Sb slightly and the removal efficiency of Sb was significantly higher than that of As with or without the addition of K2FeO4. For the co-existence system of As and Sb, the removal of As was improved sharply after the addition of K2FeO4, higher than Sb; while the latter was slightly better than that of As without K2FeO4, probably due to the stronger complexing ability of HA and Sb. X-ray energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the precipitated products to reveal the potential removal mechanisms based on the experimental results.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Wenwen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao 266061, China
| | - Man Li
- Shandong Soil Pollution Prevention and Recalcination Center, Jinan 250033, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
8
|
Kong Y, Ma Y, Guo M, Huang Z, Ma J, Nie Y, Ding L, Chen Z, Shen J. Highly efficient removal of arsenate and arsenite with potassium ferrate: role of in situ formed ferric nanoparticle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10697-10709. [PMID: 36083368 DOI: 10.1007/s11356-022-22858-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
It is well known the capacity of potassium ferrate (Fe(VI)) for the oxidation of pollutants or co-precipitation and adsorption of hazardous species. However, little information has been paid on the adsorption and co-precipitation contribution of the Fe(VI) resultant nanoparticles, the in situ hydrolytic ferric iron oxides. Here, the removal of arsenate (As(V)) and arsenite (As(III)) by Fe(VI) was investigated, which focused on the interaction mechanisms of Fe(VI) with arsenic, especially in the contribution of the co-precipitation and adsorption of its hydrolytic ferric iron oxides. pH and Fe(VI) played significant roles on arsenic removal; over 97.8% and 98.1% of As(V) and As(III) removal were observed when Fe(VI):As(V) and Fe(VI):As(III) were 24:1 and 16:1 at pH 4, respectively. The removal of As(V) and As(III) by in situ and ex situ formed hydrolytic ferric iron oxides was examined respectively. The results revealed that As(III) was oxidized by Fe(VI) to As(V), and then was removed though co-precipitation and adsorption by the hydrolytic ferric iron oxides with the contribution content was about 1:3. For As(V), it could be removed directly by the in situ formed particles from Fe(VI) through co-precipitation and adsorption with the contribution content was about 1:1.5. By comparison, As(III) and As(V) were mainly removed through adsorption by the 30-min hydrolytic ferric iron oxides during the ex situ process. The hydrolytic ferric iron oxides size was obviously different in the process of in situ and ex situ, possessing abundant and multiple morphological structures ferric oxides, which was conducive for the efficient removal of arsenic. This study would provide a new perspective for understanding the potential of Fe(VI) treatment on arsenic control.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yaqian Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Meng Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhiyan Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China.
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China.
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
9
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ding A, Ren Z, Hu L, Zhang R, Ngo HH, Lv D, Nan J, Li G, Ma J. Oxidation and coagulation/adsorption dual effects of ferrate (VI) pretreatment on organics removal and membrane fouling alleviation in UF process during secondary effluent treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157986. [PMID: 35963402 DOI: 10.1016/j.scitotenv.2022.157986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Ultrafiltration (UF) has been widely used in water and advanced sewage treatment. Unfortunately, membrane fouling is still the main obstacle to further improvement in the system. Fe (III) salt, a type of traditional coagulant, is often applied to mitigate UF membrane fouling. However, low molecule organic weight cannot be effectively removed, thus the water quality after single coagulation treatment does not effectively meet the standard of subsequent water reuse during secondary effluent treatment. Recently, it has been found that potassium ferrate (Fe (VI)) has multiple functions of oxidation, sterilization and coagulation, with other studies proving its good performance in organics removal and membrane fouling mitigation. However, the respective contributions of oxidation and coagulation/adsorption have not yet been fully understood. The oxidation and coagulation/adsorption effects of Fe (VI) during membrane fouling mitigation were investigated here. The oxidation effect of Fe (VI) was the main reason for organics with the MW of 8-20 kDa removal, and its coagulation/adsorption mainly accounted for the smaller amounts of molecular organics removed. The oxidation of Fe (VI) was the main method for overcoming membrane fouling in the initial filtration; it largely alleviated the standard blockage. The formation of a cake layer transformed the main membrane fouling alleviation mechanism from oxidation to coagulation/adsorption and further removed smaller amounts of molecule organics with the increase of filtration cycles and Fe (VI) dosages. The main fouling mechanism altered from standard blocking and cake filtration to only cake filtration after Fe (VI) treatment. Overall, the mechanism of the oxidation and coagulation/adsorption of Fe (VI) were differentiated, and would provide a reference for future Fe (VI) pretreatment in UF membrane fouling control during water and wastewater treatments.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rourou Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Dongwei Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
11
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
12
|
Wang S, Deng Y, Shao B, Zhu J, Guan X. Reinvestigation of the oxidation of organic contaminants by Fe(VI): Kinetics and effects of water matrix constituents. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128421. [PMID: 35152109 DOI: 10.1016/j.jhazmat.2022.128421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Since previous studies mostly ignored the contributions of Fe(IV) and Fe(V) during the determination of reaction rate constants of ferrate (Fe(VI)) with trace organic contaminants (TrOCs), the intrinsic oxidation ability of Fe(VI) was overestimated. For the first time, this study systemically evaluated the reactivity of Fe(VI) towards four kinds of TrOCs by blocking Fe(IV)/Fe(V) over the TrOCs degradation, and evaluated the effects of coexisting water matrix constituents. Results revealed that Fe(VI) exhibited superior reactivity towards phenolic compounds. Different from other tested TrOCs, phenolic compounds were mainly degraded by Fe(VI) rather than Fe(IV)/Fe(V). Taking bisphenol A (BPA) as the target TrOC, we found that the coexisting constituents can not only affect the reactivity of different ferrate species (i.e., Fe(IV), Fe(V), and Fe(VI)), but also alter the concentrations of ferrates. HPO42- inhibited the reaction between Fe(VI) and H2O2, while Ca2+, Mg2+, and NH4+ promoted the generation of Fe(IV)/Fe(V) from Fe(VI). Besides, humic acid could increase the contribution of Fe(IV)/Fe(V) to the oxidation of BPA. These findings were validated in real water samples. Taken together, this study provides a new perspective regarding the intrinsic oxidation reactivity of Fe(VI), thereby urging reconsideration of the proper strategies for utilization of high-valent Fe species in practices.
Collapse
Affiliation(s)
- Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
| | - Binbin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahui Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
13
|
Xie X, Li J, Luo L, Liao W, Luo S. Phenylarsonics in concentrated animal feeding operations: Fate, associated risk, and treatment approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128394. [PMID: 35158239 DOI: 10.1016/j.jhazmat.2022.128394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phenylarsonics are present as additives in animal feed in some countries. As only a small fraction of these additives is metabolized in animals, they mostly end up in the environment. A comprehensive investigation of the fate of these additives is crucial for evaluating their risks. This review aims to provide a clear understanding of the transformation mechanism of phenylarsonics in vivo and in vitro and to evaluate their fate and associated risks. Degradation of phenylarsonics releases toxic As species (mainly as inorganic arsenic (iAs)). Trivalent phenylarsonics are the metabolites or biotic degradation intermediates of phenylarsonics. The cleavage of As groups from trivalent phenylarsonics catalyzed by C-As lyase or other unknown pathways generates arsenite (As(III)). As(III) can be further oxidized to arsenate (As(V)) and methylated to methyl-arsenic species. The half-lives associated with abiotic degradation of phenylarsonics ranged from a few minutes to tens of hours, while those associated with biotic degradation ranged from several days to hundreds of days. Abiotic degradation resulted in a higher yield of iAs than biotic degradation. The use of phenylarsonics led to elevated total As and iAs levels in animal products and environmental matrices, resulting in As exposure risk to humans. The oxidation of phenylarsonics to As(V) facilitated the sorptive removal of As, which provides a general approach for treating these compounds. This review provides solid evidence that the use of phenylarsonics has adverse effects on both human health and environmental safety, and therefore, supports their withdrawal from the global market.
Collapse
Affiliation(s)
- Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
14
|
Li X, He J, Lu J, Zhou Y, Zhou Y. In-situ production and activation of H 2O 2 for enhanced degradation of roxarsone by FeS 2 decorated resorcinol-formaldehyde resins. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127650. [PMID: 34801302 DOI: 10.1016/j.jhazmat.2021.127650] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fenton technology performs well in high-risk roxarsone (ROX) removal, but it is limited by the high H2O2 transportation and storage risks. Herein, FeS2 decorated resorcinol-formaldehyde resins (FeS2-RFR) were successfully prepared to in-situ produce and utilize H2O2 for efficient removal of ROX. Under solar light illumination, resorcinol-formaldehyde resins (RFR) efficiently generated a high concentration of H2O2, with a yield of 500 μmol g-1 h-1. FeS2 can in-situ decompose H2O2 to generate ·OH, participating in the oxidation of ROX. As a result, the FeS2-RFR catalyst degraded more than 97% of ROX within 2 h and ROX was selectively degraded into low-toxic As(V), which can be simply removed by traditional adsorption or precipitation processes. During the degradation of ROX, ·OH played a dominant role. Moreover, the cations (Na+, K+, and Ca2+), anions (SO42-, Cl-), and humic acid had no noticeable inhibition effect on ROX removal. Furthermore, FeS2-RFR can still remove 70% of ROX even after three cycles, proving that this in-situ photo-Fenton system exhibited stability. This study innovatively proposed a double-active site FeS2-RFR photocatalyst for in-situ production and activation of H2O2 and showed a sustainable and eco-friendly way for organoarsenic compounds degradation.
Collapse
Affiliation(s)
- Xia Li
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jie He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jian Lu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai 200092, China
| | - Yi Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai 200092, China.
| |
Collapse
|
15
|
Ye C, Deng J, Huai L, Cai A, Ling X, Guo H, Wang Q, Li X. Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150379. [PMID: 34571222 DOI: 10.1016/j.scitotenv.2021.150379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Organoarsenic contaminants existing in water body threat human health and ecological environment due to insufficient bifunctional treatment technologies for organoarsenic degradation and inorganic arsenic immobilization. In order to safely and efficiently treat organoarsenic contaminants discharged into the aquatic environment, Co-Mn-Fe layered double hydroxide (CoMnFe-LDH) and Co-Mn-Fe layered double oxide (CoMnFe-LDO) were fabricated and employed as peroxymonosulfate (PMS) activator for organoarsenic degradation and inorganic arsenic immobilization, and p-arsanilic acid (p-ASA) was selected as target pollutant. Results demonstrated that the satisfactory removal of p-ASA (100.0%) in both CoMnFe-LDH/PMS and CoMnFe-LDO/PMS systems was obtained within 30 min, and substantial inorganic arsenic adsorption could be achieved (below 0.5 mg/L) in two systems with converting major inorganic arsenic species to arsenate. As XPS, ESR and quenching experiment revealed, the existence and generation of surface-bound radicals in two systems were identified. Based on density functional theory calculation and XPS analysis, the catalytic mechanism of CoMnFe-LDO/PMS system that PMS could be activated via direct electron transfer from adsorbed p-ASA was clarified, which differed from PMS activation via coupling with surface hydroxyl groups in CoMnFe-LDH/PMS system. Catalytic performance assessment under various critical operation parameters indicated that CoMnFe-LDH presented more stable ability of p-ASA removal in a wide pH range and complex aquatic environment. The recycle experiment demonstrated the excellent stability and reusability of CoMnFe-LDH(LDO). Besides, seven degradation products of p-ASA in CoMnFe-LDH/PMS system including phenolic compounds, azophenylarsonic acid, nitrobenzene and benzoquinne were identified by UV-Vis spectra and LC-TOF-MS analysis, and the corresponding degradation pathway was proposed. In summary, compared to CoMnFe-LDO/PMS, CoMnFe-LDH/PMS holds great promise for the development of an oxidation-adsorption process for efficient control of organoarsenic pollutant.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Lingyi Huai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Anhong Cai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao Ling
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
16
|
Yang T, Mai J, Cheng H, Zhu M, Wu S, Tang L, Liang P, Jia J, Ma J. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1221-1232. [PMID: 34961311 DOI: 10.1021/acs.est.1c03725] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper investigated ultraviolet A light-emitting diode (UVA-LED) irradiation to activate Fe(VI) for the degradation of micropollutants (e.g., sulfamethoxazole (SMX), enrofloxacin, and trimethoprim). UVA-LED/Fe(VI) could significantly promote the degradation of micropollutants, with rates that were 2.6-7.2-fold faster than for Fe(VI) alone. Comparatively, UVA-LED alone hardly degraded selected micropollutants. The degradation performance was further evaluated in SMX degradation via different wavelengths (365-405 nm), light intensity, and pH. Increased wavelengths led to linearly decreased SMX degradation rates because Fe(VI) has a lower molar absorption coefficient at higher wavelengths. Higher light intensity caused faster SMX degradation, owing to the enhanced level of reactive species by stronger photolysis of Fe(VI). Significantly, SMX degradation was gradually suppressed from pH 7.0 to 9.0 due to the changing speciation of Fe(VI). Scavenging and probing experiments for identifying oxidative species indicated that high-valent iron species (Fe(V)/Fe(IV)) were responsible for the enhanced degradation. A kinetic model involving target compound (TC) degradation by Fe(VI), Fe(V), and Fe(IV) was employed to fit the TC degradation kinetics by UVA-LED/Fe(VI). The fitted results revealed that Fe(IV) and Fe(V) primarily contributed to TC degradation in this system. In addition, transformation products of SMX degradation by Fe(VI) and UVA-LED/Fe(VI) were identified and the possible pathways included hydroxylation, self-coupling, bond cleavage, and oxidation reactions. Removal of SMX in real water also showed remarkable promotion by UVA-LED/Fe(VI). Overall, these findings could shed light on the understanding and application of UVA-LED/Fe(VI) for eliminating micropollutants in water treatments.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Wu S, Yang T, Mai J, Tang L, Liang P, Zhu M, Huang C, Li Q, Cheng X, Liu M, Ma J. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126820. [PMID: 34418831 DOI: 10.1016/j.jhazmat.2021.126820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effective removal of organoarsenic by the combined process of "chlorination + Fe(II)" was achieved. Chlorine could effectively degrade roxarsone (ROX) over pH from 5 to 10. The fitting results of acid-base protonation model proved that the degradation of ROX was mainly attributed to the reaction of HOCl and deprotonated ROX. The transformation of arsenic species conformed to the fitting results of two-channel kinetic model, in which 32.4% of ROX was oxidized to As(V) via electron transfer pathway (ii) and the rest was converted into monochloro-ROX via electrophilic substitution pathway (i). Humic acid inhibited the degradation of ROX due to the competitive consumption of chlorine and the restraint on the pathway ii. Subsequently, an enhanced removal of total arsenic achieved after chlorination, due to that the generating As(V) and monochloro-ROX were easier adsorbed compared with ROX, over 97.8% of total arsenic was removed by ferric (oxyhydr)oxides which in-situ formed from the oxidation of Fe(II). Additionally, toxicity studies indicated that the acute toxicity was significantly eliminated by adding Fe(II) after chlorination, likely due to the removal of As(V) and chlorinated products. Furthermore, organoarsenic was also effectively removed by the combined process of "chlorination + Fe(II)" in real water.
Collapse
Affiliation(s)
- Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China.
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Qiuhua Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Minchao Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Cao Y, Jiang S, Kang X, Zhang H, Zhang Q, Wang L. Enhancing degradation of atrazine by Fe-phenol modified biochar/ferrate(VI) under alkaline conditions: Analysis of the mechanism and intermediate products. CHEMOSPHERE 2021; 285:131399. [PMID: 34265727 DOI: 10.1016/j.chemosphere.2021.131399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, Fe-phenol modified biochar was prepared to enhance atrazine (AT) degradation by ferrate (Fe(VI)) under alkaline conditions, and the properties, mechanism and transformation pathways were extensively investigated. Degradation experiments showed that Fe-phenol modified biochar was more beneficial for improving the oxidation capacity of Fe(VI) than unmodified biochar, and the biochar with a molar ratio of Fe3+ to phenol of 0.1:5 (BC-2) showed the best promoting effect, and more than 94% of AT was removed at pH = 8 within 30 min. Moreover, the rate of oxidation (kapp) of AT by Fe(VI) increased 1.86 to 4.11 times by the addition of BC-2 in the studied pH range. Fe(Ⅴ)/Fe(Ⅳ) and ·OH were the main active oxidizing species for AT degradation in the Fe(VI)/BC-2 group and contributed to 70% and 24%, respectively, of degradation. The formation of ·OH and Fe(Ⅴ)/Fe(Ⅳ) was mainly due to the persistent free radicals and reducing groups on the surface of BC-2. AT was oxidized to 12 intermediate products in the Fe(VI)/BC-2 group through 5 pathways: alkyl hydroxylation, dealkylation, dichlorination, hydroxylation, alkyl dehydrogenation and dichlorination. Compared with those of the initial solution, the total organic carbon content and toxicity after the reaction decreased by 32.8% and 19.02%, respectively. Therefore, the combination of Fe-phenol modified biochar and Fe(VI) could be a promising method for AT removal.
Collapse
Affiliation(s)
- Yu Cao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Shanqing Jiang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xudong Kang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Hankun Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Liping Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China; Changzhou University Huaide College, Jingjiang, 214500, China.
| |
Collapse
|
19
|
Wang S, Deng Y, Shao B, Zhu J, Hu Z, Guan X. Three Kinetic Patterns for the Oxidation of Emerging Organic Contaminants by Fe(VI): The Critical Roles of Fe(V) and Fe(IV). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11338-11347. [PMID: 34351131 DOI: 10.1021/acs.est.1c03813] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the first time, this study showed that the apparent second-order rate constants (kapp) of six selected emerging organic contaminants (EOCs) oxidation by Fe(VI) increased, remained constant, or declined with time, depending on [EOC]0/[Fe(VI)]0, pH, and EOCs species. Employing excess caffeine as the quenching reagent for Fe(V) and Fe(IV), it was found that Fe(V)/Fe(IV) contributed to 20-30% of phenol and bisphenol F degradation by Fe(VI), and the contributions of Fe(V)/Fe(IV) remained nearly constant with time under all the tested conditions. However, the contributions of Fe(V)/Fe(IV) accounted for over 50% during the oxidation of sulfamethoxazole, bisphenol S, and iohexol by Fe(VI), and the variation trends of kapp of their degradation by Fe(VI) with time displayed three different patterns, which coincided with those of the contributions of Fe(V)/Fe(IV) to their decomposition with time. Results of the quenching experiments were validated by simulating the oxidation kinetic data of methyl phenyl sulfoxide by Fe(VI), which revealed that the variation trends of kapp with time were significantly determined by the change in the molar ratio of Fe(V) to Fe(VI) with time, highlighting the key role of Fe(V) in the oxidative process. This study provides comprehensive and insightful information on the roles of Fe(V)/Fe(IV) during EOC oxidation by Fe(VI).
Collapse
Affiliation(s)
- Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States
| | - Binbin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Jiahui Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Zixin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Li M, He Z, Zhong H, Hu L, Sun W. Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes. WATER RESEARCH 2021; 200:117266. [PMID: 34058487 DOI: 10.1016/j.watres.2021.117266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
A novel catalyst (MT/EMR) used for SR-AOPs with high removal efficiency toward roxarsone (ROX) (90.96% within 60 min) was prepared for the first time by ball milling multi-walled carbon nanotubes (MWCNTs) with electrolytic manganese residue (EMR). The incorporation of MWCNTs could improve the adsorption capacity and accelerate the transformation of metals in EMR with partial mass loss to facilitate the PDS activation. Additionally, pH test, quenching experiment and electrochemical test verified a two-electron pathway involving surface activated-complex contributed to the directly ROX oxidization. Benefit from the introduction of MWCNTs, the degradation rate (kobs) of catalytic reaction was increased by 10.1 times compared with that of single-EMR. Additionally, the M-O-C (M=Fe or Mn) bonds in MT/EMR making the catalyst more stable than EMR. This work provided a novel and effective strategy to establish waste solid-based catalysts for green preparation and expanded the adsorption-oxidation technology to solve the problem of organoarsenic pollution.
Collapse
Affiliation(s)
- Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
21
|
Huang ZS, Wang L, Liu YL, Zhang HY, Zhao XN, Bai Y, Ma J. Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate. WATER RESEARCH 2021; 197:117094. [PMID: 33836297 DOI: 10.1016/j.watres.2021.117094] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
To reveal the role of ferrate self-decomposition and the fates of intermediate iron species [Fe(V)/Fe(IV) species] during ferrate oxidation, the reaction between ferrate and methyl phenyl sulfoxide (PMSO) at pH 7.0 was investigated as a model system in this study. Interestingly, the apparent second-order rate constants (kapp) between ferrate and PMSO was found to increase with ferrate dosage in the condition of excess ferrate in borate buffer. This ferrate dosage effect was diminished greatly in the condition of excess PMSO where ferrate self-decomposition was lessened largely, or counterbalanced by adding a strong complexing ligand (e.g. pyrophosphate) to sequester Fe(V) oxidation, demonstrating that the Fe(V) species derived from ferrate self-decomposition plays an important role in PMSO oxidation. A mechanistic kinetics model involving the ferrate self-decomposition and PMSO oxidation by Fe(VI), Fe(V) and Fe(IV) species was then developed and validated. The modeling results show that up to 99% of the PMSO oxidation was contributed by the ferrate self-decomposition resultant Fe(V) species in borate buffer, revealing that ferrate self-decomposition is also a self-activation process. The direct Fe(VI) oxidation of PMSO was impervious to presence of phosphate or Fe(III), while the Fe(V) oxidation pathway was strongly inhibited by phosphate complexation or enhanced with Fe(III). Similar ferrate dosage effect and its counterbalance by pyrophosphate as well as the Fe(III) enhancement were also observed in ferrate oxidation of micropollutants like carbamazepine, diclofenac and sulfamethoxazole, implying the general role of Fe(V) and promising Fe(III) enhancement during ferrate oxidation of micropollutants.
Collapse
Affiliation(s)
- Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Bai
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
22
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
23
|
Ke MK, Huang GX, Mei SC, Wang ZH, Zhang YJ, Hua TW, Zheng LR, Yu HQ. Interface-Promoted Direct Oxidation of p-Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7063-7071. [PMID: 33961405 DOI: 10.1021/acs.est.1c00386] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
Collapse
Affiliation(s)
- Ming-Kun Ke
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Gui-Xiang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Shu-Chuan Mei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhao-Hua Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Ying-Jie Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Tian-Wei Hua
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Chen C, Liu L, Li Y, Zhou L, Lan Y. Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co 3O 4-Y 2O 3 and peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124559. [PMID: 33341568 DOI: 10.1016/j.jhazmat.2020.124559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Roxarsone (ROX), as one of aromatic organoarsenic compounds (AOCs), is extensively used in livestock industry, which tends to transform into high-toxic inorganic arsenic in environments. Herein, a bifunctional Co3O4-Y2O3, possessing extremely excellent catalytic and adsorption performance due to the synergy of Co3O4 and Y2O3, was designed and employed to activate peroxymonosulfate (PMS) for the elimination of ROX and the simultaneous in-situ adsorption of secondary inorganic arsenic, in which Co3O4 acted as the primary catalyst, and Y2O3 served as the main adsorbent. 50 μM (3.75 mg-As/L) of ROX was almost completely degraded, coupled with the conversion of As(III) to As(V) in the system of Co3O4-Y2O3 (0.2 g/L) and PMS (0.5 mM) within 15 min at initial pH 7. Meanwhile, > 99.3% of the secondary As(V) would be removed within 120 min. The reactive oxygen species (ROS) were identified to be •OH, SO4•-, and 1O2, which were responsible for the ROX degradation and the formation of As(V). Simultaneously, the produced As(V) were effectively adsorbed via the ligand/anion exchange with surface -OH and CO32- anions of Co3O4-Y2O3. The possible degradation pathways of ROX were further proposed on the basis of the intermediates identification. Our findings may provide an insight into the degradation of AOCs and the simultaneous removal of secondary inorganic arsenic via the PMS activation with Co3O4-Y2O3.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuxin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
25
|
Chen S, Deng J, Ye C, Xu C, Huai L, Li J, Li X. Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140587. [PMID: 32623153 DOI: 10.1016/j.scitotenv.2020.140587] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
para-arsanilic acid (p-ASA), as a major phenylarsonic feed additive, was used annually in many countries. Once it enters the water environment, p-ASA would be transformed into hypertoxic inorganic arsenic species, causing severe arsenic pollution. In this study, magnetic copper ferrite (CuFe2O4) was applied to activate peroxymonosulfate (PMS) for p-ASA removal and synchronous control of the released inorganic arsenic species. Results showed that CuFe2O4/PMS system presented favorable oxidation ability and close to 85% of 10 mg/L p-ASA was eliminated under the condition of simultaneous dosing 0.2 g/L CuFe2O4 and 1 mM PMS. The rapid decomposition of p-ASA resulted from homogeneous PMS oxidation and the attack of reactive oxygen species (i.e., SO4-, HO and O2-), which was involved the heterogeneous PMS activation through the cycles between Fe(II)/Fe(III) and Cu(II)/Cu(I). Meanwhile, the released inorganic arsenic species during p-ASA degradation were found to be controllable via the adsorption on CuFe2O4 surface and metal hydroxyl groups played the crucial role. CuFe2O4/PMS system exhibited the stable and efficient performance within the broad range of pH 3.0-11.0. The existence of common anions (Cl-, NO3-, HCO3-, SO42-) and humic acid presented the slight inhibition for p-ASA degradation. The reduction of initial p-ASA concentration favored the p-ASA removal. Besides, the catalyst retained a favorable reactivity and stability even after four successive cycles and almost no metal leaching was observed. The rational degradation pathway was mainly involved in the cleavage of AsC bond, oxidation of amino group, substitution and oxidation of hydroxyl group. The transformation of arsenic species could be divided into the release of inorganic arsenic species, the oxidation of As(III) into As(V) and the adsorption of As(V) by CuFe2O4.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chengcheng Xu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Lingyi Huai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
26
|
Wang N, Wang N, Tan L, Zhang R, Zhao Q, Wang H. Removal of aqueous As(III) Sb(III) by potassium ferrate (K 2FeO 4): The function of oxidation and flocculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138541. [PMID: 32315853 DOI: 10.1016/j.scitotenv.2020.138541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of potassium ferrate (K2FeO4) dosage, pH, and reaction time on the removal of aqueous As(III) and Sb(III), and revealed the oxidation and flocculation mechanism of K2FeO4. The results show that the removal efficiencies of As(III) and Sb(III) were highly related to the hydrolysate of K2FeO4 under acidic conditions, while the efficiencies were low under alkaline condition, owning to the electrostatic repulsion between iron nanoparticles and charged As/Sb species. The increased dosage and reaction time improved the adsorption performance. Based on the comparative experiments with FeCl3, the simultaneous removal of As(III) and Sb(III) by K2FeO4 suggested that As(III) was eliminated due to the processes of oxidation, flocculation, and chemical precipitation, while Sb(III) was removed mostly by oxidation and flocculation. The generated precipitates were characterized with surface analysis and the results support that the oxidization property of K2FeO4 was essential during the removal of As(III) and Sb(III), and removal mechanisms between both elements were different.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Li Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Ru Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
27
|
Wang C, Zhang X, Wang J, Fu H, Wang P, Wang C. A new one‐dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao‐Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Xiu‐Wu Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Jia‐Wei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Chong‐Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
28
|
Li B, Wei D, Li Z, Zhou Y, Li Y, Huang C, Long J, Huang H, Tie B, Lei M. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: Adsorption and redox transformation. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122091. [PMID: 31972529 DOI: 10.1016/j.jhazmat.2020.122091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.
Collapse
Affiliation(s)
- Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Dongning Wei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Zhuoqing Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yimin Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yongjie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Changhong Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Jiumei Long
- College of Life Sciences & Environment, Hengyang Normal University, Hengyang, 421008, PR China
| | - HongLi Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Baiqing Tie
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
29
|
Liu Y, Zhang J, Huang H, Huang Z, Xu C, Guo G, He H, Ma J. Treatment of trace thallium in contaminated source waters by ferrate pre-oxidation and poly aluminium chloride coagulation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Mukherjee T, Ghosh G, Mukherjee R, Das TK. Study of arsenic (III) removal by monolayer protected silver nanoadsorbent and its execution on prokaryotic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:440-452. [PMID: 31153032 DOI: 10.1016/j.jenvman.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
This work deals with the removal of arsenic by nanoadsorbent from aqueous environment that is subsequently applied to the biological system for the evaluation of its efficiency. We started our aspiration by the modification of carboxylate functionalized silver nanoparticle (nanoadsorbent) fabrication process. Batch mode arsenic uptake study by the nanoadsorbent was conducted considering several altering parameters and the reactants in addition to products were evaluated by several analytical techniques for the interpretation of the interaction mechanism. It was found nanoadsorbent, Ag@MSA is an efficient system for the exclusion of arsenic (III) from the aqueous system and due to the alteration in the ratio of silver content and protective agent, the characteristic profile of silver nanoparticles with an average diameter of 15 nm also became changed in respect of reported results. Here the low pH range (4-6) favors the interaction between nanoparticle and arsenic and it was found that the interaction was chemical in nature through adsorption or complex formation with surface carboxylate groups of the protecting agent (MSA). Following the interaction, a successful removal of arsenic (III) was achieved at a percentage of 94.16 with an initial concentration of 45 mg/L and equilibrium time of 60 min. Hence nanoparticles were executed against the toxic effect of arsenic in E. coli, an important gut microbe of higher animals, for the restoration of bacterial growth in arsenic pre-removed media. In this context the validation of this removal efficiency against arsenic induced toxicity was proved through several morphological studies, degree of oxidative damages and other biochemical attributes.
Collapse
Affiliation(s)
- Triparna Mukherjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Gargi Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, 741235, India
| | - Riya Mukherjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Tapan Kumar Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
31
|
Cataldo-Hernández MA, Bonakdarpour A, English JT, Mohseni M, Wilkinson DP. A membrane-based electrochemical flow reactor for generation of ferrates at near neutral pH conditions. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00306h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the electrosynthesis of Fe(vi) in a flow reactor operating in batch recirculation mode at neutral conditions using boron doped diamond (BDD) and Fe(iii).
Collapse
Affiliation(s)
- Macarena A. Cataldo-Hernández
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Joseph T. English
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering and the Clean Energy Research Center
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|