1
|
Fang W, Zhang R, Yang W, Spanjers H, Zhang P. A novel strategy for waste activated sludge treatment: Recovery of structural extracellular polymeric substances and fermentative production of volatile fatty acids. WATER RESEARCH 2024; 266:122421. [PMID: 39260197 DOI: 10.1016/j.watres.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/21/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Structural extracellular polymeric substances (SEPS) as valuable biopolymers, can be extracted from waste activated sludge (WAS). However, the extraction yield is typically low, and detailed information on SEPS characterizations, as well as proper treatment of the sludge after SEPS extraction, remains limited. This study aimed to optimize the conditions of heating-Na2CO3 extraction process to increase the yield of SEPS extracted from WAS. Subsequently, SEPS were characterized, and, for the first time, insights into their protein composition were uncovered by using proteomics. A maximum SEPS yield of 209 mg g-1 volatile solid (VS) was obtained under optimal conditions: temperature of 90 °C, heating time of 60 min, Na+ dosage of 8.0 mmol/g VS, and pH required to precipitation of 4.0, which was comparable to that from the aerobic granular sludge reported in literature. Proteomics analysis unveiled that the proteins in SEPS primarily originated from microorganisms involved in nitrogen fixation and organic matter degradation, including their intracellular and membrane-associated regions. These proteins exhibited various catalytic activities and played crucial roles in aggregation processes. Besides, the process of SEPS extraction significantly enhanced volatile fatty acid (VFA) production during the anaerobic fermentation of residual WAS after SEPS extraction. A maximum VFA yield of 420 ± 14 mg COD/g VSadded was observed in anaerobic fermentation of 10 d, which was 77.2 ± 0.1 % higher than that from raw sludge. Mechanism analysis revealed that SEPS extraction not only improved WAS disintegration and solubilization but also reduced the relative activity of methanogens during anaerobic fermentation. Moreover, SEPS extraction shifted the microbial population during anaerobic fermentation in the direction towards hydrolysis and acidification such as Fermentimonas sp. and Soehngenia sp. This study proposed a novel strategy based on SEPS extraction and VFA production for sludge treatment, offering potential benefits for resource recovery and improved process efficiency.
Collapse
Affiliation(s)
- Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenjing Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Henri Spanjers
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, the Netherlands.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Zuo Z, Niu C, Zhao X, Lai CY, Zheng M, Guo J, Hu S, Liu T. Biological bromate reduction coupled with in situ gas fermentation in H 2/CO 2-based membrane biofilm reactor. WATER RESEARCH 2024; 254:121402. [PMID: 38461600 DOI: 10.1016/j.watres.2024.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
3
|
Xiao Y, Zhangzhong L, Tan S, Song P, Zheng W, Li Y. Effect of nanobubble concentrations on fouling control capacity in biogas slurry wastewater distribution systems. BIORESOURCE TECHNOLOGY 2024; 396:130455. [PMID: 38360221 DOI: 10.1016/j.biortech.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Nanobubble (NB) represents a promising practice for mitigating fouling in biogas slurry distribution systems. However, its anti-fouling effectiveness and optimal use dosage are unknown. This study investigated the NB anti-fouling capacity at six concentrations (0 %-100 %, denoting the ratio of maximum NB-infused water; particle concentrations in 0 % and 100 % ratios were 1.08 × 107 and 1.19 × 109 particles mL-1, respectively). Results showed that NB effectively mitigated multiple fouling at 50 %-100 % ratios, whereas low NB concentration exacerbated fouling. NB functioned both as an activator and a bactericide for microorganisms, significantly promoting biofouling at 5 %-25 %, and inhibiting biofouling at 50 %-100 %. Owing to an enhanced biofilm biomineralization ability, low NB concentration aggravated precipitate fouling, whereas high NB doses effectively mitigated precipitates. Additionally, higher NB concentrations demonstrated superior control efficiency against particulate fouling. This study contributes insights into NB effectiveness in controlling various fouling types within wastewater distribution systems.
Collapse
Affiliation(s)
- Yang Xiao
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Zhangzhong
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Siyuan Tan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Wengang Zheng
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Liu D, Cen R, Yuan A, Wu M, Luo C, Chen M, Liang X, He T, Wu W, He T, Tian G. Effects of continuous low-speed biogas agitation on anaerobic digestion of high-solids pig manure: Performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120355. [PMID: 38364542 DOI: 10.1016/j.jenvman.2024.120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate effects of continuous low-speed biogas agitation on the anaerobic digestion (AD) performance and microbial community of high-solids pig manure (total solids content of 10%). Our results reveal that at a biogas agitation intensity of 1.10 L/g feed VS/d, CH4 production increased by 16.67% compared to the non-agitated condition, the removal efficiency of H2S reached 63.18%, and the abundance of Methanosarcina was the highest. The presence of Hungateiclostridiaceae was associated with H2S concentrations. An increasing biogas agitation intensity led to an elevated pH and a decreased oxidation-reduction potential (ORP). Acetate concentrations, pH, and ORP values indicated changes in H2S concentrations. Sedimentibacter demonstrates the potential to indicate biogas agitation intensity and pH. We demonstrate that continuous low-speed biogas agitation effectively increases CH4 production and reduces H2S concentrations in AD of high-solids pig manure, offering a potential technical pathway for developing AD processes for high-solids pig manure, it also demonstrates that AD process can reduce the risk of pathogen and parasite transmission.
Collapse
Affiliation(s)
- Dan Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ruxiang Cen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai Yuan
- Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang, 550001, China
| | - Mingxiang Wu
- Agricultural Environmental Monitoring Station in Yu-ping County, Yu-ping County of Guizhou Province, 554000, China
| | - Can Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiwen Liang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tenbing He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenxuan Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Guangliang Tian
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Wang S, Zhu XM, Hong SD, Zheng SJ, Wang YB, Huang XC, Tian YC, Li WT, Lu YZ, Wu J, Zeng RJ, Dai K, Zhang F. Unveiling the Occurrence and Non-Negligible Role of Amino Sugars in Waste Activated Sludge Fermentation by an Enriched Chitin-Degradation Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1966-1975. [PMID: 38153028 DOI: 10.1021/acs.est.3c09302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.
Collapse
Affiliation(s)
- Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Mei Zhu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi-Bo Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing-Chen Huang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong-Ze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Candry P, Godfrey BJ, Winkler MKH. Microbe-cellulose hydrogels as a model system for particulate carbon degradation in soil aggregates. ISME COMMUNICATIONS 2024; 4:ycae068. [PMID: 38800124 PMCID: PMC11126157 DOI: 10.1093/ismeco/ycae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Particulate carbon (C) degradation in soils is a critical process in the global C cycle governing greenhouse gas fluxes and C storage. Millimeter-scale soil aggregates impose strong controls on particulate C degradation by inducing chemical gradients of e.g. oxygen, as well as limiting microbial mobility in pore structures. To date, experimental models of soil aggregates have incorporated porosity and chemical gradients but not particulate C. Here, we demonstrate a proof-of-concept encapsulating microbial cells and particulate C substrates in hydrogel matrices as a novel experimental model for soil aggregates. Ruminiclostridium cellulolyticum was co-encapsulated with cellulose in millimeter-scale polyethyleneglycol-dimethacrylate (PEGDMA) hydrogel beads. Microbial activity was delayed in hydrogel-encapsulated conditions, with cellulose degradation and fermentation activity being observed after 13 days of incubation. Unexpectedly, hydrogel encapsulation shifted product formation of R. cellulolyticum from an ethanol-lactate-acetate mixture to an acetate-dominated product profile. Fluorescence microscopy enabled simultaneous visualization of the PEGDMA matrix, cellulose particles, and individual cells in the matrix, demonstrating growth on cellulose particles during incubation. Together, these microbe-cellulose-PEGDMA hydrogels present a novel, reproducible experimental soil surrogate to connect single cells to process outcomes at the scale of soil aggregates and ecosystems.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195-2700, United States
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands. E-mail:
| | - Bruce J Godfrey
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195-2700, United States
| | | |
Collapse
|
7
|
Qi J, Zhou Q, Huang D, Yu Z, Meng F. Construction of synthetic anti-fouling consortia: fouling control effects and polysaccharide degradation mechanisms. Microb Cell Fact 2023; 22:230. [PMID: 37936187 PMCID: PMC10631183 DOI: 10.1186/s12934-023-02235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(β-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qicheng Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Danlei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
8
|
Xu Y, Meng X, Song Y, Lv X, Sun Y. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128845. [PMID: 36898564 DOI: 10.1016/j.biortech.2023.128845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Investigating the effect of butyric acid concentration on anaerobic digestion systems in complex systems is important for the efficient degradation of butyric acid and improving the efficiency of anaerobic digestion. In this study, different loadings of butyric acid with 2.8, 3.2, and 3.6 g/(L·d) were added to the anaerobic reactor. At a high organic loading rate of 3.6 g/(L·d), methane was efficiently produced with VBP (Volumetric Biogas Production) of 1.50 L/(L·d) and biogas content between 65% and 75%. VFAs concentration remained below 2000 mg/L. Metagenome sequencing revealed changes in the functional flora within different stages. Methanosarcina, Syntrophomonas, and Lentimicrobium were the main and functional microorganisms. That the relative abundance of methanogens exceeded 35% and methanogenic metabolic pathways were increased indicated the methanogenic capacity of the system significantly improved. The presence of a large number of hydrolytic acid-producing bacteria also indicated the importance of the hydrolytic acid-producing stage in the system.
Collapse
Affiliation(s)
- Yonghua Xu
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xianghui Meng
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yunong Song
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xiaoyi Lv
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yong Sun
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China.
| |
Collapse
|
9
|
Hu ZY, Lin YP, Wang QT, Zhang YX, Tang J, Hong SD, Dai K, Wang S, Lu YZ, van Loosdrecht MCM, Wu J, Zeng RJ, Zhang F. Identification and degradation of structural extracellular polymeric substances in waste activated sludge via a polygalacturonate-degrading consortium. WATER RESEARCH 2023; 233:119800. [PMID: 36868117 DOI: 10.1016/j.watres.2023.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
By maintaining the cell integrity of waste activated sludge (WAS), structural extracellular polymeric substances (St-EPS) resist WAS anaerobic fermentation. This study investigates the occurrence of polygalacturonate in WAS St-EPS by combining chemical and metagenomic analyses that identify ∼22% of the bacteria, including Ferruginibacter and Zoogloea, that are associated with polygalacturonate production using the key enzyme EC 5.1.3.6. A highly active polygalacturonate-degrading consortium (GDC) was enriched and the potential of this GDC for degrading St-EPS and promoting methane production from WAS was investigated. The percentage of St-EPS degradation increased from 47.6% to 85.2% after inoculation with the GDC. Methane production was also increased by up to 2.3 times over a control group, with WAS destruction increasing from 11.5% to 28.4%. Zeta potential and rheological behavior confirmed the positive effect which GDC has on WAS fermentation. The major genus in the GDC was identified as Clostridium (17.1%). Extracellular pectate lyases (EC 4.2.2.2 and 4.2.2.9), excluding polygalacturonase (EC 3.2.1.15), were observed in the metagenome of the GDC and most likely play a core role in St-EPS hydrolysis. Dosing with GDC provides a good biological method for St-EPS degradation and thereby enhances the conversion of WAS to methane.
Collapse
Affiliation(s)
- Zhi-Yi Hu
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Peng Lin
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing-Ting Wang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Xin Zhang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Tang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Di Hong
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Dai
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Wang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Ze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Raymond Jianxiong Zeng
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang Zhang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Angenent SC, Schuttinga JH, van Efferen MFH, Kuizenga B, van Bree B, van der Krieken RO, Verhoeven TJ, Wijffels RH. Hydrogen Oxidizing Bacteria as Novel Protein Source for Human Consumption: An Overview. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2207270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The increasing threat of climate change combined with the prospected growth in the world population puts an enormous pressure on the future demand for sustainable protein sources for human consumption. In this review, hydrogen oxidizing bacteria (HOB) are presented as a novel protein source that could play a role in fulfilling this future demand. HOB are species of bacteria that merely require an inflow of the gasses hydrogen, oxygen, carbon dioxide, and a nitrogen source to grow in a conventional bioreactor. Cupriavidus necator is proposed as HOB for industrial cultivation due to its remarkably high protein content (up to 70% of mass), suitability for cultivation in a bioreactor, and the vast amount of available background information. A broad overview of the unique aspects of the bacteria will be provided, from the production process, amino acid composition, and source of the required gasses to the future acceptance of HOB into the market.
Collapse
|
11
|
Liu X, Wang D, Chen Z, Wei W, Mannina G, Ni BJ. Advances in pretreatment strategies to enhance the biodegradability of waste activated sludge for the conversion of refractory substances. BIORESOURCE TECHNOLOGY 2022; 362:127804. [PMID: 36007767 DOI: 10.1016/j.biortech.2022.127804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a low-cost technology widely used to divert waste activated sludge (WAS) to renewable energy production, but is generally restricted by its poor biodegradability which mainly caused by the endogenous and exogenous refractory substances present in WAS. Several conventional methods such as thermal-, chemical-, and mechanical-based pretreatment have been demonstrated to be effective on organics release, but their functions on refractory substances conversion are overlooked. This paper firstly reviewed the presence and role of endogenous and exogenous refractory substances in anaerobic biodegradability of WAS, especially on their inhibition mechanisms. Then, the pretreatment strategies developed for enhancing WAS biodegradability by facilitating refractory substances conversion were comprehensively reviewed, with the conversion pathways and underlying mechanisms being emphasized. Finally, the future research needs were directed, which are supposed to improve the circular bioeconomy of WAS management from the point of removing the hindering barrier of refractory substances on WAS biodegradability.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giorgio Mannina
- Engineering Department - Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
12
|
Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C. Appl Microbiol Biotechnol 2022; 106:4801-4811. [PMID: 35759034 DOI: 10.1007/s00253-022-12042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
The electricity production via psychrophilic microbial fuel cell (PMFC) for wastewater treatment in cold regions offers an alternative to avoid the unwanted methane dissolution of traditional anaerobic fermentation. But, it is seldom reported by mixed-culture, especially closed to 0 °C. Thus, a two-chamber mixed-culture PMFC at 4 °C was successfully operated in this study using acetate as an electron donor. The main results demonstrated a good performance of PMFC, including the maximum voltage of 513 mV at 1000 Ω, coulombic efficiency of 53%, and power density of 689 mW/m2. The cyclic voltammetry curves of enriched biofilm showed a direct electron transfer pathway. These good performances of mixed-culture PMFC were due to the high psychrophilic activity of enriched biofilm, including exoelectrogens genera of Geobacter (6.1%), Enterococcus (17.5%), and Clostridium_sensu_stricto_12 (3.8%). Consequently, a mixed-culture PMFC provides a reasonable strategy to enrich exoelectrogens with high activity. For low-temperature regions, the mixed-culture PMFC involved biotechnologies shall benefit energy generation and valuable chemical production in the future. KEY POINTS: • PMFC showed a maximum voltage of around 513 mV under a resistance of 1000 Ω. • The coulombic efficiency was 53% and the max power density was 689 mW/m2. • Geobacter, Enterococcus, and Clostridium_sensu_stricto_12 were key exoelectrogens.
Collapse
|
13
|
Tang J, Dai K, Wang QT, Zheng SJ, Hong SD, Jianxiong Zeng R, Zhang F. Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. BIORESOURCE TECHNOLOGY 2022; 351:126978. [PMID: 35276377 DOI: 10.1016/j.biortech.2022.126978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Caproate production from organic wastes is deemed as a novel strategy in mixed culture fermtation (MCF). However, producing caproate from natural sugar of xylose by MCF is seldom reported and the metabolic pathway is still unclear. Thus, the caproate production from xylose was investigated in this study by mesophilic MCF. The results showed that the caproate concentration from xylose (10 g/L) was 1.2 ± 0.17 g/L (equal to 2.7 gCOD/L) under pH 5.0. Dosing extra ethanol of 5 g/L could slightly increase the caproate production by ∼ 30% (i.e., 1.6 g/L). While dosing extra acetate of 5 g/L negatively affected the caproate production, which was just 0.2 g/L. The microbial analysis illustrated that genus Caproiciproducens was a main identified caproate producer, occupying over 80% of enriched mixed culture. The fatty acid biosynthesis pathway was identified via metagenomic analysis. These unexpected differences extended the understanding of caproate production from organic wastes.
Collapse
Affiliation(s)
- Jie Tang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing-Ting Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
14
|
Wang S, Hu ZY, Geng ZQ, Tian YC, Ji WX, Li WT, Dai K, Zeng RJ, Zhang F. Elucidating the production and inhibition of melanoidins products on anaerobic digestion after thermal-alkaline pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127377. [PMID: 34879570 DOI: 10.1016/j.jhazmat.2021.127377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The refractory organics released from waste activated sludge (WAS) are unwanted produced in thermal-alkaline pretreatment, which are not well documented. In this study, we refer to them as melanoidins products (MPs) with characteristics of high molecular weight and inhibition to microbes. The results showed that these MPs from thermal-alkaline (80 °C and pH 10) pretreatment of WAS were identified with a broad molecular weight (>1000 Da). Dark-colored MPs were further verified from glucose and tryptophan as the model components, with values of UV280 and UV420 increasing. The produced MPs with a molecular weight of 1220, 6835, and even 21,200,000 Da were confirmed by SEC-HPLC. Unexpectedly, MPs were found to be electroactive with higher redox peak values than that of humic acids, which were almost not degraded by anaerobes as revealed by SEC-HPLC and 3D-EEM spectra. For the first time, the results demonstrated that MPs delayed volatile fatty acids production and reduced the methane yield (22-26% lower), which was likely attributed to the toxicity and/or electrons competition with anaerobes such as Methanosaeta. Thus, it is clear that MPs negatively impact anaerobic digestion after thermal-alkaline pretreatment, which shall be re-evaluated to minimize MPs when producing biochemicals from WAS.
Collapse
Affiliation(s)
- Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Yi Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Xiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
15
|
Hu ZY, Wang S, Geng ZQ, Dai K, Ji WX, Tian YC, Li WT, Zeng RJ, Zhang F. Controlling volatile fatty acids production from waste activated sludge by an alginate-degrading consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150730. [PMID: 34606857 DOI: 10.1016/j.scitotenv.2021.150730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
It is desirable to control volatile fatty acids (VFAs) recovery from waste activated sludge (WAS) while avoiding the release of N and P. Structural extracellular polymeric substances (St-EPS), with typical components of alginate and polygalacturonic acid, resist the biodegradation of extracellular polymeric substances (EPS) in WAS. Previously, we purposely enriched an alginate-degrading consortium (ADC), but, both controlling VFAs production and cell integrity after dosing with ADC were not investigated. In this work, ADC with a high percentage of the genus Bacteroides (~67%) was further enriched with alginate utilization above 95%. The St-EPS content in WAS was 109.7 ± 3.3 mg/g-VSS, accounting for 31% of EPS. After dosing ADC in the WAS, the main metabolites were acetate (1.6 g/L) and propionate (0.7 g/L), the hydrolysis efficiency was increased to 38%, and the acidification efficiency was increased to 72%. Cell integrity was maintained during WAS fermentation by dosing with ADC according to no P release and unchanged lactate dehydrogenase activity. VFA production was mainly from the EPS, and protein degradation in EPS resulted in low N release (e.g., 212 mg/L from casein and no P release). Consequently, ADC doing offers the advantages of controlling VFAs production from EPS while maintaining cell integrity.
Collapse
Affiliation(s)
- Zhi-Yi Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen-Xiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
16
|
Geng ZQ, Qian DK, Hu ZY, Wang S, Yan Y, van Loosdrecht MCM, Zeng RJ, Zhang F. Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16636-16645. [PMID: 34860015 DOI: 10.1021/acs.est.1c05289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uronic acid in extracellular polymeric substances is a primary but often ignored factor related to the difficult hydrolysis of waste-activated sludge (WAS), with alginate as a typical polymer. Previously, we enriched alginate-degrading consortia (ADC) in batch reactors that can enhance methane production from WAS, but the enzymes and metabolic pathway are not well documented. In this work, two chemostats in series were operated to enrich ADC, in which 10 g/L alginate was wholly consumed. Based on it, the extracellular alginate lyase (∼130 kD, EC 4.2.2.3) in the cultures was identified by metaproteomic analysis. This enzyme offers a high specificity to convert alginate to disaccharides over other mentioned hydrolases. Genus Bacteroides (>60%) was revealed as the key bacterium for alginate conversion. A new Entner-Doudoroff pathway of alginate via 5-dehydro-4-deoxy-d-glucuronate (DDG) and 3-deoxy-d-glycerol-2,5-hexdiulosonate (DGH) as the intermediates to 2-keto-3-deoxy-gluconate (KDG) was constructed based on the metagenomic and metaproteomic analysis. In summary, this work documented the core enzymes and metabolic pathway for alginate degradation, which provides a good paradigm when analyzing the degrading mechanism of unacquainted substrates. The outcome will further contribute to the application of Bacteroides-dominated ADC on WAS methanogenesis in the future.
Collapse
Affiliation(s)
- Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Yi Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Yan
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
17
|
Yan Y, Geng ZQ, Dai K, Guo X, Zeng RJ, Zhang F. Decoupling mechanism of Acid Orange 7 decolorization and sulfate reduction by a Caldanaerobacter dominated extreme-thermophilic consortium. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126498. [PMID: 34214849 DOI: 10.1016/j.jhazmat.2021.126498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The biological treatment of textile wastewater discharged from the dye baths and rinsing processes are challenged by both high temperatures of 50-80 °C and sulfate reduction. At present, most studies report azo dyes can be removed under mesophilic conditions, but the sulfate reduction is inevitable, consuming extra electron donors and producing undesirable sulfide. In this work, a Caldanaerobacter (> 97%) dominated extreme-thermophilic consortium (EX-AO7) was enriched using xylose as the substrate. The typical sulfate-reducing enzymes such as sulfite oxidase and sulfite reductase were not identified in enriched EX-AO7 by the metagenomic analysis. Then, the decolorization and sulfate reduction were expectedly decoupled by enriched EX-AO7 in extreme-thermophilic conditions, in which no sulfide was detected during the AO7 decolorization process. AO7 of 100 and 200 mg/L could be totally decolorized by EX-AO7. However, when 400 mg/L AO7 was added, the residual AO7 concentration was 22 ± 19 mg/L after 24 h, which was mainly due to the toxicity of AO7. Dosing zero-valent iron (ZVI) could also promote AO7 decolorization by 1.7 times since the addition of ZVI could provide a proliferative environment for EX-AO7 growth. Thereby, our work provides a new paradigm to promote the AZO dyes decolorization and minimize sulfate reduction.
Collapse
Affiliation(s)
- Yang Yan
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Guo
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
18
|
Su F, Yang YY. Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge. J Appl Microbiol 2020; 131:236-256. [PMID: 33187022 DOI: 10.1111/jam.14930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
AIMS Various applications of microbially induced carbonate precipitation (MICP) has been proposed. However, most studies use cultured pure strains to obtain MICP, ignoring advantages of microbial consortia. The aims of this study were to: (i) test the feasibility of a microbial consortium to produce MICP; (ii) identify functional micro-organisms and their relationship; (iii) explain the MICP mechanism; (iv) propose a way of applying the MICP technique to soil media. METHODS AND RESULTS Anaerobic sludge was used as the source of the microbial consortium. A laboratory anaerobic sequencing batch reactor and beaker were used to perform precipitation experiment. The microbial consortium produced MICP with an efficiency of 96·6%. XRD and SEM analysis showed that the precipitation composed of different-size calcite crystals. According to high-throughput 16S rRNA gene sequencing, the functional micro-organisms included acetogenic bacteria, acetate-oxidizing bacteria and archaea Methanosaeta and Methanobacterium beijingense. The methanogenesis acetate degradation provides dissolved inorganic carbon and increases pH for MICP. A series of reactions catalysed by many enzymes and cofactors of methanogens and acetate-oxidizers are involved in the acetate degradation. CONCLUSION This work demonstrates the feasibility of using the microbial consortium to achieve MICP from an experimental and theoretical perspective. SIGNIFICANCE AND IMPACT OF THE STUDY A method of applying the microbial-consortium MICP to soil media is proposed. It has the advantages of low cost, low environmental impact, treatment uniformity and less limitations from natural soils. This method could be used to improve mechanical properties, plug pores and fix harmful elements of soil media, etc.
Collapse
Affiliation(s)
- F Su
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| | - Y Y Yang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| |
Collapse
|
19
|
Luo Y, Yue X, Wei P, Zhou A, Kong X, Alimzhanova S. A state-of-the-art review of quinoline degradation and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141136. [PMID: 32777494 DOI: 10.1016/j.scitotenv.2020.141136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Quinoline is a critical raw material for the dye, metallurgy, pharmaceutical, rubber, and agrochemical industries, and its use poses a serious threat to human health and the ecological environment. Quinoline has carcinogenic, teratogenic and mutagenic effects on the human body through food accumulation. However, due to the steric hindrance of its bicyclic fused structure and its long photooxidation half-life, quinoline is too difficult to decompose naturally. To date, numerous technologies have been used to degrade quinoline, whereas only a few have been reviewed. Therefore, this paper is focused on offering a comprehensive overview of the state of quinoline degradation in an effort to improve its degradation efficiency and fully utilize the carbon and nitrogen within quinoline without causing any damage to the environment. Accordingly, the strains, research progress and mechanisms of various methods for degrading quinoline are explored and elucidated in detail, especially quinoline biodegradation and the combination of these technologies for efficient removal. The state-of-the-art processes and new findings of our team on the biofortification of quinoline degradation are also presented. Finally, research bottlenecks and gaps for future research were identified along with the prospects and resource utilization of quinoline. These discussions facilitate the realization of the zero discharge of quinoline.
Collapse
Affiliation(s)
- Yanhong Luo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; North University of China, Shouzhou 036024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Peng Wei
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shyryn Alimzhanova
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
20
|
Yang H, Deng L. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids. BIORESOURCE TECHNOLOGY 2020; 318:124047. [PMID: 32871320 DOI: 10.1016/j.biortech.2020.124047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
This study proposed a new mixing method for anaerobic digestion treating animal wastewater using air as gas source of agitation (named "air mixing") and demonstrated its feasibility by comparing with other mixing modes. The results indicated that the methane production for air mixing was increased by 6.4%, 11.9% and 19.6% compared with biogas mixing, mechanical mixing and no mixing. Air mixing improved the mass transfer and the homogeneous mixing time was shortened from 10 min of mechanical mixing to 1.5 min at the same power input. A transient microaerobic environment was created by air mixing, which increased the hydrolysis efficiency by 1.7-11.4% compared with biogas mixing and facilitated VFAs generation and consumption, as well as promoted the syntrophic relationship between facultative bacteria and hydrogenotrophic methanogens. The relative contribution of the improvement of mass transfer and the reaction of microaerobic environment to methane production was 62.9% and 37.1%, respectively.
Collapse
Affiliation(s)
- Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Zhang X, Li R. Variation and distribution of antibiotic resistance genes and their potential hosts in microbial electrolysis cells treating sewage sludge. BIORESOURCE TECHNOLOGY 2020; 315:123838. [PMID: 32693346 DOI: 10.1016/j.biortech.2020.123838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrolysis cells (MECs) system is an emerging pollution control technology. However, information on the variation of antibiotic resistance genes (ARGs) in MECs treating sewage sludge is still very limited. In this study, the fate of ARGs and their correlation with microbes in MECs under different applied voltages (0-1.5 V) were studied. Most target ARGs were effectively removed, but tetB, tetM and tetQ were enriched up to 2.05 log units in suspended sludge. Most ARGs were mainly distributed on electrodes, except tetQ and tetM enriched in suspended sludge. The selective pressure of residual antibiotics in the sewage sludge was negligible. Horizontal gene transfer was validated for the spread of sul1, sul2, tetA and tetC in MECs. Network analysis revealed that the potential hosts of ARGs mainly belonged to Bacteroidetes, Firmicutes and Proteobacteria. Some genera related to electron transfer were newly found to be the potential ARGs hosts in MECs.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
22
|
Zhang W, Niu Y, Li YX, Zhang F, Jianxiong Zeng R. Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture. BIORESOURCE TECHNOLOGY 2020; 313:123645. [PMID: 32544804 DOI: 10.1016/j.biortech.2020.123645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen-oxidizing bacteria (HOB) can utilize hydrogen and oxygen to produce valuable products in biomass, including polyhydroxyalkanoates, microbial proteins, and biofertilizers. However, the method of enriching HOB as biofertilizers from mixed culture remains unknown. In this study HOB were enriched with nitrate as nitrogen source at a hydraulic retention time of 10 h. The nitrate consumption rate was 120 mgN/L/d or 16 mg N/g VSS/h, which was comparable to those of denitrification using organic carbon or hydrogen. The percentage of Azospirillum (dominated genus, reported biofertilizing HOB) was 84.89% and the dominated species was Azospirillum lipoferum strain DSM 1691. Furthermore, the enriched HOB had the abilities of 1-aminocyclopropane-1-carboxylate conversion and phosphate solubilization, the functions of biofertilizers. This is the first report on the enrichment of biofertilizing HOB from mixed culture. Meanwhile, the enriched HOB can recover nitrate from wastewater without any secondary nitrogen pollution, extending HOB application for resource recovery from wastewater.
Collapse
Affiliation(s)
- Wei Zhang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yun Niu
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong-Xin Li
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
23
|
Dai K, Sun T, Yan Y, Qian DK, Zhang W, Zhang F, Jianxiong Zeng R. Electricity production and microbial community in psychrophilic microbial fuel cells at 10 °C. BIORESOURCE TECHNOLOGY 2020; 313:123680. [PMID: 32562970 DOI: 10.1016/j.biortech.2020.123680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Psychrophilic microbial fuel cell (PMFC) offers an alternative method for low temperature wastewater treatment, but is seldom reported. In this study, the two-chamber PMFC was constructed at 10 °C using acetate as an electron donor. The maximum voltage under external resistance of 1000 Ω was around 550 mV. The columbic efficiency (CE) was 82.4% under external resistance of 100 Ω and the max power density was 582.4 mW/m2. After temperature decreasing to 4 °C, the maximum voltage also reached 530 mV and CE was 38.4%. The direct electron transfer was proposed in PMFC according to cyclic voltammetry curves. The short enriching time (~30 days) of biofilm in the anodic electrode may be due to the high activity of enriched novel exoelectrogens of M. fermentans (46.2%) and E. lemanii (15.4%). The development of PMFC involved biotechnologies in low temperature regions shall benefit for valuable chemicals production and energy generation in the future.
Collapse
Affiliation(s)
- Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Sun
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Yan
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
24
|
Egerland Bueno B, Américo Soares L, Quispe-Arpasi D, Kimiko Sakamoto I, Zhang Y, Amancio Varesche MB, Ribeiro R, Tommaso G. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. BIORESOURCE TECHNOLOGY 2020; 312:123552. [PMID: 32502889 DOI: 10.1016/j.biortech.2020.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal liquefaction is a process that converts wet biomass into biofuels, more specifically bio-crude oil. During the process, post hydrothermal liquefaction waste water (PHWW) is generated, rich in nutrient and organic matter, however potentially toxic. Anaerobic digestion of PHWW from Spirulina, was evaluated using biostimulated sludge as a strategy to optimize the process. The biostimulation was conducted in a sequential batch reactor fed with organic acids and methanol aiming at development of acetogenic and methanogenic microorganism. Anaerobic biodegradability batch assays were performed, with biostimulated sludge and with non-biostimulated sludge, using increasing PHWW concentrations. Biostimulated sludge were more favourable for reaching higher methane yields at higher organic matter concentrations in comparison to non-biostimulated sludge, presenting less inhibition at conditions tested. Biostimulation was a key process to select and favour potential microorganisms involved in specialized uptake of recalcitrant compounds, such as Mesotoga and Methanomethylovorans.
Collapse
Affiliation(s)
- Beatriz Egerland Bueno
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Laís Américo Soares
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Diana Quispe-Arpasi
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Maria Bernadete Amancio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Rogers Ribeiro
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Giovana Tommaso
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil.
| |
Collapse
|
25
|
Qian DK, Geng ZQ, Sun T, Dai K, Zhang W, Jianxiong Zeng R, Zhang F. Caproate production from xylose by mesophilic mixed culture fermentation. BIORESOURCE TECHNOLOGY 2020; 308:123318. [PMID: 32278998 DOI: 10.1016/j.biortech.2020.123318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Caproate production by mixed culture fermentation (MCF) is economically attractive. Xylose is known as the second most abundant sugar in nature, however, producing caproate from xylose is never reported. In this study, caproate production from xylose by mesophilic MCF was firstly investigated. The results showed that as pH decreasing to 5.0, the caproate concentration was 2.06 g/L in a batch reactor and was between 0.45 and 1.07 g/L in a continuously stirred reactor. Microbial analysis illustrated that Caproiciproducens and Clostridium_sensu_stricto_12, as two main identified caproate producers, occupied over 50% and around 10% of mixed culture, respectively. Thus, caproate production from xylose was proposed via the fatty acid biosynthesis pathway, not the well-known reverse β-oxidation pathway. These unexpected differences from literatures gains more understanding about caproate production from organic substrates via MCF.
Collapse
Affiliation(s)
- Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Sun
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
26
|
Zhang F, Qian DK, Wang XB, Dai K, Wang T, Zhang W, Zeng RJ. Stimulation of methane production from benzoate with addition of carbon materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138080. [PMID: 32220738 DOI: 10.1016/j.scitotenv.2020.138080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Huge amounts of wastewater that contain aromatic compounds such as benzene and phenols are discharged worldwide. Benzoate is a typical intermediate in the anaerobic transformation of those aromatic compounds. In this study, electrically conductive carbon-based materials of granulated activated carbon (GAC), multiwalled carbon nanotubes (MwCNTs), and graphite were evaluated for the ability to promote the benzoate degradation. The results showed that 82-93% of the electrons were recovered in CH4 production from benzoate. The carbon materials stimulated benzoate degradation in the sequence of GAC (5 g/L) > MwCNTs (1 g/L) ~ Graphite (0.1 g/L) > Control. Acetate was the only detected intermediate in the process of benzoate degradation. Taxonomic analyses revealed that benzoate was degraded by Syntrophus to acetate and H2, which were subsequently converted to methane by Methanosarcina (both acetoclastic methanogens and hydrogenotrophic methanogens) and Methanoculleus (hydrogenotrophic methanogens), and direct interspecies electron transfer (DIET) of Desulfovibrio and Methanosarcina. Thus, these results suggest a method to effectively enhance the removal of aromatic compounds and methane recovery.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xian-Bin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
27
|
Affiliation(s)
- Xiaodi Hao
- Beijing University of Civil Engineering and Architecture (BUCEA), China.
| | - Guanghao Chen
- The Hong Kong University of Science and Technology (HKUST), China.
| | - Zhiguo Yuan
- The University of Queensland (UQ), Australia.
| |
Collapse
|
28
|
Zhang W, Zhang F, Li YX, Jiang Y, Zeng RJ. No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. BIORESOURCE TECHNOLOGY 2019; 294:122237. [PMID: 31683454 DOI: 10.1016/j.biortech.2019.122237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Free volatile fatty acids such as free acetic acid (FAA) and free butyrate acid (FBA) are true inhibitors of hydrogenotrophic methanogens (HM) in mixed culture. However, their inhibitory effects on pure culture of HM remain unclear. In this study, a typical HM of Methanobacterium formicicum demonstrated no difference in toxicity conferred by FAA, free propionate acid (FPA), or FBA in regard to the specific methanogenic activity (SMA) based on the C50% (0.19, 0.17, and 0.23 g/L, respectively) and recoverable concentration values (0.97, 0.69, and 0.61 g/L, respectively). These results were within the same order of magnitude. The concentrations of FAA, FBA, and FPA all correlated well with the SMA values according to the inhibition model. Additionally, changes in the activity of the electron transport system also agreed well with the trend in the SMA variation. Together, the results of this study provide a benchmark to control methanogenesis during industrial applications.
Collapse
Affiliation(s)
- Wei Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong-Xin Li
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong Jiang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|