1
|
Fu H, Fan J, Li J, Huang J, Tian S, Ning P. Applewood Biochar at Different Smoldering Conditions Passivates Pyrite by Promoting the Formation of Jarosite. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:50. [PMID: 39394399 DOI: 10.1007/s00128-024-03956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
To control acid mine drainage (AMD) from the source, a new environmentally and green passivator (biochar) has been introduced to passivate pyrite. To reduce the difficulty of biochar preparation and cost, and improve its production scale, in-situ pyrolysis of applewood by smoldering to produce biochar. Here, particle size, moisture content and gas flow rate were selected to prepare biochar by smoldering through orthogonal combination, and the pyrite was passivated with different conditions and biochar concentrations (2 g/L, 3 g/L, 4 g/L). The results revealed that when the particle size is 200 mm×200 mm×20 mm, the water content is 20-30%, and the gas flow rate is 0.4 L/m3, the biochar yield is the highest. Biochar promotes the formation of passivating layer (jarosite), inhibits the release of metal ions. Increasing biochar concentration can promote the formation of jarosite and enhance the passivation effect on pyrite.
Collapse
Affiliation(s)
- Hecheng Fu
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiale Fan
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Li
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ping Ning
- School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| |
Collapse
|
2
|
Song Y, Luo H, Yang J, Li H, Guo Z, Wang H, Shen Z. Effects of pH on coprecipitation of As(III) with biogenic synthesized schwertmannite and jarosite. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39221764 DOI: 10.1080/09593330.2024.2391581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2024]
Abstract
Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, S O 4 2 - , and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.
Collapse
Affiliation(s)
- Yongwei Song
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Haowei Luo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Jun Yang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
- Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Honghu Li
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Zehao Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Heru Wang
- Laboratory Centre for Safety and Environment, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Zuwu Shen
- Modern Technology Convergence and Engineering Management Research Center, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Folifac L, Ameh AE, Broadhurst J, Petrik LF, Ojumu TV. Iron nanoparticles prepared from South African acid mine drainage for the treatment of methylene blue in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38310-38322. [PMID: 38797758 PMCID: PMC11189348 DOI: 10.1007/s11356-024-33739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In this study, three acid mine drainage (AMD) sources were investigated as potential sources of iron for the synthesis of iron nanoparticles using green tea extract (an environmentally friendly reductant) or sodium borohydride (a chemical reductant). Electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation-reduction potential (ORP), ion chromatography (IC), and inductively coupled plasma-mass spectroscopy (ICP-MS) techniques were used to characterize the AMD, and the most suitable AMD sample was selected based on availability. Additionally, three tea extracts were characterized using ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazine-hydrate (DPPH), and the most suitable environmentally friendly reductant was selected based on the highest FRAP (1152 µmol FeII/g) and DPPH (71%) values. The synthesized iron nanoparticles were characterized and compared using XRD, STEM, Image J, EDS, and FTIR analytical techniques. The study shows that the novel iron nanoparticles produced using the selected green tea (57 nm) and AMD were stable under air due to the surface modification by polyphenols contained in green tea extract, whereas the nanoparticles produced using sodium borohydride (67 nm) were unstable under air and produced a toxic supernatant. Both the AMD-based iron nanoparticles can be used as Fenton-like catalysts for the decoloration of methylene blue solution. While 99% decoloration was achieved by the borohydride-synthesized nanoparticles, 81% decoloration was achieved using green tea-synthesized nanoparticles.
Collapse
Affiliation(s)
- Leo Folifac
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa.
| | - Alechine E Ameh
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| | - Jennifer Broadhurst
- Minerals to Metals, Department of Chemical Engineering, University of Cape Town, Woolsack Drive, Rondebosch 7701, PO Box X3, Rondebosch 7701, Cape Town, South Africa
| | - Leslie F Petrik
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| | - Tunde V Ojumu
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
4
|
Wang X, Wang L, Zhang Y, Zhang M, Zhang D, Zhou L. Efficient co-stabilization of arsenic and cadmium in farmland soil by schwertmannite under long-term flooding-drying condition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124005. [PMID: 38648965 DOI: 10.1016/j.envpol.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Simultaneously stabilizing of arsenic (As) and cadmium (Cd) in co-contaminated soil presents substantial challenges due to their contrasting chemical properties. Schwertmannite (Sch) is recognized as a potent adsorbent for As pollution, with alkali modification showing promising results in the simultaneous immobilization of both As and Cd. This study systematically investigated the long-term stabilization efficacy of alkali-modified Sch in Cd-As co-contaminated farmland soil over a 200-day flooding-drying period. The results revealed that As showed significant mobility in flooded conditions, whereas Cd exhibited increased soil availability under drying phases. The addition of Sch did not affect the trends in soil pH and Eh fluctuations; nonetheless, it led to an augmentation in the levels of amorphous iron oxides and SO42- concentration in soil pore water. At a dosage of 0.5% Sch, there was a notable decrease in the mobility and soil availability of As and Cd under both flooding (34.5% and 53.6% at Day 50) and drying conditions (27.0% and 29.4% at Day 130), primarily promoting the transformation of labile metal(loid) fraction into amorphous iron oxide-bound forms. Throughout the flooding-drying treatment period, Sch maintained stable mineral morphology and mineralogical phase, highlighting its long-term stabilization effect. The findings of this study emphasize the promising application of Sch-based soil remediation agents in mitigating the challenges arising from As-Cd co-contamination. Further research is warranted to explore their application in real farmland settings and their impact on the uptake of toxic metal(loid)s by plants.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lijie Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiming Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Gao B, Han Z, Cheng H, Zhou H, Wang Y, Chen Z. Treating waste with waste: Lignin acting as both an effective bactericide and passivator to prevent acid mine drainage formation at the source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172162. [PMID: 38569954 DOI: 10.1016/j.scitotenv.2024.172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Acid mine drainage (AMD) induced by pyrite oxidation is a notorious and serious environmental problem, but the management of AMD in an economical and environmentally friendly way remains challenging. Here, lignin, a natural polymer and abundant waste, was employed as both a bactericide and passivator to prevent AMD formation. The addition of lignin to a mimic AMD formation system inoculated with Acidithiobacillus ferrooxidans at a lignin-to-pyrite weight ratio of 2.5: 10 reduced the combined abiotic and biotic oxidation of pyrite by 68.4 % (based on released SO42-). Morphological characterization of Acidithiobacillus ferrooxidans revealed that lignin could act on the cell surface and impair the cell integrity, disrupting its normal growth and preventing biotic oxidation of pyrite accordingly. Moreover, lignin can be used alone as a passivator to form a coating on the pyrite surface, reducing abiotic oxidation by 71.7 % (based on released SO42-). Through multiple technique analysis, it was proposed that the functional groups on lignin may coordinate with iron ions on pyrite, promoting its deposition on the surface. In addition, the inherent antioxidant activity of lignin may also be actively involved in the abatement of pyrite oxidation via the reduction of iron. Overall, this study offered a "treating waste with waste" strategy for preventing AMD formation at the source and opened a new avenue for the management of AMD.
Collapse
Affiliation(s)
- Binyuan Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Zebin Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
Zhou S, Mei Y, Yang W, Jiang C, Guo H, Feng SP, Tang CY. Energy harvesting from acid mine drainage using a highly proton/ion-selective thin polyamide film. WATER RESEARCH 2024; 255:121530. [PMID: 38564897 DOI: 10.1016/j.watres.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenxiao Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230052, PR China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China.
| |
Collapse
|
7
|
He X, Tang C, Wang H, Yan H, Jin H. Chemical Mineralization of AMD into Schwertmannite Fixing Iron and Sulfate Ions by Structure and Adsorption: Paving the Way for Enhanced Mineralization Capacity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:33. [PMID: 38342847 DOI: 10.1007/s00128-024-03856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.
Collapse
Affiliation(s)
- Xin He
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Chunlei Tang
- Key Laboratory of Karst Dynamics, Guangxi Zhuang Autonomous Region, Ministry of Land and Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, PR China.
- International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, PR China.
| | - Honghao Wang
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Hua Jin
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
8
|
Qiu YY, Zou J, Xia J, Li H, Zhen Y, Yang Y, Guo J, Zhang L, Qiu R, Jiang F. Adaptability of sulfur-disproportionating bacteria for mine water remediation under the pressures of heavy metal ions and high sulfate content. WATER RESEARCH 2024; 249:120898. [PMID: 38086206 DOI: 10.1016/j.watres.2023.120898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Biological sulfide production processes mediated by sulfate/sulfur reduction have gained attention for metal removal from industrial wastewater (e.g., mine water (MW) and metallurgical wastewater) via forming insoluble metal sulfides. However, these processes often necessitate the addition of external organic compounds as electron donors, which poses a constraint on the broad application of this technology. A recent proof of concept study reported that microbial sulfur disproportionation (SD) produced sulfide with no demand for organics, which could achieve more cost-benefit MW treatment against the above-mentioned processes. However, the resistance of SD bioprocess to different metals and high sulfate content in MW remains mysterious, which may substantially affect the practical applicability of such process. In this study, the sulfur-disproportionating bacteria (SDB)-dominated consortium was enriched from a previously established SD-driven bioreactor, in which Dissulfurimicrobium sp. with a relative abundance of 39.9 % was the predominated SDB. When exposed to the real pretreated acidic MW after the pretreatment process of pH amelioration, the sulfur-disproportionating activity remained active, and metals were effectively removed from the MW. Metal tolerance assays further demonstrated that the consortium had a good tolerance to different metal ions (i.e., Pb2+, Cu2+, Ni2+, Mn2+, Zn2+), especially for Mn2+ with a concentration of approximately 20 mg/L. It suggested the robustness of Dissulfurimicrobium sp. likely due to the presence of genes encoding for the enzymes associated with metal(loid) resistance/uptake. Additionally, although high sulfate content resulted in a slight inhibition on the sulfur-disproportionating activity, the consortium still achieved sulfide production rates of 27.3 mg S/g VSS-d on average under an environmentally relevant sulfate level (i.e., 1100 mg S/L), which is comparable to those reported in sulfate reduction. Taken together, these findings imply that SDB could ensure sustainable MW treatment in a more cost-effective and organic-free way.
Collapse
Affiliation(s)
- Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Zou
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Juntao Xia
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuming Zhen
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yanduo Yang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiahua Guo
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, School of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Jiang F, Lu X, Zeng L, Xue C, Yi X, Dang Z. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralization prior to lime neutralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168291. [PMID: 37944602 DOI: 10.1016/j.scitotenv.2023.168291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Acid mine drainage (AMD) contains abundant Fe (II), Fe(III), and SO42-, as well as a large amount of dissolved toxic metals and metalloids, posing a serious threat to the environment. In this study, an integrated technique for the treatment of AMD was proposed. The technique started with pre-oxidation followed by Fe(0) reduction and alkali-regulated biomineralization and then ended with lime neutralization. The technique removed toxic metal oxyanions in the pre-oxidation stage and recovered pure schwertmannite during the subsequent alkali-regulated biomineralization. Fe(III), which could not be directly biomineralized, was reduced to Fe(II) by Fe(0). A small amount of alkali was added to regulate the hydrolytic mineralization reaction after Fe(II) oxidation in AMD, which in a single biomineralization could remove in the form of schwertmannite >95 % of soluble Fe in the AMD. In the subsequent lime neutralization process, the amount of lime required and the sludge produced were reduced by 75.4 % and 84.9 %, respectively, compared to the raw AMD. Additionally, the content of non-ferrous metals in the sludge increased 5.6-fold. Compared with non-alkali-regulated biomineralization, the schwertmannite obtained by the alkali-regulated biomineralization had a higher adsorption capacity for oxyanions (e.g., arsenic, chromium, and antimony). The new approach should significantly reduce the treatment cost of AMD and recover Fe and S elements in the form of valuable secondary minerals, such that it is reasonable to expect that it will be widely adopted in practical applications.
Collapse
Affiliation(s)
- Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xinyang Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Lijuan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chao Xue
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Huang Z, Ma H, Liu C, Meng F, Lee JF, Lin YJ, Yi X, Dang Z, Feng C. A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131075. [PMID: 36870128 DOI: 10.1016/j.jhazmat.2023.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.
Collapse
Affiliation(s)
- Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Li R, Wang B, Wu P, Zhang J, Zhang X, Chen M, Cao X, Feng Q. Revealing the role of calcium alginate-biochar composite for simultaneous removing SO 42- and Fe 3+ in AMD: Adsorption mechanisms and application effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121702. [PMID: 37094733 DOI: 10.1016/j.envpol.2023.121702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The remediation of acid mine drainage (AMD) is particularly challenging because it contains a large amount of Fe3+ and a high concentration of SO42-. To reduce the pollution caused by SO42- and Fe3+ in AMD and realize the recycling of solid waste, this study used distillers grains as raw materials to prepare biochar at different pyrolysis temperatures. Calcium alginate-biochar composite (CA-MB) was further synthesized via the entrapment method and used to simultaneously remove SO42- and Fe3+ from AMD. The effects of different influencing factors on the sorption process of SO42- and Fe3+ were studied through batch adsorption experiments. The adsorption behaviors and mechanisms of SO42- and Fe3+ were investigated with different adsorption models and characterizations. The results showed that the adsorption process of CA-MDB600 on SO42- and Fe3+ could be well described by Elovich and Langmuir-Freundlich models. It was further proved by the site energy analysis that the adsorption mechanisms of SO42- onto CA-MDB600 were mainly surface precipitation and electrostatic attraction, while that of Fe3+ removal was attributed to ion exchange, precipitation, and complexation. The applications of CA-MDB600 in actual AMD proved its good application potential. This study indicates that CA-MDB600 could be applied as a promising eco-friendly adsorbent for the remediation of AMD.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xingxing Cao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianwei Feng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
12
|
Romero-Matos J, Cánovas CR, Macías F, Pérez-López R, León R, Millán-Becerro R, Nieto JM. Wildfire effects on the hydrogeochemistry of a river severely polluted by acid mine drainage. WATER RESEARCH 2023; 233:119791. [PMID: 36863282 DOI: 10.1016/j.watres.2023.119791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
This study evaluates for the first time the impact of a large wildfire on the hydrogeochemistry of a deeply AMD-affected river at the beginning of the wet season. To accomplish this, a high-resolution water monitoring campaign was performed within the basin coinciding with the first rainfalls after summer. Unlike similar events recorded in AMD-affected areas, where dramatic increases in most dissolved element concentrations, and decreases in pH values are observed as a result of evaporitic salts flushing and the transport of sulfide oxidation products from mine sites, a slight increase in pH values (from 2.32 to 2.88) and decrease in element concentrations (e.g.; Fe: 443 to 205 mg/L; Al: 1805 to 1059 mg/L; sulfate: 22.8 to 13.3 g/L) was observed with the first rainfalls after the fire. The washout of wildfire-ash deposited in the riverbanks and the drainage area, constituted by alkaline mineral phases, seems to have counterbalanced the usual behavior and patterns of the river hydrogeochemistry during autumn. Geochemical results indicate that a preferential dissolution occurs during ash washout (K > Ca > Na), with a quick release of K followed by an intense dissolution of Ca and Na. On the other hand, in unburnt zones parameters and concentrations vary to a lesser extent than burnt areas, being the washout of evaporitic salts the dominant process. With subsequent rainfalls ash plays a minor role on the river hydrochemistry. Elemental ratios (Fe/SO4 and Ca/Mg) and geochemical tracers in both ash (K, Ca and Na) and AMD (S) were used to prove the importance of ash washout as the dominant geochemical process during the study period. Geochemical and mineralogical evidences point to intense schwertmannite precipitation as the main driver of reduction in metal pollution. The results of this study shed light on the response of AMD-polluted rivers to certain climate change effects, since climate models predict an increase in the number and intensity of wildfires and torrential rain events, especially in Mediterranean climates.
Collapse
Affiliation(s)
- Jonatan Romero-Matos
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain.
| | - Carlos R Cánovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| | - Rafael Pérez-López
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| | - Rafael León
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| | - Ricardo Millán-Becerro
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| | - Jose Miguel Nieto
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", 21071, Huelva, Spain
| |
Collapse
|
13
|
Wang H, Guo Q, Guo Z, Luo H, Li H, Yang J, Song Y. Assessment of the induced effect of selected iron hydroxysulfates biosynthesized using Acidithiobacillus ferrooxidans for biomineralization of acid mine drainage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1879-1892. [PMID: 37119161 DOI: 10.2166/wst.2023.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Soluble iron and sulfate in acid mine drainage (AMD) can be greatly removed through the formation of minerals facilitated by seed crystals. However, the difference in the effects of jarosite and schwertmannite as endogenous seed crystals to induce AMD mineralization remains unclear. This paper intends to study the effect of Fe2+ oxidation and Fe3+ mineralization in the biosynthesis of minerals using different addition amounts and methods of jarosite or schwertmannite. The results showed that the addition amount and method of different seed crystals had no effect on the Fe2+ bio-oxidation but would change the Fe3+ mineralization efficiency. With the same amount of seed crystals added, jarosite exhibited a higher capacity to promote Fe3+ mineralization than schwertmannite. Adding seed crystals before the initiation of Fe2+ oxidation (0 h) could significantly promote Fe3+ mineralization efficiency. With the increase of seed crystals, jarosite could not only shorten the time required for mineral synthesis but also improve the final mineral yield, whereas schwertmannite could only shorten the time required for mineral synthesis. When Fe2+ was completely oxidized to Fe3+ (48 h), the supplementary of jarosite could still effectively improve Fe3+ mineralization efficiency, but the addition of schwertmannite no longer affected the final mineralization degree.
Collapse
Affiliation(s)
- Heru Wang
- Laboratory Centre for Safety and Environment, Zhongnan University of Economics and Law, Wuhan 430073, China; These authors contributed equally to this work (E-mail: ; )
| | - Qian Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail: ; These authors contributed equally to this work (E-mail: ; )
| | - Zehao Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail:
| | - Haowei Luo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail:
| | - Honghu Li
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail:
| | - Jun Yang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail: ; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China E-mail:
| |
Collapse
|
14
|
Zou J, Qiu YY, Li H, Jiang F. Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. WATER RESEARCH 2023; 232:119647. [PMID: 36738555 DOI: 10.1016/j.watres.2023.119647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Biological sulfidogenic processes (BSPs) have been considered effective biotechnologies for the treatment of organic-deficit acid mine drainage (AMD) and heavy metal recovery. However, high-rate sulfide production relies on the continuous addition of exogenous organic substrates as electron donors to facilitate dissimilatory sulfate reduction, which substantially increases the operational cost and CO2 emission and also limits the wide application of BSPs in AMD treatment. In this study, we proposed a novel chemoautotrophic elemental sulfur disproportionation (SD) process as an alternative to conventional BSPs for treating AMD, in which sulfur-disproportionating bacteria (SDB) disproportionates sulfur to sulfide and sulfate without organic substrate supplementation. During the 393-day lab-scale test, we observed that the sulfur-disproportionating reactor (SDR) achieved a stable high-rate sulfide production, with a maximal rate of 21.10 mg S/L-h at an organic-substrate-free condition. This high rate of sulfide production suggested that the SD process could provide sufficient sulfide to precipitate metal ions from AMD. Thermodynamics analysis and batch tests further revealed that alkalinity rather than sulfate was the critical factor influencing the SD process, suggesting that the abundant sulfate present in AMD would not inhibit the SD process. The critical condition of SD in the SDR was therefore determined. Microbial community analysis showed that Dissulfurimicrobium sp. was the dominant SDB during the long-term operation regardless of dynamic sulfate and/or alkalinity concentrations, which provides evidence that SDB can be employed for sustainable and high-rate sulfide production for engineering purposes. A multi-stage AMD treatment system equipped with a SDR removed over 99% of the influent metals (i.e., Fe, Al, Zn, Cu, Pb) from AMD except for Mn. This study demonstrated that the novel SD process is a green and promising biotechnology for the sustainable treatment of organic-deficient metal-laden wastewater, such as AMD.
Collapse
Affiliation(s)
- Jiahui Zou
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ying Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Chen HR, Zhang DR, Li Q, Nie ZY, Pakostova E. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. WATER RESEARCH 2022; 223:118957. [PMID: 35970106 DOI: 10.1016/j.watres.2022.118957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Mining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine. Immobilization of the As solubilized via arsenopyrite bio-oxidation using red mud (RM) was also studied. The results show that the high ionic strength (concentrations of dissolved Fe3+, SO42-, and Ca2+ reached values up to 0.75, 3.38, and 0.35 g/L, respectively) and redox potential (up to +621 mV) of AMD (caused primarily by Fe3+) enhanced the dissolution of arsenopyrite. A high [Fe]aq/[As]aq ratio in the AMD favored the precipitation of tooeleite during arsenopyrite bio-oxidation, and the formation of other poorly crystalline products such as schwertmannite and amorphous ferric arsenate also contributed to As immobilization. Bacterial cells served as important nucleation sites for the precipitation of mineral phases. Arsenopyrite completely dissolved after 12 days of bio-oxidation in AMD and the [As]aq (mainly present as As(III)) reached 1.92 g/L, while a greater [As]aq was observed in a basal salts medium (BSM) assay (reaching 3.02 g/L). An RM addition significantly promoted As(III) immobilization, with final [As(III)]aq decreasing to 0.16 and 1.43 g/L in AMD and BSM assays respectively. No oxidation of As(III) was detected during the immobilization process. These findings can help predict As release from arsenopyrite on contact with AMD and, on a broader scale, assist in designing remediation and treatment strategies to mitigate As contamination in mining.
Collapse
Affiliation(s)
- Hong-Rui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Duo-Rui Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Zhen-Yuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Eva Pakostova
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
16
|
Song Y, Guo Z, Wang R, Yang L, Cao Y, Wang H. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization. WATER RESEARCH 2022; 221:118748. [PMID: 35728497 DOI: 10.1016/j.watres.2022.118748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) contains abundant iron, sulfates, and various metal ions, and it causes environmental pollution. The traditional AMD lime neutralization forms a layer of iron hydroxide and gypsum on the surface of the lime particles, preventing continuous reaction and leading to excessive lime addition and neutralized sludge production. In this study, an approach for treating AMD using a cyclic process of biooxidation and electroreduction before lime neutralization was proposed, in which the Fe2+ in AMD was oxidized to Fe3+ and induced to form schwertmannite through Acidithiobacillus ferrooxidans. The remaining Fe3+ was reduced to Fe2+ using an electric field. After three biooxidation and two electroreduction cycles, 98.2% of Fe and 62.4% of SO42- in AMD precipitated as schwertmannite (Fe8O8(OH)5.16(SO4)1.37). The yield of schwertmannite reached 33.98 g/LAMD, with a high specific surface area of 112.59 m2/g. The lime dosage and sludge yield of the treated AMD in the subsequent neutralization stage (pH = 7.00) decreased by 85.0% and 74.5%, respectively, than those of raw AMD. The pilot test results showed that the integrated treatment of biooxidation-electroreduction cyclic mineralization and lime neutralization has practical applications.
Collapse
Affiliation(s)
- Yongwei Song
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Zehao Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Rui Wang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Linlin Yang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanxiao Cao
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Heru Wang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
17
|
Wang X, Wang D, Xu J, Fu J, Zheng G, Zhou L. Modified chemical mineralization-alkali neutralization technology: Mineralization behavior at high iron concentrations and its application in sulfur acid spent pickling solution. WATER RESEARCH 2022; 218:118513. [PMID: 35512537 DOI: 10.1016/j.watres.2022.118513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Mineralization coupled with neutralization is a dual-function technology for disposing acidic iron-rich waters, which can recover the valuable iron in the form of secondary mineral and concurrently purify the wastewater. In this study, a modified technology for treating high Fe wastewater (sulfur acid spent pickling liquor, 62 g Fe/L) was proposed based on the specific investigation of the mineralization behaviors in Fe concentration range of 20-70 g/L. Results showed that high SO42-/Fe2+ molar ratio (> 2.0) tended to trigger gelation phenomena at Fe concentrations above 30 g/L. Fe specie distribution suggested that the insufficient polymerization among Fe-OH complexes might be responsible for the gelation phenomena, since the strong Fe-SO4 coordination almost completely suppressed the Fex(OH)y(3x-y)+ form (a general terms of Fe3+ hydrolysates and their polymers). Modified mineralization strategies were proposed, including pretreatment with dilution or BaCl2/CaCl2 precipitation, of which CaCl2 pretreatment was a versatile and low-cost method. Following CaCl2 pretreatment, chemical mineralization converted above 90% of iron into secondary mineral, which therefore drastically reduced the alkali consumption (from 164.2 g/L to 1.4 g/L) and sludge yield (from 328.1 g/L to 2.4 g/L) in subsequent neutralization treatment. The resultant mineral was identified as schwertmannite, and exhibited efficient adsorption capacity toward arsenite (364.2 mg/g). The modified chemical mineralization-alkaline neutralization is a cost-effective technology for the treatment of the acidic iron-rich waters. In practical applications, several regulating strategies should be further explored to improve the mineral purity, and the mineralization conditions must be optimized according to the Fe and SO42- concentrations in wastewater.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingang Xu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingran Fu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Li Q, Ji B, Honaker R, Noble A, Zhang W. Partitioning behavior and mechanisms of rare earth elements during precipitation in acid mine drainage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Enhanced catalytic activation of H2O2 by CNTs/SCH through rapid Fe(III)/Fe(II) redox couple circulation: Insights into the role of functionalized multiwalled CNTs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yang B, Luo W, Hong M, Wang J, Liu X, Gan M, Qiu G. Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Li T, Wang Z, Zhang Z, Feng K, Liang J, Wang D, Zhou L. Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials. MATERIALS 2021; 14:ma14226985. [PMID: 34832385 PMCID: PMC8625049 DOI: 10.3390/ma14226985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
The durability against wet-dry (w-d) cycles is an important parameter for the service life design of solidified permeable reactive barrier (PRB) waste. This study introduces the potential use of cement, fly ash, and carbide slag (CFC) for the stabilization/solidification (S/S) of PRB waste. In this study, solidified PRB waste was subjected to different w-d cycles ranging in times from 0 to 10. By analyzing the mass loss, the unconfined compressive strength (UCS), initial resistivity (IR), and the Mn2+ leaching concentration under different durability conditions, the results demonstrate that these variables increased and then tended to decrease with the number of w-d cycles. The UCS of contaminated soil is significantly correlated with IR. Moreover, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicate that the hydration products calcium silicate hydrate (C-S-H) and ettringite (AFt) are the main reasons for the enhancement of the UCS. However, the increase in Mn2+ concentration leads to a decrease in hydration products and the compactness of solidified soil, which has negative effects for the UCS and the leaching ion concentration. In general, the durability exhibited by the PRB waste treated with S/S in this paper was satisfactory. This study can provide theoretical guidance for practical engineering applications.
Collapse
|
23
|
Zhang Y, Li S, Fan S, Wu Y, Hu H, Feng Z, Huang Z, Liang J, Qin Y. A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps. CHEMOSPHERE 2021; 280:130646. [PMID: 33940456 DOI: 10.1016/j.chemosphere.2021.130646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/27/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A stepwise processing strategy, including initial neutralization, chemical mineralization, and complete neutralization treating steps, was developed to effectively treat and utilize the highly acidic wastewater derived from titanium dioxide production. Approximately 94.6% of SO42-, 100% of Fe, and most of other metals were recovered to produce white gypsum, schwertmannite, and Fe0/Fe3O4@biochar (Fe0/Fe3O4@BC) composite in the corresponding treating steps. The resulting effluent with neutral pH and a small amount of metal ions could be discharged to general sewage treatment plant for further processing. Schwertmannite was applied as a heterogeneous Fenton-like catalyst to stimulate H2O2 to produce active radicals for effective degradation and mineralization of methyl orange (MO) in solution. The MO removal of 100% and total organic carbon removal of 91.1% were achieved in schwertmannite/H2O2 reaction system, and schwertmannite exhibited good stability and reusability. Fe0/Fe3O4@BC composite was applied to remove Cr(VI), with the adsorption capacity of 67.74 mg g-1. The removal of Cr(VI) using Fe0/Fe3O4@BC composite was a chemisorption process, including the adsorption of Cr(VI), reduction of Cr(VI) to Cr(III), and co-precipitation of Cr(III)/Fe(III) oxides/hydroxides. This stepwise treating strategy is a promising technology for effective treatment of highly acidic industrial wastewater and comprehensive utilization of the related products.
Collapse
Affiliation(s)
- Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Sisi Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Songlin Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yixiao Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhenfei Feng
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
24
|
Xu Y, Li H, Zeng XC. A novel biofilm bioreactor derived from a consortium of acidophilic arsenite-oxidizing bacteria for the cleaning up of arsenite from acid mine drainage. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1437-1445. [PMID: 33040243 DOI: 10.1007/s10646-020-02283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Arsenite (As(III)) was considered to be of great concern in acid mine drainage (AMD). A promising approach for cleaning up of arsenite from AMD is microbial oxidation of As(III) followed by adsorptions. However, there is virtually no research about the acidophilic bioreactor for As(III) oxidation so far. In this study, we formed a new biofilm bioreactor with a consortium of acidophilic As(III) oxidation bacteria. It is totally chemoautotrophic, with no need to add any carbon or other materials during the operations. It works well under pH 3.0-4.0, capable of oxidizing 1.0-20.0 mg/L As(III) in 3.0-4.5 h, respectively. A continuous operation of the bioreactor suggests that it is very stable and sustainable. Functional gene detection indicated that the biofilms possessed a unique diversity of As(III) oxidase genes. Taken together, this acidophilic bioreactor has great potential for industrial applications in the cleaning up of As(III) from AMD solution.
Collapse
Affiliation(s)
- Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China.
| |
Collapse
|
25
|
Assessment of Characteristics of Acid Mine Drainage Treated with Fly Ash. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.
Collapse
|
26
|
Wang G, Yuan Y, Morel JL, Feng Z, Chen D, Lu C, Guo M, Liu C, Wang S, Chao Y, Tang Y, Zhao D, Xiao S, Zhang W, Qiu R. Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms. WATER RESEARCH 2021; 190:116736. [PMID: 33321454 DOI: 10.1016/j.watres.2020.116736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Biocrust-mediated in situ bioremediation could be an alternative strategy to mitigate metal(loid) pollution in aquatic habitats. To better understand the roles of biocrusts in regulating the fate of metal(loid)s, we examined the morphology, composition and structure of biological aqua crusts (BAC) developed in the mine drainage of a representative Pb/Zn tailing pond, and tested their effectiveness for immobilizing typical metal(loid)s. Unlike terrestrial biocrusts, BAC results from an assembly of compounds produced by the strong microbial activity and mineral compounds present in the aquatic environment. The BAC exhibited a unique flexible, spongy and porous structure with a specific surface area of 12-22 m2 g-1, and was able to effectively concentrate various metal(loid)s (e.g. Cd, 0.26-0.60 g kg-1; Pb, 0.52-0.66 g kg-1; As, 10.4-24.3 g kg-1). The concentrations of metal(loid)s (e.g. Cd and As) in the BAC were even three to seven times higher than those in the source tailings, and more than 98% of immobilized metal(loid)s were present as the highly stable non-EDTA-exchangeable fraction. Adsorption on the well distributed micro-particles of the clay minerals (e.g. kaolinite) and the organic matters (2.0-2.7 wt.%) were found to be the major mechanisms for BAC to bind metal cations, whereas adsorption and coprecipitation on Fe/Mn oxide (e.g. FeOOH), was proposed to be the dominant pathway for accumulating metal(loid)s, especially As. The decrease in aqueous concentrations of the metal(loid)s along the drainage could be attributed in part to the scavenging effects of the BAC. These findings therefore provide new insights into the possible and efficient strategy for metal(loid) removal from water bodies, and highlighted the important role of BAC as a nature-based solution to benefit the bioremediation of mining area.
Collapse
Affiliation(s)
- Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongqiang Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunfeng Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meina Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL 36849, USA
| | - Shi Xiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Weixian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Feng K, Wang X, Zhou B, Xu M, Liang J, Zhou L. Hydroxyl, Fe 2+, and Acidithiobacillus ferrooxidans Jointly Determined the Crystal Growth and Morphology of Schwertmannite in a Sulfate-Rich Acidic Environment. ACS OMEGA 2021; 6:3194-3201. [PMID: 33553935 PMCID: PMC7860229 DOI: 10.1021/acsomega.0c05606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Schwertmannite, ubiquitously found in iron and sulfate-rich acid mine drainage, is generated via biological oxidation of ferrous ions by Acidithiobacillus ferrooxidans (A. ferrooxidans). However, little information on the mechanisms of biogenic schwertmannite formation and crystal growth is available. This study deliberately investigated the relationships among mineral morphology, solution chemistry, and phase transformation of schwertmannite in A. ferrooxidans-containing ferrous sulfate solutions. The formation of schwertmannite could be divided into three stages. In the first nucleation stage, crystallites are presented as nonaggregative or aggregative forms via a successive polymerization process. In the second stage, ellipsoidal aggregates, which are identified as ferrihydrite and/or schwertmannite, are formed. In the third stage, needles appear on the surface of ellipsoidal aggregates, which is caused by the phase transformation of ferrihydrite or schwertmannite to lepidocrocite and goethite through a Fe2+ (aq) catalysis-driven pathway. After three stages, a typical characteristic "hedgehog" morphology finally appears. In addition, A. ferrooxidans could significantly speed up the mineral transformation. Solution pH affects the morphology of schwertmannite by acid leaching. The experimental results also reveal that the formation of schwertmannite depend on the content of hydroxyl complexes or the transformation of the monomers to polymers, which are greatly affected by the solution pH.
Collapse
Affiliation(s)
- Kun Feng
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaomeng Wang
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Bo Zhou
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Min Xu
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jianru Liang
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lixiang Zhou
- Department of Environmental
Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
28
|
Wang X, Jiang H, Zheng G, Liang J, Zhou L. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system. CHEMOSPHERE 2021; 262:127567. [PMID: 32755692 DOI: 10.1016/j.chemosphere.2020.127567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is recognized as a challenge encountered by mining industries globally. Cyclic mineralization method, namely Fe2+ oxidation/mineralization-residual Fe3+ reduction-resultant Fe2+ oxidation/mineralization, could precipitate Fe and SO42- present in AMD into iron hydroxysulfate minerals and greatly improve the efficiency of subsequent lime neutralization, but the current Fe0-mediated reduction approach increased the mineralization cycles. This study constructed a bacteria-driven biomineralization system based on the reactions of Acidithiobacillus ferrooxidans-mediated Fe2+ oxidation and Acidiphilium multivorum-controlled Fe3+ reduction, and utilized water-dropping aeration and biofilm technology to satisfy the requirement of practical application. The resultant biofilms showed stable activity for Fe conversion: the efficiency of Fe2+-oxidation, Fe-precipitation, and Fe3+-reduction maintained at 98%, 32%, and 87%, respectively. Dissolved oxygen for Fe-oxidizing bacteria growth was continuously replenished by water-dropping aeration (4.2-7.2 mg/L), and the added organic carbon was mainly metabolized by Fe-reducing bacteria. About 89% Fe and 60% SO42- were precipitated into jarosite mineral after five biomineralization cycles. Fe was removed via forming secondary mineral precipitates, while SO42- was coprecipitated into mineral within the initial three biomineralization cycles, and then mainly precipitated with Ca2+ afterwards. Fe concentration in AMD was proven to directly correlate with subsequent lime neutralization efficiency. Biomineralization for five cycles drastically reduced the amount of required lime and neutralized sludge by 75% and 77%, respectively. The results in this study provided theoretical guidance for practical AMD treatment based on biomineralization technology.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hekai Jiang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
29
|
Jin D, Wang X, Liu L, Liang J, Zhou L. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123108. [PMID: 32593016 DOI: 10.1016/j.jhazmat.2020.123108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
As the predominant treatment approach of acid mine drainage (AMD), lime neutralization often exhibits inefficiencies since the abundance of iron and sulfate in AMD usually form iron hydroxide and gypsum precipitate coatings on the surface of lime. In this study, a novel approach of biomineralization prior to lime neutralization for treating AMD was proposed, in which iron and sulfate were biologically precipitated as schwertmannite through iron biological reduction-oxidation driven by a culture mixed with Acidiphilium multivorum JZ-6 and Acidithiobacillus ferrooxidans LX5. It was found that only five cycles of iron reduction by A. multivorum JZ-6 followed by iron oxidation by A. ferrooxidans LX5 could remove completely iron and nearly 40% of sulfate in AMD, while non-ferrous metals (Al, Mn, Cu, Ni, and Zn) were hardly removed. Consequently, the amounts of lime required and sludge generated in the subsequent lime neutralization process were reduced by 56% and 68%, respectively. As a result, the content of non-ferrous metals in the sludge was increased by 3.2 folds. The level of Al was increased surprisingly to 19% (wt/wt), a level similar to the commercially valuable bauxite. The novel process of biomineralization prior to lime neutralization provides a sustainable way for AMD treatment.
Collapse
Affiliation(s)
- Decheng Jin
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Liu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Co-Disposal of Coal Gangue and Red Mud for Prevention of Acid Mine Drainage Generation from Self-Heating Gangue Dumps. MINERALS 2020. [DOI: 10.3390/min10121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The seepage and diffusion of acid mine drainage (AMD) generated from self-heating coal gangue tailings caused acid pollution to the surrounding soil and groundwater. Red mud derived from the alumina smelting process has a high alkali content. To explore the feasibility of co-disposal of coal gangue and red mud for prevention of AMD, coal gangue and red mud were sampled from Yangquan (Shanxi Province, China), and dynamic leaching tests were carried out through the automatic temperature-controlled leaching system under the conditions of different temperatures, mass ratios, and storage methods. Our findings indicated that the heating temperature had a significant effect on the release characteristics of acidic pollutants derived from coal gangue, and that the fastest rate of acid production corresponding to temperature was 150 °C. The co-disposal dynamic leaching tests indicated that red mud not only significantly alleviated the release of AMD but also that it had a long-term effect on the treatment of acid pollution. The mass ratio and stacking method were selected to be 12:1 (coal gangue: red mud) and one layer was alternated (coal gangue covered with red mud), respectively, to ensure that the acid-base pollution indices of leachate reached the WHO drinking-water quality for long-term discharge. The results of this study provided a theoretical basis and data support for the industrial field application of solid waste co-treatment.
Collapse
|
31
|
Viadero RC, Zhang S, Hu X, Wei X. Mine drainage: Remediation technology and resource recovery. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1533-1540. [PMID: 32671879 DOI: 10.1002/wer.1401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Drainage from current and historic mining operations remains a persistent environmental problem. Numerous research and development efforts were made in 2019 with a goal to minimize the impact of mine drainage on the environment, while other research endeavors addressed the mine drainage issue from a different perspective, where mine drainage was considered a resource for water and valuable products, such as metals, sulfuric acid, and rare earth elements. Thus, this review has two main sections: (a) focusing on research efforts in mine drainage remediation technology, and (b) emphasizing advances in resource recovery from mine drainage. The first section covers traditional and emerging passive and active treatment technologies. The second section summarizes resource recovery efforts using various technologies, such as selective precipitation, membrane process, and biological systems. PRACTITIONER POINTS: Significant progress continued to be made in the management of mine drainage and related issues. Recent remediation technology advances in mine drainage were presented. Technologies focusing on resource recovery from mine drainage were reviewed.
Collapse
Affiliation(s)
- Roger C Viadero
- Institute for Environmental Studies, Western Illinois University, Macomb, Illinois
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | - Xiaomin Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Xinchao Wei
- School of Engineering, Slippery Rock University, Slippery Rock, Pennsylvania
| |
Collapse
|
32
|
Yang B, Luo W, Wang X, Yu S, Gan M, Wang J, Liu X, Qiu G. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139485. [PMID: 32516660 DOI: 10.1016/j.scitotenv.2020.139485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Although chalcopyrite biodissolution plays an important role in the formation of acid mine drainage (AMD), the control of AMD through inhibiting the biodissolution of chalcopyrite has not been studied until now. In order to fill this knowledge gap, a novel method for inhibiting chalcopyrite biodissolution using biochar was proposed and verified. The effects of biochar pyrolysis temperature and biochar concentration on the inhibition of chalcopyrite biodissolution in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied. The results indicate that biochar significantly inhibited chalcopyrite biodissolution, thus reducing the number of copper and iron ions and quantity of acid released. In turn, this suggests that AMD generation was suppressed under these conditions. Biochar pyrolyzed at 300 °C (Biochar-300 °C) was the most effective at inhibiting chalcopyrite biodissolution and reduced its biodissolution rate by 17.7%. A suitable concentration of biochar-300 °C enhanced its inhibition of chalcopyrite biodissolution. The optimal concentration of biochar-300 °C for inhibiting chalcopyrite biodissolution was 3 g/L. Biodissolution results, cyclic voltammetry, mineral surface morphology, mineralogical phase, and elemental composition analyses reveal that biochar inhibited the biodissolution of chalcopyrite by promoting the formation of passivation layer (jarosite and Sn2-/S0) and adsorbing bacteria.
Collapse
Affiliation(s)
- Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wen Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xingxing Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
33
|
Yang B, Zhao C, Luo W, Liao R, Gan M, Wang J, Liu X, Qiu G. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122290. [PMID: 32092647 DOI: 10.1016/j.jhazmat.2020.122290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Although silver ion in the solution is an important factor affecting the biodissolution of chalcopyrite, the effect of silver ion on the release of copper ion from chalcopyrite to the environment has not been explored until now. In order to fill this knowledge gap, the effect of silver ion on copper release from chalcopyrite in the presence of Acidithiobacillus ferrooxidans was investigated. The results indicate that silver ion significantly enhanced chalcopyrite biodissolution, thereby releasing more copper ion. In turn, this indicates that the release of copper ion from chalcopyrite to the environment was increased under these conditions. Biodissolution results, bacterial adsorption experiments, elemental composition analysis, and electrochemical analysis reveal that the enhancement of silver ion on copper ion release from chalcopyrite was mainly attributed to the improvement of electrochemical activity of chalcopyrite and the inhibition of the formation of passivation layer (Sn2-/S0) on the chalcopyrite surface. This study provides a better understanding of the effect of silver ion on the release of copper ion from chalcopyrite to the environment. In the future, the influence of silver ion on chalcopyrite biodissolution should be considered in the evaluation of copper ion pollution to ensure reliability.
Collapse
Affiliation(s)
- Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Chunxiao Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wen Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|