1
|
Yan H, Liu Y, Zhang H, Jin S, Han Z, Woo J, Tucker ME, Meng L, Chi X, Han C, Zhao Y, Zhao Y, Zhao H. Interaction of Ca 2+ and Fe 3+ in co-precipitation process induced by Virgibacillus dokdonensis and its application. J Environ Sci (China) 2025; 147:131-152. [PMID: 39003035 DOI: 10.1016/j.jes.2023.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 07/15/2024]
Abstract
Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and β-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuping Liu
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haojuan Zhang
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
2
|
Arve PH, Mason M, Randall DG, Simha P, Popat SC. Concomitant urea stabilization and phosphorus recovery from source-separated fresh urine in magnesium anode-based peroxide-producing electrochemical cells. WATER RESEARCH 2024; 256:121638. [PMID: 38691899 DOI: 10.1016/j.watres.2024.121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.
Collapse
Affiliation(s)
- Philip H Arve
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Marc Mason
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Dyllon G Randall
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Prithvi Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sudeep C Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Shen S, Xie L, Wan R, Li X, Lu X, Dai H. Sediment microbial fuel cell coupled floating treatment wetland for enhancing non-reactive phosphorus removal. CHEMOSPHERE 2024; 358:142142. [PMID: 38677619 DOI: 10.1016/j.chemosphere.2024.142142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The presence of non-reactive phosphorus (NRP) in environmental waters presents a potential risk of eutrophication and poses challenges for the removal of all phosphorus (P) fractions. This study presents the first investigation on the removal performance and mechanism of three model NRP compounds, sodium tripolyphosphate (STPP), adenosine 5'-monophosphate (AMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), in the sediment microbial fuel cell-floating treatment wetland (SMFC-FTW). Coupling SMFC with plants proved to be effective at removing NRP via electrochemical oxidation and plant uptake, particularly the challenging-to-degrade phosphonates that contain C-P bonds. Compared with the control group, the removal efficiencies of the model NRP in SMFC were observed to increase by 11.9%-20.8%. SMFC promoted the conversion of NRP to soluble reactive phosphorus (sRP) and the transfer of P to sediment. Furthermore, the electrochemical process enhanced both plant growth and P uptake, and increased P assimilation by 72.6%. The presence of plants in the bioelectrochemical system influenced the occurrence and fate of P by efficiently assimilating sRP and supporting microbial transformation of NRP. Consequently, plants enhanced the removal efficiencies of all P fractions in the overlying water. This study demonstrated that SMFC-FTW is a promising technology to remove various NRP species in environmental waters.
Collapse
Affiliation(s)
- Shuting Shen
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China.
| | - Longxiao Xie
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Xiang Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Xiwu Lu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China.
| | - Hongliang Dai
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China.
| |
Collapse
|
4
|
Zhou J, Chang Y, Yang D, Yang L, Jiang B, Yan W, Xu H, Xu X. A novel membrane-free electrochemical separation-filtering crystallization coupling process for treating circulating cooling water. WATER RESEARCH 2024; 256:121617. [PMID: 38642535 DOI: 10.1016/j.watres.2024.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The traditional electrochemical descaling process exhibits drawbacks, including low OH- utilization efficiency, constrained cathode deposition area, and protracted homogeneous precipitation time. Consequently, this study introduces a novel membrane-free electrochemical separation-filtering crystallization (MFES-FC) coupling process to treat circulating cooling water (CCW). In the membrane-free electrochemical separation (MFES) system, OH- is rapidly extracted by pump suction from the porous cathode boundary layer solution, preventing neutralization with H+, thereby enhancing the removal of Ca2+ and Mg2+. Experimental results indicate that the pH of the pump suction water can swiftly increase from 8.13 to 11.42 within 10 min. Owing to the high supersaturation of the pump suction water, this study couples the MFES with a filtration crystallization (FC) system that employs activated carbon as the medium. This approach captures scale particles to enhance water quality and expedites the homogeneous precipitation of hardness ions, shortening the treatment time while further augmenting the removal rate. After the MFES-FC treatment, the single-pass removal rates for total hardness, Ca2+ hardness, Mg2+ hardness, and alkalinity in the effluent reached 92 %, 97 %, 64 %, and 67 %, respectively, with turbidity of 3 NTU, current efficiency of 86.6 %, and energy consumption of 7.19 kWh·kg-1 CaCO3. This coupling process facilitates an effective removal of hardness and alkalinity at a comparatively low cost, offering a new reference and inspiration for advancements in electrochemical descaling technology.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuexin Chang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China.
| | - Xing Xu
- Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China
| |
Collapse
|
5
|
Zhang J, Liu Y, Li J, Wang K, Zhao X, Liu X. Enhanced recovery of phosphorus from hypophosphite-laden wastewater via field-induced electro-Fenton coupled with anodic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132750. [PMID: 37956560 DOI: 10.1016/j.jhazmat.2023.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Electrochemical recovered ferric phosphate (FePO4) precipitates from hypophosphite-laden wastewater were shown to be an efficient method for phosphorus (P) recovery. However, the influence of chloride ions (Cl-) coexisting commonly in wastewater is not known for this treatment. Herein, a field-induced electro-Fenton coupled with anodic oxidation electrochemical system consisting of a Ti-RuO2 anode, an Fe inductive electrode and an activated carbon fiber (ACF) cathode, namely Ti-RuO2/Fe/ACF(NaCl) system, was established to recover phosphorus (P) as FePO4 from hypophosphite-laden wastewater in the presence of Cl-. This system enabled a hypophosphite (H2PO2-, 1.0 mM) removal ratio of ~100% and all P was recovered within 30 min at 5.0 V under the initial solution pH of 3.0. The Faradaic efficiency and energy consumption of P recovery achieved the maximum value (~94%) and the lowest value (~16 kW h kg-1 P), respectively. Reactive oxygen species including 1O2, FeIVO2+, •O2- and •OH contribute to convert H2PO2- to PO43-, which immediately formed FePO4 with the generated Fe3+ at the optimized conditions. Therein, the contribution of non-radical 1O2 was very considerable. This system exhibited good stability. The efficiency and cost for treatment of actual hypophosphite-laden wastewater were addressed to check its applicability for P recovery.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yunhan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kaifeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
6
|
Lu C, Chen Y, Shuang C, Wang Z, Tian Y, Song H, Li A, Chen D, Li X. Simultaneous removal of nitrate nitrogen and orthophosphate by electroreduction and electrochemical precipitation. WATER RESEARCH 2024; 250:121000. [PMID: 38118253 DOI: 10.1016/j.watres.2023.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Electrochemical methods can effectively remove nitrate nitrogen (NO3-N) and orthophosphate phosphorus (PO4-P) from wastewater. This work proposed a process for the simultaneous removal of NO3-N and PO4-P by combining electroreduction with electrochemically-induced calcium phosphate precipitation, and its performance and mechanisms were studied. For the treatment of 100 mg L-1 NO3-N and 5 mg L-1 PO4-P, NO3-N removal of 60-90% (per cathode area: 0.25-0.38 mg h-1 cm-2) and 80-90% (per cathode area: 0.33-0.38 mg h-1 cm-2) could be acquired within 3 h in single-chamber cell (SCC) and dual-chamber cell (DCC), while P removal was 80-98% (per cathode area: 0.10-0.12 mg h-1 cm-2) in SCC after 30 min and 98% (per cathode area: 0.37 mg h-1 cm-2) in DCC within 10 min. The faster P removal in DCC was due to the higher pH and more abundant Ca2+ in the cathode chamber of DCC, which was caused by the cation exchange membrane (CEM). Interestingly, NO3-N reduction enhanced P removal because more OH- can be produced by nitrate reduction than hydrogen evolution for an equal-charge reaction. For 10 mg L-1 PO4-P in SCC, when the initial NO3-N was 0, 20, 100, and 500 mg L-1, the P removal efficiencies after 1 h treatment were < 10%, 45-55%, 86-99%, and above 98% respectively. An increase in Ca2+ concentration also promoted P removal. However, Ca and P inhibited nitrate reduction in SCC at the relatively low initial Ca/P, as CaP on the cathode limited the charge or mass transfer process. The removal efficiency of NO3-N in SCC after 3 h reaction can reduce by about 17%, 40%, and 34% for Co3O4/Ti, Co/Ti, and TiO2/Ti. The degree of inhibition of P on NO3-N removal was related to the content and composition of CaP deposited on the cathode. On the cathode, the lower the deposited Ca and P, and the higher the deposited Ca/P molar ratio, the weaker the inhibition of P on NO3-N removal. Especially, P had little or even no inhibition on nitrate reduction when treated in DCC instead of SCC or under high initial Ca/P. It is speculated that under these conditions, a high local pH and local high concentration Ca2+ layer near the cathode led to a decrease in CaP deposition and an increase in Ca/P molar ratio on the cathode. High initial concentrations of NO3-N might also be beneficial in reducing the inhibition of P on nitrate reduction, as few CaP with high Ca/P molar ratios were deposited on the cathode. The evaluation of the real wastewater treatment was also conducted.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haiou Song
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinghao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Sun S, Qiao M, Huang G, Zhang J, Yang B, Zhao X. An electrochlorination process integrating enhanced oxidation of phosphonate to orthophosphate and elimination: Verification of matrix chloridion-induced oxidation mechanism. WATER RESEARCH 2024; 249:120735. [PMID: 38007898 DOI: 10.1016/j.watres.2023.120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 11/28/2023]
Abstract
Phosphonate used as scale inhibitor is a non-negligible eutrophic contaminant in corresponding polluted waters. Besides, its conversion to orthophosphate (ortho-P) is a precondition for realizing bioavailable phosphorus recovery. Due to the feeble degradation efficiency with less than 30 % from classical Fenton commonly used in industrial wastewater treatment and itself vulnerable to strong inhibition interference of matrix chloride ions, we proposed an electrochemical approach to transform the native salt in the solution into oxidizing substances, sort of achieving beneficial utilization of matrix waste, and enhanced the ortho-P conversion rate of 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) to 89.2 % (± 3.6 %). In electrochlorination system, it was found that HEDP rapidly complexed with Fe(II) and then coordinated in-situ Fe(III) to release free HEDP via intramolecular metal-ligand electron transfer reaction. The subsequent degradation mainly rooted in the oxidation of pivotal reactive species HClO, FeIVO2+ and 1O2, causing C-P and CC bonds to fracture in sequence. Eventually the organically bound phosphorus of HEDP was recovered as ortho-P. This study acquainted the audiences with the rare mechanism of chloridion-triggered HEDP degradation under electrochemical way, as well as offered a feasible technology for synchronous transformation of organically bound phosphorus to ortho-P and elimination from phosphonates.
Collapse
Affiliation(s)
- Sainan Sun
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guanghua Huang
- Shanghai Tongji Environmental Engineering Technology Co. Ltd., Shanghai 200092, China
| | - Junke Zhang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Yan H, Jin S, Sun X, Han Z, Wang H, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Wei L, Zhao Y, Zhao H. Mn 2+ recycling in hypersaline wastewater: unnoticed intracellular biomineralization and pre-cultivation of immobilized bacteria. World J Microbiol Biotechnol 2024; 40:57. [PMID: 38165509 DOI: 10.1007/s11274-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolei Sun
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Lirong Wei
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
9
|
Deng L, Dhar BR. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. CHEMOSPHERE 2023; 330:138685. [PMID: 37060960 DOI: 10.1016/j.chemosphere.2023.138685] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
Phosphorus (P) is one of the important elements for human, animal, and plant life. Due to the development of the circular economy in recent years, the recovery of P from wastewater has received more attention. Recovery of P from domestic, industrial, and agricultural wastewater in the form of calcium phosphate (CaP) by precipitation/crystallization process presents a low-cost and effective method. Recovered CaP could be used as P fertilizer and for other industrial applications. This review summarizes the effects of supersaturation, pH, seed materials, calcium (Ca) source, and wastewater composition, on the precipitation/crystallization process. The recovery efficiency and value proposition of recovered CaP were assessed. This in-depth analysis of the literature reports identified the process parameters that are worth further optimization. The review also provides perspectives on future research needs on expanding the application field of recovered CaP and finding other more economical and environmentally friendly Ca sources.
Collapse
Affiliation(s)
- Linyu Deng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
10
|
Fan WY, Zhang X, Guo PC, Sheng GP. Highly efficient removal of phosphonates by ferrate-induced oxidation coupled with in situ coagulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131104. [PMID: 36870127 DOI: 10.1016/j.jhazmat.2023.131104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphonates, as a kind of important organic phosphorus in wastewater, should be removed in terms of their environmental risks. Unfortunately, traditional biological treatments fail to remove phosphonates effectively due to their biological inertness. The reported advanced oxidation processes (AOPs) usually require pH adjustment or coupling with other technologies to achieve high removal efficiency. Thus, a simple and efficient method for phosphonate removal is urgently needed. Herein, ferrate was found to remove phosphonates effectively in one-step under near-neutral circumstances by coupling oxidation and in-situ coagulation. Nitrilotrimethyl-phosphonic acid (NTMP), a typical phosphonate, could be efficiently oxidized by ferrate to release phosphate. The fraction of phosphate release increased with increasing ferrate dosage and reached 43.1% when 0.15 mM ferrate was added. Fe(VI) was responsible for NTMP oxidation, while Fe(V), Fe(IV) and ⋅OH played a minor role. Ferrate-induced phosphate release facilitated total phosphorus (TP) removal, because the phosphate is more easily removed via ferrate-resultant Fe(III) coagulation than the phosphonates. The coagulation removal of TP could reach up to 90% within 10 min. Furthermore, ferrate exerted high removal efficiencies for other commonly used phosphonates with approximately or up to 90% TP removal. This work provides a one-step efficient method to treat phosphonate-containing wastewaters.
Collapse
Affiliation(s)
- Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
11
|
Shen S, Li X, Geng Z, Lu X. Kinetics and capacities of non-reactive phosphorus (NRP) sorption to crushed autoclaved aerated concrete (CAAC). J Environ Sci (China) 2023; 127:799-810. [PMID: 36522107 DOI: 10.1016/j.jes.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
With growing interest in resource recovery and/or reuse, waste materials have been considered a promising alternative for phosphorus (P) adsorption because they are low-cost and easily accessible. Crushed autoclaved aerated concrete (CAAC), as representative construction waste, has been extensively studied for P removal in ecological technologies such as treatment wetlands. However, most of the previous studies focused on the adsorption of orthophosphate, namely reactive phosphorus, and lacked attention to non-reactive phosphorus (NRP) which is widely present in sewage. This study presents the first investigation on the potential and mechanism of CAAC removing four model NRP compounds. Adsorption isotherm and kinetics of NRP onto CAAC indicate that the removal of NRP was a chemisorption process and also involved a two-step pore diffusion process. The desorption experiment shows that different NRP species showed varying degrees of desorption. Most NRP was irreversibly adsorbed on CAAC. Among the model compounds considered in this study, the adsorption capacity and hydrolysis rate of organophosphorus were much less than that of inorganic phosphorus. Moreover, the adsorption of different NRP species by CAAC in the mesocosm study was different from the results of laboratory adsorption experiments, and the possible biodegradation was essential for the conversion and removal of NRP. The findings confirmed the validity of CAAC for NRP removal and the potential advantages of CAAC in terms of costs and environmental impact. This study will contribute to a better understanding of NRP conversion and environmental fate and that can be the basis for a refined risk assessment.
Collapse
Affiliation(s)
- Shuting Shen
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Xiang Li
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Zhuofan Geng
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Xiwu Lu
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China.
| |
Collapse
|
12
|
Zhan Z, Wang R, Saakes M, van der Weijden RD, Buisman CJN, Lei Y. Basket anode filled with CaCO 3 particles: A membrane-free electrochemical system for boosting phosphate recovery and product purity. WATER RESEARCH 2023; 231:119604. [PMID: 36669305 DOI: 10.1016/j.watres.2023.119604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is often regarded as the primary stimulant for eutrophication, while its importance as a crucial life element is also well acknowledged. Given its future scarcity, P recycling from waste streams is suggested and practiced. Electrochemically mediated precipitation (EMP) is a robust and chemical-free process for P removal and recovery, yet it requires further developments. The first generation of the CaCO3-packed electrochemical precipitation column successfully solved the problem of H+-OH- recombination, achieving enhanced P removal efficiency with less energy consumption but suffering from low Ca-phosphate purity in recovered products. Herein, a new concept of a basket-anode electrochemical system is proposed and validated to prevent direct H+-OH- recombination and enhance product purity. The CaCO3 pellets packed basket anode alleviates the OH- depletion by CaCO3-H+ interaction and provides extra Ca2+ for enhanced P removal. The novel structure of the basket anode, by its derived acidic anode region and alkaline cathode region, completely avoids the precipitation of Ca-phosphate on the packed CaCO3 and greatly facilitates the collection of high-quality Ca-phosphate product. Our results suggest that almost 100% of the removed P was in high-purity, highly crystalline Ca-phosphate on the cathode. The recovered products contained significantly more P (13.5 wt%) than in the previous study (0.1 wt%) at similar energy consumptions (29.8 kWh/kg P). The applied current density, pellets size, and influent P concentration were critical for P removal performance, product purity, and power consumption. We further demonstrated the long-term stability of this novel system and its technical and economic feasibility in treating real stored urine. Our study provides new cell architectural designs to enhance the performance of EMP systems and may inspire innovations and developments in other electrochemical water treatment processes.
Collapse
Affiliation(s)
- Zhengshuo Zhan
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Runhua Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Michel Saakes
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
| | - Renata D van der Weijden
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Cees J N Buisman
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Yang Lei
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
13
|
Yan H, Huang M, Wang J, Geng H, Zhang X, Qiu Z, Dai Y, Han Z, Xu Y, Meng L, Zhao L, Tucker ME, Zhao H. Difference in calcium ion precipitation between free and immobilized Halovibrio mesolongii HMY2. J Environ Sci (China) 2022; 122:184-200. [PMID: 35717084 DOI: 10.1016/j.jes.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
Biomineralization has become a research focus in wastewater treatment due to its much lower costs compared to traditional methods. However, the low sodium chloride (NaCl)-tolerance of bacteria limits applications to only water with low NaCl concentrations. Here, calcium ions in hypersaline wastewater (10% NaCl) were precipitated by free and immobilized Halovibrio mesolongii HMY2 bacteria and the differences between them were determined. The results show that calcium ions can be transformed into several types of calcium carbonate with a range of morphologies, abundant organic functional groups (C-H, C-O-C, C=O, etc), protein secondary structures (β-sheet, α-helix, 310 helix, and β-turn), P=O and S-H indicated by P2p and S2p, and more negative δ13CPDB (‰) values (-16.8‰ to -18.4‰). The optimal conditions for the immobilized bacteria were determined by doing experiments with six factors and five levels and using response surface method. Under the action of two groups of immobilized bacteria prepared under the optimal conditions, by the 10th day, Ca2+ ion precipitation ratios had increased to 79%-89% and 80%-88% with changes in magnesium ion cencentrations. Magnesium ions can significantly inhibit the calcium ion precipitation, and this inhibitory effect can be decreased under the action of immobilized bacteria. Minerals induced by immobilized bacteria always aggregated together, had higher contents of Mg, P, and S, lower stable carbon isotope values and less well-developed protein secondary structures. This study demonstrates an economic and eco-friendly method for recycling calcium ions in hypersaline wastewater, providing an easy step in the process of desalination.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Meiyu Huang
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jihan Wang
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Heding Geng
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiyu Zhang
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ziyang Qiu
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongliang Dai
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yudong Xu
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Long Meng
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lanmei Zhao
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; Cabot Institute, University of Bristol, Cantock's Close, Bristol BS8 1UJ, UK
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Safety and Environmental Engineering, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
14
|
Integrating divided electrolysis-microfiltration process for energy-efficient phosphorus recovery in the form of calcium phosphate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Zahed MA, Salehi S, Tabari Y, Farraji H, Ataei-Kachooei S, Zinatizadeh AA, Kamali N, Mahjouri M. Phosphorus removal and recovery: state of the science and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58561-58589. [PMID: 35780273 DOI: 10.1007/s11356-022-21637-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, Tehran, Iran
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Ali Akbar Zinatizadeh
- Faculty of Chemistry, Department of Applied Chemistry, Environmental Research Center (ERC), Razi University, Kermanshah, 67144-14971, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
| | - Nima Kamali
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjouri
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Tehran, Iran
| |
Collapse
|
17
|
Wang Y, Kuntke P, Saakes M, van der Weijden RD, Buisman CJN, Lei Y. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. WATER RESEARCH 2022; 209:117891. [PMID: 34875541 DOI: 10.1016/j.watres.2021.117891] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential element for the growth and reproduction of organisms. Unfortunately, the natural P cycle has been broken by the overexploitation of P ores and the associated discharge of P into water bodies, which may trigger the eutrophication of water bodies in the short term and possible P shortage soon. Consequently, technologies emerged to recover P from wastewater to mitigate pollution and exploit secondary P resources. Electrochemically induced phosphate precipitation has the merit of achieving P recovery without dosing additional chemicals via creating a localized high pH environment near the cathode. We critically reviewed the development of electrochemically induced precipitation systems toward P removal and recovery over the past ten years. We summarized and discussed the effects of pH, current density, electrode configuration, and water matrix on the performance of electrochemical systems. Next to ortho P, we identified the potential and illustrated the mechanism of electrochemical P removal and recovery from non-ortho P compounds by combined anodic or anode-mediated oxidation and cathodic reduction (precipitation). Furthermore, we assessed the economic feasibility of electrochemical methods and concluded that they are more suitable for treating acidic P-rich waste streams. Despite promising potentials and significant progress in recent years, the application of electrochemical systems toward P recovery at a larger scale requires further research and development. Future work should focus on evaluating the system's performance under long-term operation, developing an automatic process for harvesting P deposits, and performing a detailed economic and life-cycle assessment.
Collapse
Affiliation(s)
- Yicheng Wang
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Philipp Kuntke
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Michel Saakes
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
| | - Renata D van der Weijden
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Cees J N Buisman
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Yang Lei
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands; Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands.
| |
Collapse
|
18
|
Zhang Y, Shan C, Qian J, Pan B. Scenario oriented strategies for phosphorus management by using environmental nanotechnology. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Jóźwiak T, Kowalkowska A, Filipkowska U, Struk-Sokołowska J, Bolozan L, Gache L, Ilie M. Recovery of phosphorus as soluble phosphates from aqueous solutions using chitosan hydrogel sorbents. Sci Rep 2021; 11:16766. [PMID: 34408258 PMCID: PMC8373865 DOI: 10.1038/s41598-021-96416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
This manuscript presents new method of phosphorus recovery from aqueous solutions in a convenient form of readily-soluble phosphates using chitosan hydrogels. Non-modified chitosan hydrogel granules (CHs) and chitosan hydrogel granules crosslinked with epichlorohydrin (CHs-ECH) served as orthophosphate ion carriers. The developed method was based on cyclic sorption/desorption of orthophosphates, with desorption performed in each cycle to the same solution (the concentrate). The concentrations of orthophosphates obtained in the concentrates depended on, i.a., sorbent type, sorption pH, source solution concentration, and desorption pH. Phosphorus concentrations in the concentrates were even 30 times higher than these in the source solutions. The maximum concentrate concentrations reached 332.0 mg P-PO4/L for CHs and 971.6 mg P-PO4/L for CHs-ECH. The experimental series with CHs-ECH were characterized by higher concentrations of the obtained concentrate, however the concentrates were also more contaminated with Cl− and Na+ ions compared to series with CHs. The high content of chlorine and sodium ions in the concentrates was also favored by the low pH of sorption (pH < 4) and very high pH of desorption (pH > 12) in the cycles. After concentrate evaporation, phosphorus content in the sediment ranged from 17.81 to 19.83% for CHs and from 16.04 to 17.74% for CHs-ECH.
Collapse
Affiliation(s)
- Tomasz Jóźwiak
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957, Olsztyn, Poland.
| | - Agata Kowalkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957, Olsztyn, Poland
| | - Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957, Olsztyn, Poland
| | - Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Bialystok University of Technology, Wiejska St. 45E, 15-351, Bialystok, Poland
| | - Ludmila Bolozan
- Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, Bulevardul Profesor Dimitrie Mangeron 67, 700050, Iaşi, Romania
| | - Luminita Gache
- Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, Bulevardul Profesor Dimitrie Mangeron 67, 700050, Iaşi, Romania
| | - Marius Ilie
- Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, Bulevardul Profesor Dimitrie Mangeron 67, 700050, Iaşi, Romania
| |
Collapse
|
20
|
Ning Y, Li K, Zhao Z, Chen D, Li Y, Liu Y, Yang Q, Jiang B. Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: Synergistic effect of anodic oxidation and cathodic precipitation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Jama-Rodzeńska A, Białowiec A, Koziel JA, Sowiński J. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112235. [PMID: 33721761 DOI: 10.1016/j.jenvman.2021.112235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) is a limited yet essential resource. P cannot be replaced, but it can be recovered from waste. We proposed the TRIZ approach (Teoria reszenija izobretatielskich zadacz - Rus., Theory of Inventive Problem Solving - Eng.) to identify a feasible solution. We aimed at minimizing the environmental impact and, by eliminating contradictions, proposed viable technical solutions. P recovery can be more sustainable based on circular economy and 4Rs (reduction, recovery, reuse, and recycling). The TRIZ approach identified sewage sludge (SS) as waste with a large potential for P recovery (up to 90%). Successful selection and application of SS management and P recovery require a transdisciplinary approach to overcome the various socio-economic, environmental, technical, and legal aspects. The review provides an understanding of principles that must be taken to improve understanding of the whole process of P recovery from wastewater while building on the last two decades of research.
Collapse
Affiliation(s)
- Anna Jama-Rodzeńska
- Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, 24a Grunwaldzki Square, 53-363, Wrocław, Poland.
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630, Wrocław, Poland; Department of Agricultural and Biosystems Engineering, 4350 Elings Hall, Iowa State University, Ames, IA, 50011, USA.
| | - Jacek A Koziel
- Department of Agricultural and Biosystems Engineering, 4350 Elings Hall, Iowa State University, Ames, IA, 50011, USA.
| | - Józef Sowiński
- Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, 24a Grunwaldzki Square, 53-363, Wrocław, Poland.
| |
Collapse
|
22
|
Lei Y, Zhan Z, Saakes M, van der Weijden RD, Buisman CJN. Electrochemical Recovery of Phosphorus from Acidic Cheese Wastewater: Feasibility, Quality of Products, and Comparison with Chemical Precipitation. ACS ES&T WATER 2021; 1:1002-1013. [PMID: 33889867 PMCID: PMC8054673 DOI: 10.1021/acsestwater.0c00263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 05/09/2023]
Abstract
The recovery of phosphorus (P) from high-strength acidic waste streams with high salinity and organic loads is challenging. Here, we addressed this challenge with a recently developed electrochemical approach and compared it with the chemical precipitation method via NaOH dosing. The electrochemical process recovers nearly 90% of P (∼820 mg/L) from cheese wastewater in 48 h at 300 mA with an energy consumption of 64.7 kWh/kg of P. With chemical precipitation, >86% of P was removed by NaOH dosing with a normalized cost of 1.34-1.80 euros/kg of P. The increase in wastewater pH caused by NaOH dosing triggered the formation of calcium phosphate sludge instead of condensed solids. However, by electrochemical precipitation, the formed calcium phosphate is attached to the electrode, allowing the subsequent collection of solids from the electrode after treatment. The collected solids are characterized as amorphous calcium phosphate (ACP) at 200 mA or a precipitation pH of ≥9. Otherwise, they are a mixture of ACP and hydroxyapatite. The products have sufficient P content (≤14%), of which up to 85% was released within 30 min in 2% citric acid and a tiny amount of heavy metals compared to phosphate rocks. This study paves the way for applying electrochemical removal and recovery of phosphorus from acidic P-rich wastewater and offers a sustainable substitute for mined phosphorus.
Collapse
Affiliation(s)
- Yang Lei
- Wetsus,
Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
- Department
of Environmental Technology, Wageningen
University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
- School
of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhengshuo Zhan
- Wetsus,
Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
- Department
of Environmental Technology, Wageningen
University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Michel Saakes
- Wetsus,
Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
| | - Renata D. van der Weijden
- Wetsus,
Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
- Department
of Environmental Technology, Wageningen
University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Wetsus,
Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, The Netherlands
- Department
of Environmental Technology, Wageningen
University and Research, P.O. Box 17, 6700AA Wageningen, The Netherlands
| |
Collapse
|
23
|
Mao Y, Yu S, Li P, Liu G, Ouyang S, Zhu Z, Zhang P. A novel magnesium-rich tricalcium aluminate for simultaneous removal of ammonium and phosphorus: Response surface methodology and mechanism investigation. ENVIRONMENTAL RESEARCH 2021; 195:110719. [PMID: 33549622 DOI: 10.1016/j.envres.2021.110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Coexisting ammonium (NH4+-N) and phosphate (PO43--P) in wastewater is one of the main causes of eutrophication, which poses severe risks to aquatic ecosystem and human health worldwide. Herein, magnesium-rich tricalcium aluminate (Mg/C3A), which was constructed by incorporating Mg into cement-based material C3A via solid-state reaction, was employed in the simultaneous removal of NH4+-N and PO43--P. Considering the wastewater with unbalanced N/P ratio and fluctuant pH, the effect of multiple factors (Mg/C3A dosage, pH, initial contaminant concentration, and temperature) on the removal of both ions were systematically investigated by employing response surface methodology technique. The results demonstrated that the impact order of the factors on the NH4+ removal by Mg/C3A was: temperature > Mg/C3A dosage > initial NH4+ concentration > pH > initial PO43- concentration; the impact order on the PO43- removal was: initial PO43- concentration > Mg/C3A dosage > temperature > pH > initial NH4+ concentration. The maximum removal amount of NH4+ (54.13 mg g-1) and PO43- (56.47 mg g-1) were obtained at: Mg/C3A dosage = 3 g L-1, initial NH4+ concentration = 160 mg L-1, initial PO43- concentration = 160 mg L-1, temperature = 308 K, and pH = 7. In addition, the possible interactive influence mechanisms were elucidated in depth. Mg2+ played a major role in the PO43- removal by forming struvite (MgNH4PO4·6H2O) and newberyite (MgHPO4·3H2O). OH- released from Mg/C3A hydration mainly contributed to NH4+ removal. This work showed that Mg-rich C3A is a promising candidate for simultaneous removal of NH4+ and PO43-, shedding light on practical water remediation.
Collapse
Affiliation(s)
- Yuting Mao
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China; Office of MRL Development Committee of Jiangxi Province, Nanchang, 330046, China
| | - Shuqi Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guoping Liu
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Sida Ouyang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhongbang Zhu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
24
|
Liu Y, Deng YY, Zhang Q, Liu H. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143901. [PMID: 33310303 DOI: 10.1016/j.scitotenv.2020.143901] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
As the rapid increase of the worldwide population, recovering valuable resources from wastewater have attracted more and more attention by governments and academia. Electrochemical technologies have been extensively investigated over the past three decades to purify wastewater. However, the application of these technologies for resource recovery from wastewater has just attracted limited attention. In this review, the recent (2010-2020) electrochemical technologies for resource recovery from wastewater are summarized and discussed for the first time. Fundamentals of typical electrochemical technologies are firstly summarized and analyzed, followed by the specific examples of electrochemical resource recovery technologies for different purposes. Based on the fundamentals of electrochemical reactions and without the addition of chemical agents, metallic ions, nutrients, sulfur, hydrogen and chemical compounds can be effectively recovered by means of electrochemical reduction, electrochemical induced precipitation, electrochemical stripping, electrochemical oxidation and membrane-based electrochemical processes, etc. Pros and cons of each electrochemical technology in practical applications are discussed and analyzed. Single-step electrochemical process seems ineffectively to recover valuable resources from the wastewater with complicated constituents. Multiple-step processes or integrated with biological and membrane-based technologies are essential to improve the performance and purity of products. Consequently, this review attempts to offer in-depth insights into the developments of next-generation of electrochemical technologies to minimize energy consumption, boost recovery efficiency and realize the commercial application.
Collapse
Affiliation(s)
- Yuan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Ying-Ying Deng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
25
|
Zhang C, Wang M, Xiao W, Ma J, Sun J, Mo H, Waite TD. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). WATER RESEARCH 2021; 189:116653. [PMID: 33232816 DOI: 10.1016/j.watres.2020.116653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The recovery of phosphorus (P) from wastewaters is a worthy goal considering the potential environmental and economic benefits. Flow-electrode capacitive deionization (FCDI), which employs flowable carbon electrodes instead of the static electrodes used in conventional CDI, has been demonstrated to be a promising P recovery technology. FCDI outperforms CDI and other competitive technologies in a number of aspects including (i) large salt adsorption capacity and (ii) extremely high water recovery rate. In this study, magnetic (Fe3O4 impregnated) activated carbon particles were prepared and applied as FCDI electrodes. The magnetic carbon electrodes were found to have a strong affinity towards P, facilitating the selective adsorption of P to the magnetic particles through a ligand exhange mechanism. Continuous operation of the FCDI system could be achieved with only three minutes required to separate the electrode particles from the brine stream on application of an external magnetic field. A P-rich stream was produced on regeneration of the exhausted magnetic electrodes using alkali solution. We envision that the use of magnetic carbon enhanced flow-electrodes will pave the way for efficient operation of FCDI as well as the preferential recovery of P.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Xiao
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hengliang Mo
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing, 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China.
| |
Collapse
|
26
|
Dong H, Wei L, Tarpeh WA. Electro-assisted regeneration of pH-sensitive ion exchangers for sustainable phosphate removal and recovery. WATER RESEARCH 2020; 184:116167. [PMID: 32682079 DOI: 10.1016/j.watres.2020.116167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 05/03/2023]
Abstract
Removal and recovery of phosphate from wastewater can minimize deleterious environmental impacts and supplement fertilizer supply. Hybrid anion exchangers (HAIX, with doped ferric oxide nanoparticles (FeOnp)) can remove phosphate from complex wastewaters and recover concentrated phosphate solutions. In this study, we integrate HAIX with a weak acid cation exchanger (WAC) to enrich phosphate and calcium in mild regenerants and precipitate both elements for recovery. We demonstrated an electro-assisted regeneration approach to avoid strong acid and base input. Based on demonstrated pH sensitivities of both materials, electrochemically produced mild electrolytes (pH 3 and pH 11), which are 100-1000 times less concentrated than typical regenerants, preserved 80% WAC and 50% HAIX capacities over five batch adsorption-regeneration cycles. FeOnp in HAIX facilitated regeneration due to pH sensitivity and their likely distribution on the resin particle surface, which reduced intraparticle diffusion path length. In column tests, repeatable phosphate removal (> 95%) from synthetic wastewater (3 mg P/L) was achieved with 20 kWh/kg P specific energy consumption. After removal, a similar 50% HAIX regeneration efficiency as batch experiments was achieved. In spent regenerant, more than 95% phosphorus was recovered as hydroxyapatite. This novel approach enhances ion exchange by minimizing chemical inputs.
Collapse
Affiliation(s)
- Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA; Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Zeng L, Liu Q, Yi Q, Tang K, Van der Bruggen B. Novel Chiral Drug Recovery and Enantioseparation Method: Hollow Fiber Membrane Extraction and In Situ Coupling of Back-Extraction with Crystallization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lelin Zeng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, Hunan, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Qian Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, Hunan, P. R. China
| | - Qin Yi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, Hunan, P. R. China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, Hunan, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private
Bag X680, Pretoria 0001, South Africa
| |
Collapse
|