1
|
Shah T, Zhao K, Yin Y, Shang J. Impact of humic acid on iron (oxyhydr)oxide transport in the presence of phosphate in saturated porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104444. [PMID: 39418886 DOI: 10.1016/j.jconhyd.2024.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
The subsurface flow of particular phosphate (P) has been recently regarded as a vital P transport path. Humic acid (HA) and P usually coexist in the natural environment and show a strong affinity to iron (Fe) (oxyhydr)oxide. The impact of P and HA on Fe (oxyhydr)oxide stability and transport is critical for evaluating the vertical transport of particular P and biogeochemical processes of Fe and P. This study investigated the effect of inorganic (IP) and organic (OP) phosphate on the stability and transport of ferrihydrite and goethite with HA through stability tests and column experiments. The adsorption of IP or OP on Fe (oxyhydr)oxide enhanced the stability and transport of Fe (oxyhydr)oxide, and OP showed a stronger enhancement than IP due to its stronger binding capacity and more negative surface. Compared with ferrihydrite, goethite had fewer adsorption sites for IP or OP and showed strong stability and transport at low IP (50 μM) or OP (10 μM) concentration. HA decreased IP or OP adsorption on Fe (oxyhydr)oxide through competition adsorption and electrostatic repulsion. The formed ternary phosphate-Fe (oxyhydr)oxide-HA complex showed a more negative surface and strong stability and transport. Our findings provide direct insights into the distinct role of IP and OP on Fe (oxyhydr)oxide stability and transport in the presence of HA, which provides essential information for evaluating the transport of particular Fe (oxyhydr)oxide-facilitated P in soils and subsurface environments rich in iron, phosphate, and dissolved carbon.
Collapse
Affiliation(s)
- Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Kang Zhao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Li Q, Si H, Chen X, Mao M, Shang J. Influence of natural organic matter on the aggregation dynamics of biochar colloids derived from various feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174097. [PMID: 38908602 DOI: 10.1016/j.scitotenv.2024.174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Abundant biochar colloids (BCs) produced from a wide range of feedstocks, resulting from forest fires, agricultural production, and environmental restoration, exhibit varying aggregation behaviors influenced by feedstock type and natural organic matter. However, the impact of natural organic matter on the colloidal stability of BCs derived from different feedstocks remains poorly understood. In this study, six selected biochars were derived from various feedstocks as follows: sewage sludge (SS), rice husk (RH), oil seed rape straw pellets (OSR), wheat straw pellets (WS), miscanthus straw pellets (MS) and softwood pellets (SW). The colloidal stability of BCs, with the exogenous addition of organic matter, was further determined. The order of critical coagulation concentrations (CCCs) of BCs with the presence of humic acid (HA) was as follows: RH (989.48 mM) < MS (1084.69 mM) < SS (1149.76 mM) < WS (1338.99 mM) < OSR (2402.98 mM) < SW (3151.32 mM). This order was significantly positively correlated with the specific surface area and negatively correlated with the ash content of the bulk biochar. Compared to HA, bovine serum albumin (BSA) more effectively inhibited the aggregation behavior of BCs due to steric hindrance. The initial aggregation rate constant (k) of BCs at 3000 mM NaCl was as follows: MS (0.238 nm/s) > OSR (0.142 nm/s) > WS (0.128 nm/s) > SS (0.126 nm/s) > RH (0.118 nm/s) > SW (0.112 nm/s). The stabilizing effects of BSA on biochar colloids were independent of the physicochemical properties of bulk biochar. In the presence of BSA, a thin layer of protein corona significantly enhanced the stability of biochar colloids, particularly the BCs derived from MS. Our results underscore the importance of considering feedstock resources and natural organic matter type when assessing the aggregation and potential risks of BCs in aquatic systems.
Collapse
Affiliation(s)
- Qirui Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hongyu Si
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Xiuxiu Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Meng Mao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
3
|
Wang C, Yao S, Liao R, Šimůnek J. Humic acid enhances the co-transport of colloids and phosphorus in saturated porous media. CHEMOSPHERE 2024; 364:143300. [PMID: 39245219 DOI: 10.1016/j.chemosphere.2024.143300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Phosphorus (P) has been widely recognized as a substance that is difficult to transport due to its tendency to become easily fixed in the soil. However, many reports demonstrate that groundwater P pollution is rising in humus-rich areas. Research is urgently needed to confirm (or reject) the hypothesis that increased P pollution is related to humus, as there is currently limited quantitative research on this topic. In this study, we conducted a series of batch equilibrium adsorption-desorption experiments and column experiments to quantify the effects of montmorillonite colloids (MCs) and humic acids (HCs, the main components of humus) on the P transport behavior. The results indicate that P's adsorption and desorption behavior on MCs can be well simulated using the Langmuir and Temkin models (R2 > 0.91). Compared to the non-HC treatments, HCs significantly increased MCs' P adsorption and desorption capacity 5.18 and 7.21 times, respectively. Moreover, HCs facilitated the transport ability of the MC-P mixture through the saturated quartz sand column. In a 0.1 M NaCl solution, the MC-P mixture is nearly completely adsorbed on the surface of quartz sand, with a penetration rate of only 0.5%. In contrast, the HC-MC-P mixture can evidently penetrate further at a rate of 26.1%. The transport parameters fitted using HYDRUS-1D further indicated that the presence of humic acids significantly decreased the deposition coefficients of colloids, thereby enhancing the co-transport of colloids and P through the quartz sand porous medium. The potential mechanism of P pollution in humus-rich areas is likely enhanced by the formation of an HC-colloid-P mixture, which greatly increases the adsorption amount of P on colloids and enhances the electrostatic and spatial repulsion between colloids as well as between colloids and quartz sand. It reduces the aggregation and adsorption of colloids, ultimately transferring P into groundwater through colloid-facilitated co-transport. The findings of this study clarified the relationship between the transport of P, colloids, and HCs, which provides a theoretical basis for explaining the P pollution mechanism in humus-rich areas.
Collapse
Affiliation(s)
- Changxi Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Simin Yao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Renkuan Liao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China.
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, United States
| |
Collapse
|
4
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
5
|
Tang Q, Xu Z, Tan Q, Shi X, Wu W, Pan D. Insight into Impact of Phosphate on the Cotransport and Corelease of Eu(III) with Bentonite Colloids in Saturated Quartz Columns. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132572. [PMID: 37742375 DOI: 10.1016/j.jhazmat.2023.132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Understanding the fate and transport of radionuclides in porous media reduces the risk of contaminating soils and groundwater systems. While the cotransport of bentonite colloids (BC) with radionuclides in saturated media is well documented, the role of phosphate (P) in the colloid-driven transport of radionuclides in saturated porous media is still unaddressed; in particular, phosphate increases the mobilities of radionuclides in porous media, which should be subjected to an environmental risk assessment and model construction. In this work, the effects of phosphate on the transport and release of Eu(III) in different colloid systems (P-Eu(III), P-BC, P-BC-Eu(III)) was investigated with a fundamental colloid chemistry approach and a range of characterization techniques. The results showed that intrinsic europium colloids with size of 685 nm were formed by precipitation with phosphate, which affected the mobility of Eu(III) due to colloid stability and physical straining. Phosphate enhanced BC and BC-Eu(III) transport, and a high phosphate concentration promoted BC transport by eliminating physical straining and enhancing the electrostatic repulsions. The crystal structure of EuPO4 was not destroyed by the subsequent introduction of BC, which carried EuPO4 for further migration. However, when phosphate, bentonite and Eu(III) coexisted in a colloid suspension, the phosphate promoted Eu(III) transport by preferentially interacting with the BC to form ternary BC-P-Eu(III) pseudo-colloids rather than forming the intrinsic EuPO4 colloids. The synergetic role of P and BC on Eu(III) transport involved a relatively complex process and was not a simply additive effect. The findings in this work highlight the significance of phosphate in controlling the fate and transport of Ln(III)/Am(III) radionuclides in the presence of intrinsic colloids and pseudo-colloids in P-rich colloid-bearing environments.
Collapse
Affiliation(s)
- Qingfeng Tang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| | - Qi Tan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingyi Shi
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Yin Y, Wang Y, Si H, Shang J. Temporal changes of exposure to water on physic-chemical, stability, and transport characteristics of pyrogenic carbon colloids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122834. [PMID: 37926407 DOI: 10.1016/j.envpol.2023.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Understanding the effect of the aging process on the properties of pyrogenic carbon (PyC) is critical for predicting and evaluating its transport and fate. Water exposure is a common application scenario of PyC entering aquatic systems or flooded paddy fields, which might significantly affect the aging process. However, only some studies focused on the changes in PyC properties by water exposure treatment. In this study, the effect of water exposure on the mobility of PyC was investigated. Fresh PyC, PyC with 1.5 years and 3.5 years of water exposure were selected and named as CK, 1.5WA, and 3.5WA, respectively. Our results revealed that CK had the lowest intensity of surface functional groups (-OH, CO, and C-O-C) and the intensity of 3.5WA was higher than that of 1.5WA. There was no significant change in dissolved organic matter (DOM) content between fresh and aged PyC colloids. However, UV absorbance and its parameters (E2/E3, E4/E6, and SR) exhibited a comparable tendency to the abundance of functional groups (-OH, CO, and C-O-C). The fresh and aged PyC colloids showed high stability in Na+ and Ca2+ solutions at varying pH values (A/A0 > 85%), which was also observed in groundwater. The mobility of fresh and aged PyC colloids differed in Na+ (21.74%-57.19%), Ca2+ (14.30%-40.12%) solutions and groundwater (28.50%-44.24%), but exhibited similar order (3.5WA > 1.5WA > CK). The mechanism of the effect of water exposure on the property and mobility of PyC colloids was explored. This study provides the fundamental information to estimate PyC fate and transport after long-term water exposure.
Collapse
Affiliation(s)
- Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, PR China
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, PR China
| | - Hongyu Si
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Zhang W, Guo X, Jiang M. Influence of humic acid and bovine serum albumin on colloid-associated heavy metal transport in saturated porous media. ENVIRONMENTAL TECHNOLOGY 2023; 44:3965-3974. [PMID: 35546295 DOI: 10.1080/09593330.2022.2077135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Colloid-facilitated contaminant transport in porous media has been widely observed in laboratory and field studies. In this study, the influence of two dissolved organic matters (DOMs), humic acid (HA) and bovine serum albumin (BSA), on the colloid-associated heavy metal transport, was investigated. Soil colloids with particle sizes <2 μm were prepared from bentonite. Glass bead was used as porous media for the column tests. The influence of DOM on the adsorption of Pb2+ and Cu2+ onto colloids was tested. Colloid mobility and colloid-metal co-transport in the presence/absence of DOMs were investigated by breakthrough tests. The test results showed that DOMs facilitated colloid mobility. The measured ζ-potentials showed that DOMs enhanced the electrostatic repulsion between colloids and glass beads and reduced colloid deposition. These findings were further confirmed by calculating the interaction energy using the DLVO theory. Batch tests showed the strong adsorption of Pb2+ and Cu2+ on the colloid, and the adsorption was enhanced by DOMs. The colloid-metal co-transport tests showed that colloids can significantly facilitate the transport of Pb2+ and Cu2+ and that the facilitation was further enhanced by DOMs. By heavy metals, the colloid mobility was retarded, mainly due to the increased deposition. The transport of Cu2+ facilitated by DOM was more obvious than that of Pb2+. Compared to BSA, the effect of HA on enhancing colloid mobility, increasing colloid adsorption to heavy metals, and hence on the facilitation of colloid-associated heavy metals transport was more prominent.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Mechanics and Engineering Science, Shanghai University Shanghai, People's Republic of China
| | - Xingzhang Guo
- School of Mechanics and Engineering Science, Shanghai University Shanghai, People's Republic of China
| | - Mohan Jiang
- School of Mechanics and Engineering Science, Shanghai University Shanghai, People's Republic of China
| |
Collapse
|
8
|
Pan Y, Chen C, Shang J. Effect of reduced inherent organic matter on stability and transport behaviors of black soil colloids. CHEMOSPHERE 2023:139149. [PMID: 37307927 DOI: 10.1016/j.chemosphere.2023.139149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Soil organic matter plays an important role in the stability, transport, and fate of soil colloids. At present, studies have mostly focused on the effects of adding exogenous organic matter on soil colloidal properties, while there is very limited research on the effect of reduced inherent soil organic matter on the environmental behavior of soil colloids. This study investigated the stability and transport behavior of black soil colloids (BSC) and black soil colloids with reduced inherent organic matter (BSC-ROM) under different ionic strength (5, 50 mM) and background solution pH (4.0, 7.0, and 9.0) conditions. Meanwhile, the release behavior of two soil colloids in the saturated sand column under transient ionic strength conditions was also studied. The results showed that both ionic strength reduction and pH increase increased the negative charges of BSC and BSC-ROM, and improved the electrostatic repulsion between soil colloids and grain surface, thereby promoting the stability and mobility of soil colloids. The decrease in inherent organic matter had little effect on the surface charge of soil colloids, suggesting that the electrostatic repulsive force was not the main force affecting the stability and mobility of BSC and BSC-ROM, and reducing inherent organic matter might significantly reduce the stability and mobility of soil colloids by weakening the steric hindrance interaction. The decrease of transient ionic strength reduced the depth of the energy minimum and activated the soil colloids retained on the surface of the grain at three pH conditions. This study is helpful to predict the potential impact of soil organic matter degradation on the fate of black soil colloids in natural environment system.
Collapse
Affiliation(s)
- Yue Pan
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
9
|
Lee C. Click chemistry-based novel albumin nanoparticles for anticancer treatment via H 2O 2 generation. Colloids Surf B Biointerfaces 2023; 226:113335. [PMID: 37148665 DOI: 10.1016/j.colsurfb.2023.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Glucose oxidase (GOD) exerts anticancer effects by producing hydrogen peroxide (H2O2). However, the use of GOD is limited by its short half-life and low stability. Systemic H2O2 production following systemic absorption of GOD can also cause serious toxicity. GOD-conjugated bovine serum albumin nanoparticles (GOD-BSA NPs) may be useful for overcoming these limitations. Here, bioorthogonal copper-free click chemistry was employed to develop GOD-BSA NPs that are non-toxic and biodegradable and can effectively and rapidly conjugate proteins. These NPs retained their activity, unlike conventional albumin NPs. NPs using dibenzyl cyclooctyne (DBCO)-modified albumin, azide-modified albumin, and azide-modified GOD were fabricated in 10 min. After intratumoral administration, GOD-BSA NPs remained in the tumor for a longer period and displayed better anticancer activity than the effects of GOD alone. GOD-BSA NPs were approximately 240 nm in size and inhibited tumor growth to 40 mm3, whereas tumors treated with phosphate-buffered saline or albumin NPs had sizes of 1673 and 1578 mm3, respectively. GOD-BSA NPs prepared using click chemistry may be useful as a drug delivery system for protein enzymes.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, South Korea.
| |
Collapse
|
10
|
Cheng S, Tan F, Wu X, Dong F, Liu J, Wang Y, Zhao H. Influences of protein-corona on stability and aggregation kinetics of Ti 3C 2T x nanosheets in aquatic environment. ENVIRONMENTAL RESEARCH 2023; 219:115131. [PMID: 36565845 DOI: 10.1016/j.envres.2022.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Proteins existed in aquatic environments strongly influence the transport, fate of nanomaterials due to the formation of protein-corona surrounding nanomaterials. To date, how do proteins affect the aggregation behaviors of MXene, a new family of two-dimensional materials, in aquatic environment remains unknown. Here the aggregation kinetics of MXene Ti3C2Tx nanosheets in various electrolytes (NaCl, CaCl2 and Na2SO4) was investigated by time-resolved dynamic light scattering in absence or presence of bovine serum albumin (BSA). Results showed that BSA affected the aggregation of Ti3C2Tx in a concentration-dependent manner. Addition of 3 mg/L BSA decreased the critical coagulation concentrations (CCCs) of Ti3C2Tx about 1.6-2.1 times, showing obvious destabilization effect; while BSA greater than 30 mg/L created a high-protein environment covering Ti3C2Tx, producing high spatial repulsion and enhancing the dispersibility of Ti3C2Tx. Ca2+ ions have greater effect on the aggregation of Ti3C2Tx due to the larger surface charge and bridging effect. The interaction between Ti3C2Tx and BSA followed Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and mainly attributed to hydrogen bonding and van der Waals forces, while positively charged lysine and arginine in BSA might attract onto Ti3C2Tx through electrostatic attraction. The interaction decreased the content of α-helix structure in BSA from 74.7% to 53.1%. Ti3C2Tx easily suffered from aggregation and their long-distance transport seemed impossible in synthetic or natural waters. The present findings provided new insights for understanding the transfer and fate of this nanomaterial in aquatic environments.
Collapse
Affiliation(s)
- Shizhu Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xuri Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fan Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jinghua Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Guo Y, Tang N, Guo J, Lu L, Li N, Hu T, Zhu Z, Gao X, Li X, Jiang L, Liang J. The aggregation of natural inorganic colloids in aqueous environment: A review. CHEMOSPHERE 2023; 310:136805. [PMID: 36223821 DOI: 10.1016/j.chemosphere.2022.136805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
12
|
Miao C, Zhou H, Lv Y, Shang J, Mamut A. Combined effects of ferrihydrite coating and ionic type on the transport of compost-derived dissolved organic matter in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119501. [PMID: 35636713 DOI: 10.1016/j.envpol.2022.119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Field application of manure compost introduces a large quantity of dissolved organic matter (DOM), which can affect the migration of DOM-associated contaminants. In this study, the transport of humic acid (HA) and compost-derived dissolved organic matter (CDOM) in two porous media under various conditions, including ionic types, ionic strength, and influent concentrations, were investigated by column experiments and modeling analysis. Increasing Na+ concentration did not affect the transport of CDOM and HA in quartz sands, but inhibited CDOM transport in ferrihydrite (Fh)-coated sands. The retention recoveries of CDOM in Fh-coated sands were not changed with increasing NaCl concentration, suggesting that the adsorption of CDOM on Fh-coated sands caused by increasing NaCl concentration was a reversible process. Ca2+ could reduce the mobility of CDOM and HA through bridge bonding and electrostatic interaction. CDOM had a higher mobility than HA in quartz sands under CaCl2 conditions because the aggregation stability of CDOM was stronger than that of HA. The ferrihydrite coating increased the roughness of sand surface, resulting in lower mobility of CDOM in the Fh-coated sands than in quartz sands. A part of CDOM adsorbed onto Fh-coated sand was strongly bound through ligand exchange-surface complexation. The pore volume of CDOM required to saturate adsorption sites onto the Fh-coated sand depends on the influent CDOM concentration. The influent CDOM with higher concentration required less pore volume to achieve adsorption equilibrium. Modeling analysis suggested that the types of deposition sites provided by Fh-coated sand are mainly irreversible sites. Our findings demonstrated that CDOM transport in the sand columns may change the porous medium's physicochemical properties and alter the hydrochemistry conditions. Therefore, these factors mentioned above should not be ignored when evaluating the environmental risks of CDOM.
Collapse
Affiliation(s)
- Chuanghe Miao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hu Zhou
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Conservation (North China), MARA, Beijing 100193, PR China
| | - Yizhong Lv
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Conservation (North China), MARA, Beijing 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Conservation (North China), MARA, Beijing 100193, PR China
| | - Ajigul Mamut
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
13
|
Yang W, Li B, Shang J. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155148. [PMID: 35405228 DOI: 10.1016/j.scitotenv.2022.155148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The colloidal particles, especially those at the nanoscale, are the most active part of the pyrogenic carbon (biochar). Increasingly applied biochar has resulted in a large number of biochar nanoparticles (NPs) being released into the environment. The aggregation of biochar NPs affects their environmental behavior and fate. The complex effects of anion type (Cl-, SO42-) and protein (bovine serum albumin, BSA) on the aggregation of wheat straw biochar (WB) and pinewood biochar (PB) NPs in solutions were investigated by the time-resolved dynamic light scattering method. The critical coagulation concentration (CCC) of WB and PB NPs in Na2SO4 solution was higher than their CCCs in NaCl solution, which was consistent with the Hofmeister series that SO42-, a kosmotrope anion, increased the interaction between water molecules, thus enhancing the hydrophobic interactions between biochar NPs in solution and promoting their aggregation, while Cl-, a chaotropic agent, exhibited the opposite effect. When BSA was added into the solution, BSA was adsorbed on the surface of biochar NPs and BSA corona was formed, which inhibited the aggregation of biochar NPs by inducing steric force. The enhanced stability of biochar NPs by BSA was more significant in NaCl than in Na2SO4 solution because BSA corona had a more negatively charged surface and a more steric structure in NaCl solution, thus generating stronger electrical repulsion and steric hindrance. The classical DLVO theory and the XDLVO theory incorporating the steric repulsion (in the presence of BSA) were used to interpret the aggregation and dispersion of biochar NPs. Through this study, we found that anion type indirectly affected the aggregation of biochar NPs by influencing the interaction between water molecules, while the aggregation of BSA-biochar NPs conjugates is mainly influenced by the surface charge and structure of BSA corona.
Collapse
Affiliation(s)
- Wen Yang
- Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, PR China
| | - Baoguo Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianying Shang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
14
|
Hu X, Hu P, Yang H. Influences of charge properties and hydrophobicity on the coagulation of inorganic and organic matters from water associated with starch-based coagulants. CHEMOSPHERE 2022; 298:134346. [PMID: 35314179 DOI: 10.1016/j.chemosphere.2022.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, two series of binary graft cationic starch-based coagulants (CS-DMCs and CS-DMLs) with different hydrophobicities and charge densities (CDs) were prepared by graft copolymerization of acrylamide with 2-(methacryloyloxy)-N,N,N- trimethylethanaminium chloride and acryloyloxyethyl dimethyl benzyl ammonium chloride, respectively, on the starch (St) backbone. Kaolin particles, sodium humate (NaHA), and bovine serum albumin (BSA) were used as the simulated sources of inorganic colloidal particles and different organic pollutants in the micropolluted turbid surface water. The influences of the CD and hydrophobicity associated with the St-based coagulants on the removal of kaolin particles, NaHA, and BSA from single, binary, and ternary pollutant aqueous systems were investigated systematically. On the basis of the apparent coagulation performance, the floc characteristics, and the zeta potentials of the supernatants after coagulation, the coagulation mechanisms associated with the structural features of the St-based coagulants and the pollutants treated were explored and discussed in detail. The St-based coagulants with a higher CD and a stronger hydrophobicity showed better coagulation performance due to the synergistic effects of charge neutralization and hydrophobic association. The maximum efficiencies of the optimized St-based coagulant in removal of Kaolin, NaHA and BSA were 93.85%, 100% and 97.52% in their respective single pollutant systems. In addition to these simulated water samples, a real micropolluted turbid surface water tested and compared, further confirming the superiority of the hydrophobically modified cationic St-based coagulants, especially in the purification of organic pollutants in water.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Pan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, PR China.
| |
Collapse
|
15
|
Wang C, Myshkin VF, Khan VA, Panamareva AN. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sun B, Zhang Y, Liu X, Wang K, Yang Y, Zhu L. Impacts of photoaging on the interactions between graphene oxide and proteins: Mechanisms and biological effect. WATER RESEARCH 2022; 216:118371. [PMID: 35381431 DOI: 10.1016/j.watres.2022.118371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) are subjected to photoaging in aquatic environment, and inevitably enter biota and then interact with proteins. Here, the interactions of pristine and photoaged GO with two typical proteins (bovine serum albumin (BSA) and lysozyme) were systematically investigated. Due to long term photoirradiation (1-3 day), the lateral size of GO decreased greatly, and the oxygen-containing groups decreased as well while the graphitic carbon contents increased. Compared to pristine GO, the photoaged GO displayed stronger binding affinities with both proteins, which was mainly attributed to the increased binding sites as a result of smaller lateral size and increased hydrophobicity. The photoaging effect was more obvious for the negatively charged BSA, because hydrogen bonding and van der Waals force were mainly involved in the enthalpy-driven interactions between them. While, the strong electrostatic attraction between the positively charged lysozyme and GO diminished the photoaging effect. Analyses of synchronous, three-dimensional fluorescence spectra and fibrillation experiments intensified that the photoaged GO induced more serious changes in conformational structure of BSA and exhibited stronger inhibition on fibrillation of BSA compared to pristine GO. This study provided novel insights into the increased ecological risks of GO as a result of photoaging.
Collapse
Affiliation(s)
- Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
17
|
Zhao K, Tufail S, Arai Y, Sharma P, Zhang Q, Chen Y, Wang X, Shang J. Effect of phytic acid and morphology on Fe (oxyhydr)oxide transport under saturated flow condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127659. [PMID: 34774354 DOI: 10.1016/j.jhazmat.2021.127659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Phytic acid (myo-inositol hexaphosphate, IHP) is a dominant form of organic phosphate (OP) in organic carbon-rich surface soil. The IHP impact on Fe (oxyhydr)oxide transport is critical for iron and phosphorus (bio)geochemical processes in iron and phosphorus rich soil and subsurface systems. Three typical Fe (oxyhydr)oxides (ferrihydrite, hematite, and goethite) were studied in this research. The effects of IHP and morphology on Fe (oxyhydr)oxide transport and IHP cotransport had been investigated using saturated sand columns. The results showed that IHP significantly enhanced the mobility of Fe (oxyhydr)oxide by 30-90% due to the stronger electrostatic repulsion. At low IHP concentration (< 50 µM IHP), the rod-like goethite and goethite-facilitated IHP showed high mobility due to their orientation and motion along the water flow, which is 70% faster than ferrihydrite and hematite at pH 5 and 90% faster at pH 10. The mobility of amorphous ferrihydrite was slowest among three selected iron oxides (< 37% at pH 5 and < 72% at pH 10). At high IHP concentration (> 50 μM IHP), the surface precipitation might have occurred on ferrihydrite because of its poorly ordered crystallinity, contributing to its less negatively charged surface and weak transport. The new insight provided in this study is essential for evaluating the fate and transport behavior of iron and iron-facilitate OP in soil rich in iron and OP.
Collapse
Affiliation(s)
- Kang Zhao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Shah Tufail
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 61801, USA
| | - Prabhakar Sharma
- School of Ecology and Environmental Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Qianru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yanhua Chen
- Institute of Plant Nutrition and Resource, Beijing Academy of Agricultural and Forestry Science, Beijing 100097, PR China
| | - Xiang Wang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
18
|
Xu G, Chen C, Shen C, Zhou H, Wang X, Cheng T, Shang J. Hydrogen peroxide and high-temperature heating differently alter the stability and aggregation of black soil colloids. CHEMOSPHERE 2022; 287:132018. [PMID: 34454221 DOI: 10.1016/j.chemosphere.2021.132018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemical oxidation and high-temperature heating have been widely used for the decontamination of soils polluted by hydrocarbons and the removal of soil organic matter. Chemical oxidation and high-temperature heating decreased the stability of soil colloids, but the difference in colloidal stability and aggregation behaviors of soil after chemical oxidation and high-temperature heating is not clear. In this study, taken black soil as an example, we tested the stability profiles of black soil colloids (BC), hydrogen peroxide (H2O2) treated black soil colloids (BC_H2O2), and 350 °C treated black soil colloids (BC_350 °C) in three salt solutions (NaCl, CaCl2, and Na2SO4) with different salt concentrations. The stability of soil colloids in salt solutions was in the order of BC > BC_350 °C > BC_H2O2. The salt concentrations at which three colloids started to be unstable were much lower for CaCl2 solution than those for NaCl and Na2SO4 solution. Salt concentrations that suspension started to be unstable were similar in NaCl and Na2SO4 solution for all the three colloids, but the colloidal stability profile in NaCl solution decreased faster than that in Na2SO4 solution when the suspension was unstable. The stability profiles of three colloids at the fast aggregation stage could be well fitted with the proposed exponential model, and model parameters (t0 and Smax) could reflect the stability behaviors of soil colloids in various salt solutions.
Collapse
Affiliation(s)
- Guolian Xu
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong Chen
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Chongyang Shen
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hu Zhou
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Cheng
- Department of Earth Sciences, Memorial University St. John's, Newfoundland and Labrador, A1B 3X5, Canada
| | - Jianying Shang
- Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Zhang Y, Tian R, Yang S, Guo X, Li H. Toward an approach for determining the Hamaker constant of soft materials using dynamic light scattering. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Xu Z, Niu Z, Pan D, Zhao X, Wei X, Li X, Tan Z, Chen X, Liu C, Wu W. Mechanisms of bentonite colloid aggregation, retention, and release in saturated porous media: Role of counter ions and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148545. [PMID: 34328966 DOI: 10.1016/j.scitotenv.2021.148545] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In the subsurface environment, colloids play an important role in pollutant transport by acting as the carriers. Understanding colloid release, transport, and deposition in porous media is a prerequisite for evaluating the potential role of colloids in subsurface contaminant transport. In this work, the aggregation, retention, and release of bentonite colloid in saturated porous sand media were investigated by kinetic aggregation and column experiments, the correlation and mechanism of these processes were revealed by combining colloid filtration theory, interaction energy calculation and density functional theory. The results showed that the retention and release of colloids were closely related to the dispersion stability and filtration effect. Multivalent cations with higher mineral affinity reduced the colloid stability, and the dispersion stability and mobility of the colloid were greatly improved by humic acid due to the enhancement of electrostatic repulsion and steric hindrance effects. The primary minimum interaction was found to contribute more to irreversible colloid retention in a Ca2+ system, while the secondary energy minimum was found to be responsible for colloid release with the occurrence of transient solution chemistry. The deposited colloid aggregates could be redistributed and released when the solution chemistry became favorable towards dispersion. These findings provide essential insight into the environmental colloid fate as well as a vital reference for the risk of colloid-driven transport of contaminants in the subsurface aquifer environment.
Collapse
Affiliation(s)
- Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhiwei Niu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| | - Xiaodong Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Xiaoyan Wei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Li
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Zhaoyi Tan
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Wang K, Zhang Y, Sun B, Yang Y, Xiao B, Zhu L. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons. CHEMOSPHERE 2021; 283:131159. [PMID: 34144287 DOI: 10.1016/j.chemosphere.2021.131159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most applied nanomaterials and have great potential to be present in the environment. Dissolved black carbon (DBC) is ubiquitous in soil as a result of large-scale application of biomass-derived black carbon as soil amendments, while its impacts on the transport of AgNPs remain unclear. In this study, two DBCs with different functional groups were prepared at 300 and 500 °C (DBC300 and DBC500), and their impacts on the transport of uncoated AgNPs (Bare-AgNP) and polyvinylpyrrolidone-coated AgNPs (PVP-AgNP) in saturated quartz sand were investigated. The transport of PVP-AgNP was much higher than Bare-AgNP under the same conditions because of the increased steric hindrance provided by PVP surface coating. The transport of two kinds of AgNPs was both enhanced by the DBCs under all the experimental conditions. DBC500 displayed a stronger enhancement effect than DBC300 on PVP-AgNP transport, but DBC300 facilitated the migration of Bare-AgNP more significantly than DBC500. The higher aromaticity and stronger hydrophobicity of DBC500 drove it to be adsorbed on the surface of PVP-AgNP, thus providing stronger steric hindrance and promotion effect on PVP-AgNP transport. However, DBC300 contained surface sulfhydryl groups, which bound with the Bare-AgNP tightly, therefore it greatly promoted Bare-AgNP transport via enhanced steric hindrance. (X)DLVO calculations indicated DBCs generally increased the energy barrier between the AgNPs and sand grains. The results shed light on the vital roles of both the properties of AgNPs and DBCs on the fate and environmental behaviors of silver nanomaterials in complex environments.
Collapse
Affiliation(s)
- Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Zhang W, Jiang F, Sun W. Investigating colloid-associated transport of cadmium and lead in a clayey soil under preferential flow conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2486-2498. [PMID: 34810326 DOI: 10.2166/wst.2021.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloids have a high adsorption capacity and can be mobile under preferential flow, and so may facilitate heavy metal migration. Heavy metal migration with soil colloids in a clayey soil under preferential flow conditions was investigated through experiments. Adsorption tests were carried out to determine the adsorption of Cd2+ and Pb2+ to the clay and colloids. The preferential flow characteristics in the soil column were investigated by dye tracing tests. The mobility of soil colloids in the soil column was studied by breakthrough tests. Leaching tests of cadmium and lead with and without colloids were carried out. The adsorption tests showed that soil colloids adsorbed more cadmium and lead than the silty clay. The dye tracing tests showed that moderate preferential flow in the soil column can be obtained by choosing clod-size distribution and dry density. The co-leaching test showed that the outflow of cadmium and lead was 1.49 and 33.88 times greater with colloids than without, respectively. The heavy metals adsorbed onto clay and the pore concentrations were both lower with colloids than without, indicating more heavy metals migrated downward with colloids. The migration of cadmium and lead was greatly enhanced by colloids under preferential flow conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Fengyong Jiang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Wenjing Sun
- Department of Civil and Energy Engineering, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China E-mail:
| |
Collapse
|
23
|
Wang J, Zhao X, Wu F, Tang Z, Zhao T, Niu L, Fang M, Wang H, Wang F. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO 2) in synthetic and natural waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147019. [PMID: 34088034 DOI: 10.1016/j.scitotenv.2021.147019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The homoaggregation of titanium dioxide nanoparticles (nTiO2) and their heteroaggregation with ubiquitous natural clay colloids are crucial processes affecting the environmental transport and fate of nTiO2, whereas the latter has received less attention. In this study, the effects of pH, electrolytes, natural organic matter (NOM), and montmorillonite on the homo- and heteroaggregation of nTiO2 were systematically investigated. The isoelectric point of bare nTiO2 was 6.98, whereas TiO2-montmorillonite mixtures remained negative charged due to the reduced particle surface potential by heteroaggregation. Homoaggregation of nTiO2 was mainly affected by anions, whereas heteroaggregation in TiO2-montmorillonite mixtures was mainly affected by cations. Heteroaggregation between nTiO2 and montmorillonite involved the adsorption of CC/CH. Intensive aggregation of nTiO2 was observed with 4 mg/L montmorillonite, whereas with 20 mg/L montmorillonite, the aggregation was significantly inhibited by the over-coverage of montmorillonite. NOM was attached to the surface of nTiO2 with the adsorption of functional groups involving CC/CH and OCO. The addition of NOM effectively reduced the homo- and heteroaggregation of nTiO2, and the stabilizing effect was enhanced with the increased molecular weight and aromatic/aliphatic fraction in NOM. Besides electrostatic repulsion, steric repulsion could also be one of the main stabilization mechanisms of NOM. With Ca2+ in the solutions, the stabilizing effect of NOM was significantly weakened through cation bridging. The addition of montmorillonite could facilitate the aggregation of nTiO2 in the presence of NOM. The homo- and heteroaggregation of nTiO2 were also observed in 7 different types of natural waters. Homoaggregation predominated in waters with high ionic strength and low NOM contents (seawater and groundwater), whereas heteroaggregation predominated in surface freshwater and wastewater systems. The results reflect the instability of nTiO2 in natural aquatic environments and the potential risk they pose to benthic organisms.
Collapse
Affiliation(s)
- Junyu Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongzhan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
24
|
Yan C, Cheng T, Li B, Shang J. Distinct interactions of pig and cow manure-derived colloids with TiO 2 nanoparticles and their impact on stability and transport. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125910. [PMID: 34492844 DOI: 10.1016/j.jhazmat.2021.125910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
The application of livestock manure and aquaculture wastewater into agricultural soil introduces animal manure-derived colloids into the environment. These manure-derived colloids generally contain different organic matter components and may facilitate nanoparticle transport to the subsurface. This study investigated the interaction between manure-derived colloids (cow and pig manures) and titanium dioxide (TiO2) nanoparticles at neutral pH. The effect of this interaction on the stability, aggregation, and transport of TiO2 in a saturated porous media was studied. Our study found that cow manure-derived colloids have many humic-like substances, and pig manure-derived colloids contain many protein components and some humic-like substances. The interactions of different manure-derived colloids with TiO2 can affect the ζ-potential and aggregation status of TiO2 in the aqueous system. The results showed that cow manure-derived colloids slightly increased the TiO2 transport due to electrostatic repulsion, while pig manure-derived colloids substantially increased the TiO2 mobility in porous media because of both electrostatic repulsion and steric hindrance. Since both animal manure and TiO2 are ubiquitously present in the natural environment, manure-derived colloids can change the surface properties of TiO2 and facilitate TiO2 transport in the subsurface.
Collapse
Affiliation(s)
- Chaorui Yan
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193, PR China
| | - Tao Cheng
- Department of Earth Sciences, Memorial University St. John's, Newfoundland and Labrador A1B 3X5, Canada
| | - Baoguo Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
25
|
Du M, Wang L, Ebrahimi A, Chen G, Shu S, Zhu K, Shen C, Li B, Wang G. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112291. [PMID: 33957420 DOI: 10.1016/j.ecoenv.2021.112291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Bacteria often respond to dynamic soil environment through the secretion of extracellular polymeric substances (EPS). The EPS modifies cell surface properties and soil pore-scale hydration status, which in turn, influences bacteria transport in soil. However, the effect of soil particle size and EPS-mediated surface properties on bacterial transport in the soil is not well understood. In this study, the simultaneous impacts of EPS and collector size on Escherichia coli (E. coli) transport and deposition in a sand column were investigated. E. coli transport experiments were carried out under steady-state flow in saturated columns packed with quartz sand with different size ranges, including 0.300-0.425 mm (sand-I), 0.212-0.300 mm (sand-II), 0.106-0.150 mm (sand-III) and 0.075-0.106 mm (sand-IV). Bacterial retention increased with decreasing sand collector size, suggesting that straining played an important role in fine-textured media. Both experiment and simulation results showed a clear drop in the retention rate of the bacterial population with the presence of additional EPS (200 mg L-1) (EPS+). The inhibited retention of cells in sand columns under EPS+ scenario was likely attributed to enhanced bacteria hydrophilicity and electrostatic repulsion between cells and sand particles as well as reduced straining. Calculations of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interactions energies revealed that high repulsive energy barrier existed between bacterial cells and sand particles in EPS+ environment, primarily due to high repulsive electrostatic force and Lewis acid-base force, as well as low attractive Lifshitz-van der Waals force, which retarded bacterial population deposition. Steric stabilization of EPS would also prevent the approaching of cells close to the quartz surface and thereby hinder cell attachment. This study was the first to show that EPS reduced bacterial straining in saturated porous media. These findings provide new insight into the functional effects of extrinsic EPS on bacterial transport behavior in the saturated soil environment, e.g., aquifers.
Collapse
Affiliation(s)
- Mengya Du
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Lin Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guowei Chen
- Department of Municipal Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shangyi Shu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Kun Zhu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Sun H, Jiao R, An G, Xu H, Wang D. Influence of particle size on the aggregation behavior of nanoparticles: Role of structural hydration layer. J Environ Sci (China) 2021; 103:33-42. [PMID: 33743914 DOI: 10.1016/j.jes.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130-480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and pH all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Du X, Liang H, Fang X, Cui S, Li J. Characteristics of colloids and their affinity for heavy metals in road runoff with different traffic in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20082-20092. [PMID: 33409991 DOI: 10.1007/s11356-020-12020-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The characteristics of colloids in urban road runoff with different traffic in Beijing, China, such as concentration, particle size, chemical property, and affinity for heavy metals were determined. The concentration of colloids was high, and an evident first flush effect was found in the runoff of road with heavy traffic. A large portion of colloids were distributed in the range of 1-10 μm. Traffic activity, rainfall intensity, and time of sample collection would not change the size distribution of colloids in the road runoff. The chemical property of colloids in the road runoff would be influenced by the soil erosion nearby green space, causing the content of organic colloids was high. The correlation coefficient between the concentration of colloids in colloidal fractions and the concentration of heavy metals (Cu, Zn, Cd, Pb, Fe, and Mn) in the road runoff with different traffic decreased with the same sequence from 0.02-0.2 μm, 0.2-0.45 μm, 0.45-1 μm, to 1-10 μm, suggesting that the heavy metals had stronger affinity for the colloids with small size. The concentration of Cu, Pb, and Zn exhibited significant correlations with the concentration of organic colloids in the road runoff. More aggregated spherical particles were found in the TEM image of the road runoff with heavy traffic. Zeta potentials and RMV data showed that the colloids with smaller size and the colloids in the road runoff with lighter traffic were much more stable.
Collapse
Affiliation(s)
- Xiaoli Du
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hui Liang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xing Fang
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849-5337, USA
| | - Shenshen Cui
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
28
|
Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. NANOMATERIALS 2021; 11:nano11030620. [PMID: 33801502 PMCID: PMC7999424 DOI: 10.3390/nano11030620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 01/27/2023]
Abstract
Mixed metal oxide (MMO) with relatively homogeneous mesopores was successfully obtained by calcination and reconstruction of albumin-templated layered double hydroxide (LDH). The aggregation degree of albumin-template was controlled by adjusting two different synthesis routes, coprecipitation and reconstruction. X-ray diffraction patterns and scanning electron microscopic images indicated that crystal growth of LDH was fairly limited during albumin-templated coprecipitation due to the aggregation. On the hand, crystal growth along the lateral direction was facilitated in albumin-templated reconstruction due to the homogeneous distribution of proteins moiety. Different state of albumin during LDH synthesis influenced the local disorder and porous structure of calcination product, MMO. The N2 adsorption-desorption isotherms demonstrated that calcination on reconstructed LDH produced MMO with large specific surface area and narrow distribution of mesopores compared with calcination of coprecipitated LDH.
Collapse
|
29
|
Rong H, He L, Li M, Zhang M, Yi K, Han P, Tong M. Different electrically charged proteins result in diverse transport behaviors of plastic particles with different surface charge in quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143837. [PMID: 33257066 DOI: 10.1016/j.scitotenv.2020.143837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The influence of proteins on the transport and deposition behaviors of microplastics (MPs) in quartz sand was examined at both low (5 mM) and high ionic strength (25 mM) in NaCl solutions at pH 6. Carboxylate- and amine-modified polystyrene latex microspheres with size of 200 nm were employed as negatively (CMPs) and positively surface charged MPs (AMPs), respectively, while bovine serum albumin (BSA) and bovine trypsin were utilized as representative negatively and positively charged proteins, respectively. The results showed that for two examined protein concentrations (both 1 and 10 mg/L TOC) under both ionic strength conditions, the presence of BSA increased the transport of both CMPs and AMPs, while the presence of trypsin decreased the transport of CMPs yet increased the transport of AMPs in porous media. The mechanisms driving to the changed transport of MPs induced by two types of proteins were found to be different. Particularly, steric interaction induced by BSA corona adsorbed onto CMPs surface as well as the repel effects resulted from BSA suspending in solutions were found to contribute to the enhanced CMPs transport with BSA copresent in suspensions. The increased sizes and the decreased electrostatic repulsion of CMPs due to the adsorption of trypsin onto CMPs, together with the addition of extra deposition sites due to the adsorption of trypsin onto quartz sand drove to the decreased CMPs transport with trypsin copresent in suspensions. The increased electrostatic repulsion due to the adsorption of BSA onto AMPs surfaces caused the enhanced AMPs transport with BSA in solutions. While, the decreased electrostatic attraction of AMPs due to the adsorption of trypsin onto AMPs, as well as the competition of deposition sites due to the adsorption of trypsin onto quartz sand contributed to the increased AMPs transport with trypsin copresent in suspensions. The results showed that the presence of different types of proteins would induce different transport behaviors of microplastics with different surface charge in porous media. Since proteins are widely present in aquatic systems, to more accurately predict the fate and transport of MPs in natural environments, the effects and mechanisms of proteins on the transport of MPs should be considered.
Collapse
Affiliation(s)
- Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
30
|
Li X, He E, Jiang K, Peijnenburg WJGM, Qiu H. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. WATER RESEARCH 2021; 190:116742. [PMID: 33348070 DOI: 10.1016/j.watres.2020.116742] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
Nanosized plastics are considered as being a class of contaminants of emerging concern. The interaction between nanoplastics and proteins may significantly influence the environmental behavior and fate of nanoplastics. Here, we employed time-resolved dynamic light scattering to explore the aggregation kinetics and stability of polystyrene nanoparticles (PSNPs) exposed to a model globular protein (bovine serum albumin, BSA) in the presence of a number of typical electrolytes (NaCl, CaCl2, and Na2SO4). With the increase of the BSA concentration, the amount of BSA adsorbed on the surface of negatively charged PS-Bare (non-modified) and PS-COOH (carboxyl-modified) increased, resulting in higher dispersibility in comparison to the treatment without BSA. This stabilization effect derived from the protein corona structure was revealed by combining characterization techniques and visualized by transmission electron microscopy. Upon addition of NaCl and CaCl2, the aggregation of positively charged PS-NH2 (amino-modified) was inhibited by the BSA addition possibly due to the screening of the attractive patch-charge force and the competition for adsorption of cations between PS-NH2 and the protein. When Na2SO4 was present in the suspension, BSA addition significantly increased PS-NH2 aggregation rate due to patch-charge attraction and the high performance of SO42- in attaching to particles and charge neutralization. These findings shed light on the interactions between PSNPs and proteins, which were shown to vary with the composition of the surface coatings of PSNPs. The newly gained knowledge will help us to forecast the transport and fate of PSNPs in natural aqueous systems.
Collapse
Affiliation(s)
- Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Ke Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Cheng H, Yang T, Jiang J, Lu X, Wang P, Ma J. Mn 2+ effect on manganese oxides (MnO x) nanoparticles aggregation in solution: Chemical adsorption and cation bridging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115561. [PMID: 33254660 DOI: 10.1016/j.envpol.2020.115561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Manganese oxides (MnOx) and Mn2+ usually co-exist in the natural environment, as well as in water treatments for Mn2+ removal. Therefore, it is necessary to investigate the influence of Mn2+ on the stability of MnOx nanoparticles, as it is vital to their fate and reactivity. In this study, we used the time-resolved dynamic light scattering technique to study the influence of Mn2+ on the initial aggregation kinetics of MnOx nanoparticles. The results show that Mn2+ was highly efficient in destabilizing MnOx nanoparticles. The critical coagulation concentration ratio of Mn2+ (0.3 mM) to Na+ (30 mM) was 2-6.64, which is beyond the ratio range indicated by the Schulze-Hardy rule. This is due to the coordination bond formed between Mn2+ and the surface O of MnOx, which could efficiently decrease the negative surface charge of MnOx. As a result, in the co-presence of Mn2+ and Na+, a small amount of Mn2+ (5 μM) could efficiently neutralize the negative charge of MnOx, thereby decreasing the amount of Na+, which mainly destabilized nanoparticles through electric double-layer compression, required to initiate aggregation. Further, Mn2+ behaved as a cation bridge linking both the negatively charged MnOx and humic acid, thereby increasing the stability of the MnOx nanoparticles as a result of the steric repulsion of the adsorbed humic acid. The results of this study enhance the understanding of the stability of the MnOx nanoparticles in the natural environment, as well as in water treatments.
Collapse
Affiliation(s)
- Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, Guangdong Province, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Panxin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
32
|
Li M, He L, Zhang X, Rong H, Tong M. Different surface charged plastic particles have different cotransport behaviors with kaolinite ☆particles in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115534. [PMID: 33254596 DOI: 10.1016/j.envpol.2020.115534] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The wide utilization of plastic related products leads to the ubiquitous presence of plastic particles in natural environments. Plastic particles could interact with kaolinite (one type of typical clay particles abundant in environments) and form plastic-kaolinite heteroaggregates. The fate and transport of both plastic particles and kaolinite particles thus might be altered. The cotransport and deposition behaviors of micron-sized plastic particles (MPs) with different surface charge (both negative and positive surface charge) with kaolinite in porous media in both 5 and 25 mM NaCl solutions were investigated in present study. Both types of MPs (negatively charged carboxylate-modified MPs (CMPs) and positively charged amine-modified MPs (AMPs)) formed heteroaggregates with kaolinite particles under both solution conditions examined, however, CMPs and AMPs exhibited different cotransport behaviors with kaolinite. Specifically, the transport of both CMPs and kaolinite was increased under both ionic strength conditions when kaolinite and CMPs were copresent in suspensions. While, when kaolinite and positively charged AMPs were copresent in suspensions, negligible transport of both kaolinite and AMPs were observed under examined salt solution conditions. The competition deposition sites by kaolinite (the portion suspending in solution) with CMPs-kaolinite heteroaggregates led to the increased transport both CMPs and kaolinite when both types of colloids were copresent. In contrast, the formation of larger sized AMPs-kaolinite heteroaggregates with surface charge heterogeneity led to the negligible transport of both kaolinite and AMPs when they were copresent in suspensions. The results of this study show that when plastic particles and kaolinite particles are copresent in natural environments, their interaction with each other will affect their transport behaviors in porous media. The alteration in the transport of MPs or kaolinite (either increased or decreased transport) is highly correlated with the surface charge of MPs.
Collapse
Affiliation(s)
- Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
33
|
Cheng H, Yang T, Ma J, Jiang J, Wang P. The aggregation kinetics of manganese oxides nanoparticles in Al(III) electrolyte solutions: Roles of distinct Al(III) species and natural organic matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140814. [PMID: 32755774 DOI: 10.1016/j.scitotenv.2020.140814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
This study explored the aggregation kinetics of manganese oxides (MnOx) nanoparticles in Al(III) electrolyte solutions. This is a common process in both water treatments and the natural environment. The results show that aggregation kinetics are Al(III) species-dependent. Without natural organic matters (NOM), ferron Ala (monomeric Al(III)) and ferron Alb (polymeric Al(III)) are the main species controlling the Derjaguin-Landau-Verwey-Overbeek (DLVO) type aggregation behavior of MnOx at pH 5.0 and 7.2, respectively. Ala and Alb can neutralize and reverse the negative charge of MnOx. Correspondingly, the attachment efficiency as a function of Al(III) concentrations contains three stages: destabilization, diffusion-limited, and re-stabilization stage. Interestingly, due to the tiny size of Alb nanoclusters, they behave similar to free ions and do not induce heteroaggregation at pH 7.2. The influence of some model NOM (i.e., bovine serum albumin (BSA), Sigma humic acid (HA), and alginate) was also studied. At pH 5.0, alginate polymers, while Sigma HA and BSA cannot be, are linked by Al(III) to form alginate gel clusters which bridge MnOx nanoparticles, and thus induce bridging flocculation. At pH 7.2, NOM induce the aggregation of Alb nanoclusters to form NOM-Al(III) aggregates through charge neutralization effects. Consequently, highly enhanced aggregation rate, due to the heteroaggregation between these aggregates and MnOx, was observed.
Collapse
Affiliation(s)
- Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Panxin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
34
|
Li Y, Wang M, Zhang Y, Koopal LK, Tan W. Goethite effects on transport and activity of lysozyme with humic acid in quartz sand. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Liang D, Wang X, Wang Y, Dong Z, Zhao X, Fan W. The dual effect of natural organic matter on the two-step internalization process of Au@Sio 2 in freshwater. WATER RESEARCH 2020; 184:116216. [PMID: 32721761 DOI: 10.1016/j.watres.2020.116216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) in aquatic ecosystems reshapes the surface of nanoparticles (NPs) greatly. Understanding how these changes influence the bioavailability of NPs is critical for accurately predicting the ecological risks of NPs. A quantitative model based on the two-step internalization process enabled the differentiation between the adhesion ability of NPs to membranes and the internalization capacity. Using protozoa Tetrahymena thermophila as the test organism, fluorescein isothiocyanate-modified silica NPs (FITC-SiO2) and silica-coated gold NPs (Au@SiO2) were prepared to validate the model and study the influence of DOM on uptake. DOM reduced the ability of Au@SiO2 to adhere onto cell membranes and the inhibitory effect of bovine serum albumin (BSA) and β-lactoglobulin was higher due to their higher molecular weights and the weaker interaction. Moreover, DOM increased the internalization capacity. 80% Au@SiO2 was internalized in the presence of humic acid (HA), over 90% Au@SiO2 was internalized in the presence of the two proteins, whereas only 60% were internalized by the control group. Next, the specific recognition of the cell internalization in the presence of DOM was confirmed. We concluded that the traditional "accumulation" may misestimate the true biological effect caused by NPs coated with DOM. NPs coated with highly bioavailable DOM pose a greater risk to aquatic ecosystems because they are more likely to be internalized by living organisms.
Collapse
Affiliation(s)
- Dingyuan Liang
- School of Space and Environment, Beihang University, Beijing 100191, P.R. China
| | - Xiangrui Wang
- School of Space and Environment, Beihang University, Beijing 100191, P.R. China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 100191, P.R. China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, P.R. China
| | - Xiaoli Zhao
- Chinese Res Institute Environmental Science, State Key Lab Environmental Criteria & Risk Assessment, Beijing 100012
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, P.R. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, P.R. China.
| |
Collapse
|
36
|
Martinez DST, Da Silva GH, de Medeiros AMZ, Khan LU, Papadiamantis AG, Lynch I. Effect of the Albumin Corona on the Toxicity of Combined Graphene Oxide and Cadmium to Daphnia magna and Integration of the Datasets into the NanoCommons Knowledge Base. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1936. [PMID: 33003330 PMCID: PMC7599915 DOI: 10.3390/nano10101936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
In this work, we evaluated the effect of protein corona formation on graphene oxide (GO) mixture toxicity testing (i.e., co-exposure) using the Daphnia magna model and assessing acute toxicity determined as immobilisation. Cadmium (Cd2+) and bovine serum albumin (BSA) were selected as co-pollutant and protein model system, respectively. Albumin corona formation on GO dramatically increased its colloidal stability (ca. 60%) and Cd2+ adsorption capacity (ca. 4.5 times) in reconstituted water (Daphnia medium). The acute toxicity values (48 h-EC50) observed were 0.18 mg L-1 for Cd2+-only and 0.29 and 0.61 mg L-1 following co-exposure of Cd2+ with GO and BSA@GO materials, respectively, at a fixed non-toxic concentration of 1.0 mg L-1. After coronation of GO with BSA, a reduction in cadmium toxicity of 110 % and 238% was achieved when compared to bare GO and Cd2+-only, respectively. Integration of datasets associated with graphene-based materials, heavy metals and mixture toxicity is essential to enable re-use of the data and facilitate nanoinformatics approaches for design of safer nanomaterials for water quality monitoring and remediation technologies. Hence, all data from this work were annotated and integrated into the NanoCommons Knowledge Base, connecting the experimental data to nanoinformatics platforms under the FAIR data principles and making them interoperable with similar datasets.
Collapse
Affiliation(s)
- Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
| | - Aline Maria Z. de Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Latif U. Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- NovaMechanics Ltd., Nicosia 1065, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
37
|
Yu Z, Tian R, Liu D, Zhang Y, Li H. Aggregation kinetics of binary systems containing kaolinite and Pseudomonas putida induced by different 1:1 electrolytes: specific ion effects. PEERJ PHYSICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-pchem.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background
The interactions between colloidal particles in the binary systems or mixture colloids containing clay minerals and bacteria have important influences on formations and stabilities of soil aggregates, transportations of soil water, as well as biological activities of microorganisms. How the interfacial reaction of metal ions affects their interaction therefore becomes an important scientific issue.
Methods
Dynamic light scattering studies on the aggregation kinetics of mixture colloids containing kaolinite and Pseudomonas putida (P. putida) were conducted in this study.
Results
Aggregation could be observed between kaolinite and kaolinite, between kaolinite and P. putida when P. putida content was less than 33.3%. Additionally, aggregation rates decreased with increasing P. putida content. The critical coagulation concentrations and activation energies indicated that there were strong specific ion effects on the aggregation of mixture colloids. Most importantly, the activation energy increased sharply with increasing P. putida content, which might result from the lower Hamaker constant of P. putida compared with that of kaolinite.
Contributions
(1) Strong specific ion effects on mixture colloids aggregation of kaolinite-P. putida were observed; (2) the aggregation behavior of mixture colloids was determined by the average effects of mixture colloids, rather than the specific component. This finding provides an important methodological guide for further studies on the colloidal aggregation behavior of mixture systems with organic and inorganic materials.
Collapse
Affiliation(s)
- Zhaoxuan Yu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Rui Tian
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Dian Liu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Yekun Zhang
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Hang Li
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Dong Z, Hou Y, Han W, Liu M, Wang J, Qiu Y. Protein corona-mediated transport of nanoplastics in seawater-saturated porous media. WATER RESEARCH 2020; 182:115978. [PMID: 32622130 DOI: 10.1016/j.watres.2020.115978] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The offshore aquaculture environment is a potential water area with high concentrations of tiny plastics and feeding proteins. In this study, the negatively charged bovine serum albumin (BSA) and the positively charged lysozyme (LSZ) were used to explore the effects of protein corona on the aggregation, transport, and retention of polystyrene nanoplastics (NPs; 200, 500, and 1000 nm) in sea sand saturated with seawater of 35 practical salinity units (PSU). The BSA corona, which was formed by the adsorption of BSA on the surface of NPs, drove the dispersion of NPs (200 and 500 nm) due dominantly to the induced colloidal steric hindrance. For example, the aggregate sizes of 500 nm NP decreased from 1740 ± 87 nm to 765 ± 8 nm at 40 min, which resulted in the enhanced transportation of NP. The calculated interaction energies indicated the BSA corona-induced high energy barriers (>104 KBT) between 1000 nm NPs and sand surface, demonstrating the BSA-enhanced transport of 1000 nm NPs. The mass percentage recovered from the effluent (Meff) increased from 33.4% to 61.7%. Inversely, the LSZ corona triggered the aggregation of 200 nm NPs into the large aggregates via electrostatic adsorption and bridging effect, thereby inhibiting the transport of 200 nm NPs. Nevertheless, no LSZ corona was formed on the surface of 500 and 1000 nm NPs due to extremely low protein adsorption. Accordingly, LSZ cannot affect the stability and transport of these NPs. In the diluted seawater (3.5 PSU), the strong electrostatic attraction between positively charged LSZ and 500 nm NPs significantly increased and the LSZ corona formed, which induced the aggregation of 500 nm NPs. The Meff of NPs therefore decreased from 53.1% to 11.2%. Overall, the protein corona-mediated transport of NPs in seawater-saturated porous media depends on protein type, NP size, and seawater salinity.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yuanzhang Hou
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Wenhui Han
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mengping Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Junliang Wang
- College of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
39
|
Wang Y, Wan Q, Liu B, Wei Z, Zhang M, Tang Y. Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: Effect of kaolinite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137779. [PMID: 32208243 DOI: 10.1016/j.scitotenv.2020.137779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The increasing excavation and utilization of rare earth elements (REEs) have resulted in an elevated release of these elements into the environment. Therefore, investigating the transport behavior of REEs is critical for a comprehensive understanding of their geochemical cycles and to propose potential pollution control strategies. This study investigated the transport, co-transport, and competitive retention of three REEs: La (a light REE), Gd (a middle REE), and Yb (a heavy REE), as well as the co-transport of REEs and kaolinite (a representative clay mineral) in porous media. Both observed and simulated breakthrough curves and retention profiles demonstrated that all ionic REEs exhibited considerable breakthrough and slight retention with almost uniform shapes in quartz sand (QS) owing to the weak affinity of ionic REEs to QS. The breakthrough of REEs in all experiments followed the order of La > Gd > Yb, indicating that REE breakthrough increased with decreasing atomic number. The same elements exhibited their highest breakthrough during the co-transport of the three REEs, followed by co-transport of two REEs, and finally single transport. Furthermore, mathematical modeling indicated that the retention of REEs in QS was a predominantly kinetic process, whereby competitive blocking was the dominant mechanism for the enhanced breakthrough of REEs during co-transport, as compared to single transport. The co-transport of REEs and kaolinite demonstrated that kaolinite has a slight influence on the transport of REEs in QS under adsorption kinetics. However, REEs inhibited the transport and strongly enhanced the retention of kaolinite in QS due to a decreasing electrostatic repulsion between kaolinite and QS in the presence of REEs, even if the adsorption of REEs onto kaolinite was weak under adsorption kinetics. Therefore, this study increases our understanding of the transport mechanisms of REEs in the environment.
Collapse
Affiliation(s)
- Yujie Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Quan Wan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikai Wei
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
40
|
Wang Y, Bradford SA, Shang J. Release of colloidal biochar during transient chemical conditions: The humic acid effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114068. [PMID: 32041081 DOI: 10.1016/j.envpol.2020.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Our understanding of colloidal biochar (CB) transport and release is largely unknown in environments with transient chemical conditions, e.g., ionic strength (IS), pH, and especially humic acid (HA). In this study, column experiments were conducted to investigate CB transport and retention in the presence and absence of HA, and CB release under transient IS and pH conditions in saturated sand. Step reductions in solution IS from 25 to 0.01 mM produced significant release peaks of CB due to a reduction in the depth of the primary minima on rough surfaces with small energy barriers. In contrast, step increases of solution pH from 4 to 10 only slightly increased CB release presumably due to the strong buffering capacity of CB. The CB retention was diminished by HA during the deposition phase. However, the release of CB with transients in IS and pH was not influenced much when deposition occurred in the presence of HA. These observations indicate that HA increased the energy barrier during deposition but did not have a large influence on the depth of the interacting minimum during transient release. Potential explanations for these effects of HA on CB retention and transient release include enhanced repulsive electrostatic interactions and/or altering of surface roughness properties. Our findings indicated that the release of retained CB is sensitive to transient IS conditions, but less dependent on pH increases and CB deposition in the presence of HA. This information is needed to quantify potential benefits and/or adverse risks of mobile CB in natural environments.
Collapse
Affiliation(s)
- Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, 92507, United States
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
41
|
Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. WATER 2020. [DOI: 10.3390/w12040980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Soil colloids significantly facilitate the transport of contaminants; however, little is known about the effects of highly reactive iron oxide and the most representative organic matter on the transport of soil colloids with different physicochemical properties. This study investigated the effects of goethite (GT) and humic acid (HA) on the sedimentation and transport of soil colloids using settling and column experiments. The stability of soil colloids was found to be related to their properties and decreased in the following order: black soil colloids (BSc) > yellow soil colloids (YSc) > fluvo-aquic soil colloids (FSc). Organic matter increased the stability of BSc, and ionic strength (Ca2+) promoted the deposition of FSc. Colloids in individual and GT colloids (GTc) coexistence systems tended to stabilize at high pH and showed a pH-dependence whereby the stability decreased with decreasing pH. The interaction of GTc and kaolinite led to a dramatic sedimentation of YSc at pH 4.0. HA enhanced the stability of soil colloids, especially at pH 4.0, and obscured the pH-dependent sedimentation of soil colloids. The transport ability of soil colloids was the same as their stability. The addition of GT retarded the transport of soil colloids, which was quite obvious at pH 7.0. This retardation effect was attributed to the transformation of the surface charge of sand from negative to positive, which increased the electrical double-layer attraction. Although sand coated with GT–HA provided more favorable conditions for the transport of soil colloids in comparison to pure sand, the corresponding transport was relatively slow. This suggests that the filtration effect, heterogeneity, and increased surface roughness may still influence the transport of soil colloids.
Collapse
|
42
|
Wang L, Wu X, Zhao Z, Fan F, Zhu M, Wang Y, Na R, Li QX. Interactions between Imidacloprid and Thiamethoxam and Dissolved Organic Matter Characterized by Two-Dimensional Correlation Spectroscopy Analysis, Molecular Modeling, and Density Functional Theory Calculations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2329-2339. [PMID: 32011126 DOI: 10.1021/acs.jafc.9b06857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The heavy application of neonicotinoid insecticides in agricultural production has burdened the environment. In the present study, interactions of two neonicotinoid insecticides imidacloprid and thiamethoxam with dissolved organic matter (DOM) were investigated by spectroscopic techniques, molecular modeling, and density functional theory (DFT) calculations. The static mechanism of imidacloprid and thiamethoxam quenching the endogenous fluorescence of DOM was assessed through time-resolved analyses. During the binding process, a protein-like substance binds imidacloprid and thiamethoxam later than a humic-like substance, as analyzed by two-dimensional correlation spectroscopy, but more strongly than the humic-like substance, as suggested by molecular modeling and DFT calculations. The conformational changes of DOM are attributed to imidacloprid and thiamethoxam, as assessed with three-dimensional spectra. Fourier transform infrared spectroscopy indicated that DOM binds imidacloprid and thiamethoxam by hydroxyl, aliphatic C-H, amide I, and carboxyl to form stable DOM-imidacloprid and DOM-thiamethoxam complexes. Understanding the changes in the structural conformation of humic-like and protein-like substances with imidacloprid and thiamethoxam helps further understand the fate of the neonicotinoids in the environment.
Collapse
Affiliation(s)
- Lijun Wang
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection , Henan Agricultural University , Wenhua Road No. 95 , Zhengzhou 450002 , China
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Xiaoqin Wu
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Zongyuan Zhao
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Fugang Fan
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Meiqing Zhu
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Yi Wang
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection , Henan Agricultural University , Wenhua Road No. 95 , Zhengzhou 450002 , China
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment , Anhui Agricultural University , Hefei 230036 , China
| | - Risong Na
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection , Henan Agricultural University , Wenhua Road No. 95 , Zhengzhou 450002 , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
43
|
Rastghalam ZS, Yan C, Shang J, Cheng T. Nanoscale titanium dioxide (nTiO2) aggregation and transport in the co-presence of dissolved phosphate, illite colloid, and Fe oxyhydroxide coating. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|