1
|
Li Y, Yu H, Yang H, Wan Y, Pan Z, Qu F. Dual-bioaugmentation strategy to simultaneously mitigate biofouling and promote methanogenesis in AnMBR. WATER RESEARCH 2025; 270:122850. [PMID: 39612818 DOI: 10.1016/j.watres.2024.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising technology for resource and energy recovery from wastewater owing to its high-quality effluent and methane production. However, membrane fouling and susceptible methanogenesis have ever compromised the AnMBR. This work attempted to mitigate membrane fouling and promote methane production simultaneously in AnMBR through bioaugmentation with a consortium consisting of both quorum quenching (QQ) bacteria and methanogens. To obtain the dual-functional consortium, N-acyl homoserine lactone (AHL) and gamma-caprolactone (GCL), which could serve as QQ biostimulants as well as carbon sources for fermentation and methanogenesis, were used as sole carbon sources in the anaerobic enrichment, and the obtained consortia were denoted as An-A and An-G respectively. Facultative cultivations with AHL or GCL, denoted as F-A and F-G, were also obtained for comparison. The results indicated that the An-G consortium showed superior AHL degrading activity, and EPS suppressive and methanogenic capacity. The moderate anaerobic QQ activity and low methanogenic capacity of F-G consortium may be attributed to the oxygen exposure in the cultivation. The AHL consortia in either anaerobic or facultative condition, i.e. the AN-A and F-A, showed good QQ activity but compromised methanogenic activity, due to the inhibition of acetoclastic methanogens by free ammonia introduced by the acylamino group in AHL. The optimal consortium, An-G, was immobilized and added to AnMBR. The membrane fouling in An-G AnMBR was significantly retarded to 2 times, and the cumulative methane production was elevated by 18.0 % compared to the control reactor. This work demonstrated that the dual-bioaugmentation with anaerobic GCL enrichment consortium successfully mitigated fouling and promoted methanogenesis simultaneously in AnMBR, which is considered to be highly promising in enhancing AnMBR and facilitating resource and energy recovery from wastewater.
Collapse
Affiliation(s)
- Yimeng Li
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Huarong Yu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Yang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China
| | - Yuxuan Wan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Zhihui Pan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
3
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Li X, Li S, Xie P, Chen X, Chu Y, Chang H, Sun J, Li Q, Ren N, Ho SH. Advanced wastewater treatment with microalgae-indigenous bacterial interactions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100374. [PMID: 38283868 PMCID: PMC10821166 DOI: 10.1016/j.ese.2023.100374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Microalgal-indigenous bacterial wastewater treatment (MBWT) emerges as a promising approach for the concurrent removal of nitrogen (N) and phosphorus (P). Despite its potential, the prevalent use of MBWT in batch systems limits its broader application. Furthermore, the success of MBWT critically depends on the stable self-adaptation and synergistic interactions between microalgae and indigenous bacteria, yet the underlying biological mechanisms are not fully understood. Here we explore the viability and microbial dynamics of a continuous flow microalgae-indigenous bacteria advanced wastewater treatment system (CFMBAWTS) in processing actual secondary effluent, with a focus on varying hydraulic retention times (HRTs). The research highlights a stable, mutually beneficial relationship between indigenous bacteria and microalgae. Microalgae and indigenous bacteria can create an optimal environment for each other by providing essential cofactors (like iron, vitamins, and indole-3-acetic acid), oxygen, dissolved organic matter, and tryptophan. This collaboration leads to effective microbial growth, enhanced N and P removal, and energy generation. The study also uncovers crucial metabolic pathways, functional genes, and patterns of microbial succession. Significantly, the effluent NH4+-N and P levels complied with the Chinese national Class-II, Class-V, Class-IA, and Class-IB wastewater discharge standards when the HRT was reduced from 15 to 6 h. Optimal results, including the highest rates of CO2 fixation (1.23 g L-1), total energy yield (32.35 kJ L-1), and the maximal lipid (33.91%) and carbohydrate (41.91%) content, were observed at an HRT of 15 h. Overall, this study not only confirms the feasibility of CFMBAWTS but also lays a crucial foundation for enhancing our understanding of this technology and propelling its practical application in wastewater treatment plants.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Jian Sun
- Central Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, PR China
| | - Qing Li
- Central Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
5
|
Wang X, Yi K, Pang H, Liu Z, Li X, Zhang W, Zhang C, Liu S, Huang J, Zhang C. An overview of quorum sensing in shaping activated sludge forms: Mechanisms, applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171886. [PMID: 38531459 DOI: 10.1016/j.scitotenv.2024.171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.
Collapse
Affiliation(s)
- Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Kaixin Yi
- College of Materials and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
6
|
Anburajan P, Cayetano RD, Prohim YM, Thau NT, Kim S, Kim H, Ko JH, Oh HS. Role of quorum sensing and quorum quenching in anaerobic digestion: A scoping review. ENVIRONMENTAL RESEARCH 2023; 239:117413. [PMID: 37839533 DOI: 10.1016/j.envres.2023.117413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion (AD) is a biological process that employs anaerobic microorganisms to degrade organic material, yielding biogas and biofertilizers. Understanding quorum sensing (QS) signaling in mixed microbial systems provides valuable insights into microbial behavior and functions. This review aims to examine recent studies on the roles of QS and QQ in the AD processes. A QS signal molecule, N-acyl homoserine lactone (AHL), induce the production of extraceluller polymers, promoting biofilm formation and bacterial aggregation, thereby the efficiency of AD process. QS-assisted granule formation fosters syntrophy between acetogens and methanogens, leading to increased organic removal and methane production. Specific AHLs were shown to be correlated with the abundance of hydrolytic bacteria and acidogens, further benefiting methane production. QQ was shown to effectively control membrane fouling in anaerobic membrane bioreactors, yet its impact on methane productivity remains unclear. This review shed lights on the existing literature gaps regarding the mechanisms of QS and QQ in AD systems, which will play a vital role in advancing AD applications in the future.
Collapse
Affiliation(s)
- Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea
| | - Roent Dune Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea
| | - You Mit Prohim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Nguyen Tang Thau
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Sungmi Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Je Hyeon Ko
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea.
| |
Collapse
|
7
|
Xu B, Lu X, Fu Y, Diao L, Liang H, Bae S, Ng HY, Ma J. Novel use of ferrous iron/peroxymonosulfate for high-performance seawater desalination pretreatment under harmful algal blooms. WATER RESEARCH 2023; 247:120758. [PMID: 37918194 DOI: 10.1016/j.watres.2023.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Marine harmful algae bloom (HAB) is a growing threat to desalination plants worldwide. This work proposes ferrous iron/peroxymonosulfate (Fe2+/PMS) as a novel pretreatment technology for seawater reverse osmosis (SWRO) under HAB. Herein, Fe2+/PMS achieved a significantly higher reduction of negative charge of algae-laden seawater as compared to conventional coagulation (i.e., coagulant is Fe3+), which thereby facilitated improved flocculation to remove algal cells, turbidity and algal organics matters (AOMs), and marine Ca2+ (∼430 mg/L) could partially contribute to the enhanced coagulation performance. A new understanding of the improved coagulation efficiency achieved with Fe2+/PMS in seawater has been proposed as compared to freshwater: seawater matrix (e.g., 504 mM Cl-) was demonstrated to significantly enhance the generation of high-valent iron (FeO2+) as the main reactive intermediate instead of the long-recognized Fe3+ and free radicals, as revealed by methyl phenyl sulfoxide (PMSO) probe, radicals scavenging analysis and electron spin resonance (ESR) spectra. This new mechanism is expected to provide valuable insights for the development of more novel oxidative seawater treatment technologies. Of note, while trade-off between particles and AOMs played an important role in membrane fouling reduction by different dosages of Fe2+/PMS, Fe2+/PMS with an optimal dosage of 0.1 mM/0.05 mM achieved an unprecedentedly higher reduction (95.26%) of modified fouling index (MFI) as compared to conventional coagulation (13.28%-42.36% with 0.1-0.2 mM of Fe3+). Optical-photothermal infrared spectromicroscopy with sub-micron spatial resolution was employed to analyze membrane foulants for the first time, and Fe2+/PMS was found to mainly cause reduced cake layer resistance, which was attributed to the collectively reduced concentration of algae cells, micro-particles with sizes from 2 to 10 µm, humic substances and biopolymers. Moreover, Fe2+/PMS resulted in lower dissolved Fe3+ (<0.027 mg/L) in ultrafiltration (UF) permeate, which would make it more reliable for SWRO operation as compared to conventional coagulation. When energy-intensive dissolved air flotation (DAF) was employed to withstand HAB, Fe2+/PMS outperformed it and was instrumental in achieving reduced MFI with 56.4% lower operational cost. In this context, Fe2+/PMS would facilitate a high-performance and low-cost pretreatment technology for seawater desalination plants under HAB.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| | - Xiaohui Lu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuyao Fu
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Liyue Diao
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sungwoo Bae
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
8
|
Xu F, Liao J, Hu J, Feng Y, Huang Y, Feng X, Li S. Biofouling mitigation and microbial community dynamics in the membrane bioreactor by the indigenous quorum quenching bacterium Delftia sp. JL5. BIORESOURCE TECHNOLOGY 2023; 388:129753. [PMID: 37696340 DOI: 10.1016/j.biortech.2023.129753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The quorum quenching (QQ) strategy has attracted increasing attention in membrane bioreactor (MBR) fouling control. However, the applicable QQ strain remains limited. This study investigated the antibiofouling performance of a new indigenous QQ bacterium, Delftia sp. JL5 (JL5) in MBR. JL5 produces intracellular acylase that irreversibly degrades N-acylhomoserine lactones (AHL), inhibited biofilm formation of quorum-sensing bacteria from activated sludge. During 120 days of operation, immobilized JL5 substantially delayed MBR biofouling by 2.1 and 2.9 times, at a flux rate of 30 L/(m2·h) and 20 L/(m2·h), respectively. A slower flux rate was favorable for effective mitigation of JL5 biofouling. JL5 reduced the AHL and extracellular polymeric substances of biocake without affecting the efficiency of waste removal. The presence of JL5 significantly changed the microbial structure of the membrane biocake, but not the activated sludge. Collectively, high activity, durability, and acid tolerance credited JL5 as a promising strain for QQ-MBR.
Collapse
Affiliation(s)
- Fangfang Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jialong Liao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Forigin Research Center, Fairylands Environmental Sci-Tech (Shenzhen) Co. Ltd., Shenzhen 518055, China
| | - Jinchen Hu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yunshi Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanyao Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xingtong Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Wang Y, Li R, Su C, Liu X, Lu M, Liu S, Liang B, Wang Z. Effects of upward flow rate and modified biochar location on the performance and microecology of an anaerobic reactor treating kitchen waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80530-80544. [PMID: 37301813 DOI: 10.1007/s11356-023-28090-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Increasing the value of food waste through anaerobic digestion is an attractive strategy. Meanwhile, the anaerobic digestion of kitchen waste also faces some technical challenges. In this study, four EGSB reactors were equipped with Fe-Mg-chitosan bagasse biochar at different locations, and the reflux pump flow rate was increased to change the upward flow rate of the reactor. The effects of adding modified biochar at different locations under different upward flow rate on the efficacy and microecology of anaerobic reactors treating kitchen waste were investigated. Results showed that Chloroflexi was the dominant microorganism when the modified biochar was added to the lower, middle, and upper parts of the reactor and mixed in the reactor, accounting for 54%, 56%, 58%, and 47%, respectively, on day 45. With the increased upward flow rate, the abundance of Bacteroidetes and Chloroflexi increased, while Proteobacteria and Firmicutes decreased. It was worth noting that the best COD removal effect was achieved when the anaerobic reactor upward flow rate was v2 = 0.6 m/h and the modified biochar was added in the upper part of the reactor, during which the average COD removal rate reached 96%. In addition, mixing modified biochar throughout the reactor while increasing the upward flow rate provided the greatest stimulus for the secretion of tryptophan and aromatic proteins in the sludge extracellular polymeric substances. The results provided a certain technical reference for improving the efficiency of anaerobic digestion of kitchen waste and scientific support for the application of modified biochar to the anaerobic digestion process.
Collapse
Affiliation(s)
- Yuchen Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Ruting Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China.
- College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, People's Republic of China.
| | - Xiaoyue Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Meixiu Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Shengtao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Bocai Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Zi Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| |
Collapse
|
10
|
Wang YC, Lv YH, Wang C, Jiang GY, Han MF, Deng JG, Hsi HC. Microbial community evolution and functional trade-offs of biofilm in odor treatment biofilters. WATER RESEARCH 2023; 235:119917. [PMID: 37003115 DOI: 10.1016/j.watres.2023.119917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Biofilters inoculated with activated sludge are widely used for odor control in WWTP. In this process, biofilm community evolution plays an important role in the function of reactor and is closely related to reactor performance. However, the trade-offs in biofilm community and bioreactor function during the operation are still unclear. Herein, an artificially constructed biofilter for odorous gas treatment was operated for 105 days to study the trade-offs in the biofilm community and function. Biofilm colonization was found to drive community evolution during the start-up phase (phase 1, days 0-25). Although the removal efficiency of the biofilter was unsatisfactory at this phase, the microbial genera related to quorum sensing and extracellular polymeric substance secretion led to the rapid accumulation of the biofilm (2.3 kg biomass/m3 filter bed /day). During the stable operation phase (phase 2, days 26-80), genera related to target-pollutant degradation showed increases in relative abundance, which accompanied a high removal efficiency and a stable accumulation of biofilm (1.1 kg biomass/m3 filter bed/day). At the clogging phase (phase 3, days 81-105), a sharp decline in the biofilm accumulation rate (0.5 kg biomass/m3 filter bed /day) and fluctuating removal efficiency were observed. The quorum quenching-related genera and quenching genes of signal molecules increased, and competition for resources among species drove the evolution of the community in this phase. The results of this study highlight the trade-offs in biofilm community and functions during the operation of bioreactors, which could help improve bioreactor performance from a biofilm community perspective.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
11
|
Radmehr S, Peltomaa E, Kallioinen-Mänttäri M, Mänttäri M. Effects of monospecific and mixed-algae culture on performance of algae-sludge membrane bioreactors. BIORESOURCE TECHNOLOGY 2023; 371:128605. [PMID: 36638897 DOI: 10.1016/j.biortech.2023.128605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
To increase wastewater treatment efficiency and biofuel production, seven microalgae were mixed with activated sludge in batch bioreactors. Based on batch results, two microalgae (Chlamydomonas and Selenastrum) and their mixture were inoculated into conventional-membrane-bioreactors (CMBRs) to evaluate effects of monospecific and mixed-algae culture on the performance of algae-sludge-MBRs. The best nutrient removal, highest chlorophyll-a, and lowest membrane fouling were achieved by the mixed-algae membrane bioreactor. In comparison to activated sludge, the algae-sludge mixture had fivefold higher lipid contents during batch experiments. Additionally, using confocal microscopy, autofluorescence and staining were combined to distinguish algae from bacteria on membrane surfaces, revealing a greater role for bacteria in membrane fouling. Furthermore, sequencing analysis showed that the microbial community (e.g. Nitrospira and Falavobacterium) changed by inoculating algae which benefits CMBRs. Consequently, the stimulation or inhibition of different species might be the reason that the mixed-algae-MBR achieves superior performance compared to CMBR and single-algae-MBRs.
Collapse
Affiliation(s)
- Shahla Radmehr
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, 53850 Lappeenranta, Finland.
| | - Elina Peltomaa
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Mari Kallioinen-Mänttäri
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | - Mika Mänttäri
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| |
Collapse
|
12
|
Dong K, Qiu Y, Wang X, Yu D, Yu Z, Feng J, Wang J, Gu R, Zhao J. Towards low carbon demand and highly efficient nutrient removal: Establishing denitrifying phosphorus removal in a biofilm-based system. BIORESOURCE TECHNOLOGY 2023; 372:128658. [PMID: 36690218 DOI: 10.1016/j.biortech.2023.128658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The combined denitrifying phosphorus removal (DPR) and Anammox process is expected to achieve advanced nutrient removal with low carbon consumption. However, exchanging ammonia/nitrate between them is one limitation. This study investigated the feasibility of conducting DPR in a biofilm reactor to solve that problem. After 46-day anaerobic/aerobic operation, high phosphorus removal efficiency (PRE, 83.15 %) was obtained in the activated sludge (AS) and biofilm co-existed system, in which the AS performed better. Phosphate-accumulating organisms might quickly adapt to the anoxic introduced nitrate, but the following aerobic stage ensured a low effluent orthophosphate (<1.03 mg/L). Because of waste sludge discharging and AS transforming to biofilm, the suspended solids dropped below 60 mg/L on Day 100, resulting in PRE decline (17.17 %) and effluent orthophosphate rise (4.23 mg/L). Metagenomes analysis revealed that Pseudomonas and Thiothrix had genes for denitrification and encoding Pit phosphate transporter, and Candidatus_Competibacter was necessary for biofilm formation.
Collapse
Affiliation(s)
- Kaiyue Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Efficient Intelligent Sewage Treatment Technology Innovation Center of Shandong Province, Linyi 276000, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Juan Feng
- Science and Technology Department, Qingdao University, Qingdao 266071, China
| | - Jimiao Wang
- Qingdao Water Group Co. Ltd., Qingdao 266071, China
| | - Ruihuan Gu
- Qingdao Water Group Co. Ltd., Qingdao 266071, China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Efficient Intelligent Sewage Treatment Technology Innovation Center of Shandong Province, Linyi 276000, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
13
|
Waheed H, Mehmood CT, Li Y, Du Y, Xiao Y. Biofouling control potential of quorum quenching anaerobes in lab-scale anaerobic membrane bioreactors: Foulants profile and microbial dynamics. CHEMOSPHERE 2023; 315:137760. [PMID: 36610508 DOI: 10.1016/j.chemosphere.2023.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Indigenously isolated anaerobes encoding four quorum quenching (QQ) enzymes were applied in immobilized- and bioaugmented forms for their implications on membrane foulants, microbial taxa, and biofouling control. Two identical anaerobic membrane bioreactors (AnMBRs) with different immobilizing media, i.e. silica-alginate (AnMBR-Si) and hollow fiber-alginate (AnMBR-Hf), were sequentially operated for two conventional and three QQ based phases. The synergistic addition of QQ anaerobes in free cells and the immobilized form prolonged the membrane filtration operation by 172 ± 29% and 284 ± 12% in AnMBR-Si and AnMBR-Hf, respectively. Biocake with low surface coverage was prominent during QQ application compared to conventional phases. Despite the better control of AHLs (3OC6-, C6-, 3OC8, C8, and C10-HSL) and AI-2 at various points of QQ phases, the QQ consortium could not maintain a low concentration of signals for longer period. Therefrom, quenching of targeted signal molecules instigate the dominance of microbial species bearing non-targeted quorum sensing mechanism. The QQ significantly altered the biofilm-forming community in mixed liquor, while the members with robust signal transduction systems became dominant to counteract the QQ mechanism and were the ultimate cause of biofouling. The improved methane content in biogas and increased methanogens composition during QQ phases demonstrated the synergism of exogenous and immobilized QQ as the most viable option for long-term AnMBR operation.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ch Tahir Mehmood
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ying Du
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
14
|
Shah SSA, Park H, Park HJ, Kim J, Mameda N, Choo KH. The relationship between quorum sensing dynamics and biological performances during anaerobic membrane bioreactor treatment. BIORESOURCE TECHNOLOGY 2022; 363:127930. [PMID: 36261999 DOI: 10.1016/j.biortech.2022.127930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.
Collapse
Affiliation(s)
- Syed Salman Ali Shah
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeona Park
- Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyung-June Park
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jinwoo Kim
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Naresh Mameda
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Chemistry, Collage of Engineering, Koneru Lakshmaih Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Kwang-Ho Choo
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Wang YC, Lin YT, Wang C, Tong Z, Hu XR, Lv YH, Jiang GY, Han MF, Deng JG, Hsi HC, Lee CH. Microbial community regulation and performance enhancement in gas biofilters by interrupting bacterial communication. MICROBIOME 2022; 10:150. [PMID: 36117217 PMCID: PMC9484056 DOI: 10.1186/s40168-022-01345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Controlling excess biomass accumulation and clogging is important for maintaining the performance of gas biofilters and reducing energy consumption. Interruption of bacterial communication (quorum quenching) can modulate gene expression and alter biofilm properties. However, whether the problem of excess biomass accumulation in gas biofilters can be addressed by interrupting bacterial communication remains unknown. RESULTS In this study, parallel laboratory-scale gas biofilters were operated with Rhodococcus sp. BH4 (QQBF) and without Rhodococcus sp. BH4 (BF) to explore the effects of quorum quenching (QQ) bacteria on biomass accumulation and clogging. QQBF showed lower biomass accumulation (109 kg/m3) and superior operational stability (85-96%) than BF (170 kg/m3; 63-92%) at the end of the operation. Compared to BF, the QQBF biofilm had lower adhesion strength and decreased extracellular polymeric substance production, leading to easier detachment of biomass from filler surface into the leachate. Meanwhile, the relative abundance of quorum sensing (QS)-related species was found to decrease from 67 (BF) to 56% (QQBF). The QS function genes were also found a lower relative abundance in QQBF, compared with BF. Moreover, although both biofilters presented aromatic compounds removal performance, the keystone species in QQBF played an important role in maintaining biofilm stability, while the keystone species in BF exhibited great potential for biofilm formation. Finally, the possible influencing mechanism of Rhodococcus sp. BH4 on biofilm adhesion was demonstrated. Overall, the results of this study achieved excess biomass control while maintaining stable biofiltration performance (without interrupting operation) and greatly promoted the use of QQ technology in bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
16
|
Hu J, Wang J, Li J, Hu H, Wu B, Ren H, Wang J. AHLS-pred: a novel sequence-based predictor of acyl-homoserine-lactone synthases using machine learning algorithms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:616-631. [PMID: 35403334 DOI: 10.1111/1758-2229.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Acyl-homoserine-lactones (AHLs), as the major quorum sensing (QS) signalling molecules in Gram-negative bacteria, have shown great application potential in regulating biological nutrient removal process. The identification of AHLs synthases plays an essential role in in-depth research on QS mechanisms and applications of biological wastewater treatment processes. This work proposed the first prediction model for AHLs synthases based on machine learning algorithms, namely, AHLS-pred. The training dataset AHLS1400 and the independent testing dataset AHLS132 for AHLSs prediction were first established. Three sequence-based feature extraction methods are utilized to generate feature descriptors, namely, amino acid composition, dipeptide composition and G-gap dipeptide composition respectively. Subsequently, the optimal features were obtained based on the sorted feature descriptors (in F-score order) and the sequential forward search strategy. By comparing five different machine learning algorithms, the final prediction model is trained with support vector machine classifier on AHLS1400 in fivefold cross-validation with the best performance (ACC = 99.43%, MCC = 0.989, AUC = 0.997). The results show that AHLS-pred achieves an ACC of 94.70%, MCC of 0.894 and AUC of 0.995 on the independent testing dataset AHLS132. It demonstrates that AHLS-pred is a promising and powerful prediction method for accelerating the process of AHLSs computational identification.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiahao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Bin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
17
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
18
|
Enhanced filtration performance of biocarriers facilitated gravity-driven membrane (GDM) by vacuum ultraviolet (VUV) pretreatment: Membrane biofouling characteristics and bacterial investigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Wang L, Wu Y, Ren Y, Wang Y, Wang Y, Zhang H. Transition of fouling characteristics after development of membrane wetting in membrane-aerated biofilm reactors (MABRs). CHEMOSPHERE 2022; 299:134355. [PMID: 35306051 DOI: 10.1016/j.chemosphere.2022.134355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The practical applications of water treatment techniques based on hydrophobic aeration membrane are limited due to membrane pores blocking. Various studies have revealed that both biofilm and microbial secretion can exacerbate membrane fouling. Recently, we constructed a membrane-aerated biofilm reactor (MABR) system for treating micro-polluted surface water in order to identify the primary cause for oxygen transfer rate (OTR) decline. It was found that microbial secretion had a more prominent negative effect than that caused by biofilm, as manifested by the fact the effect of microbial secretion (66.49%) was greater than the resistance of biofilm (38.83%). Fouling decreased the total pore volume of all membrane. The peak location of adsorption capacity was more likely to occur at smaller pore sizes with longer running time. Notably, continuous fluorescence distribution between the separating layer and pores like finger in MABR system exhibited an increasing trend with the operation time, indicating a gradual increase of microbial viability. Core protein structure was revealed by different bond peaks (0-90 d). Specifically, for different organic components of EPS, the hydrophilic HIS was the main content, while the mass transfer resistance caused by the gel increased, which reduced the contact angle and increased the bubble point pressure. Therefore, effects of EPS content and composition should be considered during the application of water treatment techniques based on MABR.
Collapse
Affiliation(s)
- Lutian Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Material Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yun Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China.
| | - Yue Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yufeng Wang
- Tianjin Urban Construction Design Institute, Tianjin 300122, China
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| |
Collapse
|
20
|
He M, Chiang Albert Ng T, Huang S, Xu B, Yong Ng H. Ammonium removal and recovery from effluent of AnMBR treating real domestic wastewater using polymeric hydrogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Xu B, Cho QAC, Ng TCA, Huang S, Ng HY. Enriched autoinducer-2 (AI-2)-based quorum quenching consortium in a ceramic anaerobic membrane bioreactor (AnMBR) for biofouling retardation. WATER RESEARCH 2022; 214:118203. [PMID: 35231804 DOI: 10.1016/j.watres.2022.118203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This study is the first to enrich a facultative QQ consortium for AI-2-based quorum sensing (QS) disruption (FQQ2) and discover its quorum quenching (QQ) performance in an anaerobic membrane bioreactor (AnMBR) for membrane fouling retardation. Herein, FQQ2 was enriched by the enrichment culture using 4,5-dihydroxy-2,3-pentanedione (DPD) followed by anaerobic screening. FQQ2 was composed of various facultative AI-2-based QQ microorganisms including Acinetobacter, Comamonas, Stenotrophomonas, and FQQ2 was capable to degrade 96.96% of DPD in 9 h. More importantly, FQQ2 prolonged membrane filtration operation by an average of 3.72 times via reduction of DPD in the AnMBR treating domestic wastewater (p ≤ 0.05). QQ was implicated to reduce the content of proteins and carbohydrates of the extracellular polymeric substances (EPS) of suspended biomass by 24.16% and 10.39%, respectively, and concentration of proteins of the soluble microbial products (SMP) by 18.77%. Parallel factor (PARAFAC) modelling of excitation-emission matrix (EEM) demonstrated that QQ could reduce the content of fulvic acid-like and humic acid-like substances, aromatic proteins and soluble-microbial-by-product-like proteins of the EPS (p ≤ 0.05) and abate the content of soluble-microbial-by-product-like proteins in the SMP (p ≤ 0.05). The lower EPS content of suspended biomass could be rendered with the reduced relative abundance of AI-2-regulated Christensenellaceae;g-, Hyphomicrobium, Leucobacter and Microbacterium by 48.48%, 76.56%, 64.78% and 59.26%, respectively, and QQ led to the reduction of the relative abundance of Christensenellaceae;g- and Leucobacter in the cake layer by 31.07% and 51.43%, respectively. Moreover, quantity of organics as well as planktonic microorganisms in the supernatant decreased in presence of FQQ2 (p ≤ 0.05). Of note, markedly lower relative abundance of AI-2-regulated Sulfurovum in supernatant by 97.74% resulted in its lower abundance of cake layer. Intriguingly, in the presence of QQ, methane production was statistically enhanced by 62.5% (p ≤ 0.05). It was closely linked to the decrease of sulfate reduction (p ≤ 0.05), which resulted from 37.93% lower abundance of sulfate-reduction Desulfomonile in the suspended biomass (p ≤ 0.05). Collectively, this study sheds lights on the development of AI-2-based QQ for biofouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Qi An Celine Cho
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580, Singapore
| | - Tze Chiang Albert Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Shujuan Huang
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580, Singapore.
| |
Collapse
|
22
|
Lim K, Parameswaran P. Critical evaluation of heat extraction temperature on soluble microbial products (SMP) and extracellular polymeric substances (EPS) quantification in wastewater processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2318-2331. [PMID: 35486457 DOI: 10.2166/wst.2022.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While soluble microbial products (SMP) and extracellular polymeric substances (EPS) in wastewater bioprocesses have been widely studied, a lack of standard quantification procedures make it difficult to compare results between studies. This study investigated the effect of temperature on SMP and EPS profiles for biological nutrient removal (BNR) sludges and aerobic membrane bioreactor sludge by adapting the commonly used heat extraction and centrifugation scheme, followed by colorimetric quantification of the carbohydrate and protein fractions using the phenol-sulfuric acid (PS) and the bicinchoninic acid (BCA) methods, respectively. To overcome known inconsistencies in colorimetry, total carbon (TC), total nitrogen (TN), and fluorometry analyses were performed in tandem. SMP samples marginally benefitted from heat extraction, owing to their mostly soluble nature, while EPS profiles were greatly influenced by temperature. 60 °C appears to be a suitable general-purpose extraction temperature near the lysis threshold for the sludges tested. The PS method's misestimation due to lack of specificity was observed and contrasted by TC analyses, while the TN analyses corroborated the BCA assays. Fluorometry proved to be a sensitive and rapid analytical method that provided semi-quantitative information on SMP and EPS constituents, particularly its proteinaceous components, with positive implications for robust wastewater process control.
Collapse
Affiliation(s)
- Kahao Lim
- Department of Civil Engineering, Kansas State University, 2118 Fiedler Hall, 1701C Platt St., Manhattan, KS 66506, USA E-mail:
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, 2118 Fiedler Hall, 1701C Platt St., Manhattan, KS 66506, USA E-mail:
| |
Collapse
|
23
|
Waheed H, Mehmood CT, Li Y, Yang Y, Xiao Y. Genetic insights unraveling quorum quenching potential of indigenous isolates from an anaerobic membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152349. [PMID: 34914989 DOI: 10.1016/j.scitotenv.2021.152349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Despite a few reports of quorum quenching (QQ) in anaerobic membrane bioreactors (AnMBRs), the sensing, regulation and degradation mechanism for quorum sensing (QS) signals by indigenous QQ isolates have been barely studied. This study employed isolation and screening of indigenous QQ strains from anaerobic sludge for acyl-homoserine lactones (AHLs) degradation and membrane biofouling control. High-quality whole genome sequences of Micrococcus luteus anQ-m1, Bacillus pacificus anQ-h4, and Lysinibacillus capsici anQ-h6 were obtained, with a genome size of 2.5, 5.6, and 4.7 Mbp, respectively. Amidase-encoding amiE was the only QQ gene in anQ-m1, while anQ-h6 carries both amiE and lactonase-encoding aiiB genes. Genes responsible for QS autoinducer synthesis were not identified in anQ-m1 and anQ-h6, suggesting low potential of biofilm promotion via QS. Despite a peptidic QS system responsible for biofilm formation, anQ-h4 bears the most comprehensive QQ system, including amiE-amidase, aiiA-lactonase, CYP102A5-cytochrome oxidoreductase, and lsrK-autoinducer-2 kinase. This study elucidates QS and QQ mechanisms of potential anaerobes and provides fundamentals for designing QQ consortia to effectively control biofouling in AnMBRs.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Ch Tahir Mehmood
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China; Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yongyu Yang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
24
|
Güneş G, Taşkan E. Quorum quenching strategy for biofouling control in membrane photobioreactor. CHEMOSPHERE 2022; 288:132667. [PMID: 34699877 DOI: 10.1016/j.chemosphere.2021.132667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study aims to reduce membrane fouling in membrane photobioreactor (MPBR) through the quorum quenching (QQ) strategy. For this purpose, the QQ beads (immobilized Rhodococcus sp. BH4) were added to the MPBR, and antifouling ability was evaluated in consideration of the changes in transmembrane pressure (TMP), extracellular polymeric substance (EPS), microbial community, and cake layer morphology on the membrane surface. The results showed that the TMP of control MPBR (MPBR-C) reached 818 mbar and 912 mbar on the operation hours of 35 and 170, while the TMP of experimental MPBR (MPBR-QQ) was only 448 mbar and 676 mbar, respectively. The QQ strategy effectively reduced the EPS content in MPBR. The microscopic observations indicated that the QQ diminished the cake layer formation and pore-blocking on the membrane surface. Comparisons of 16S and 18S gene communities revealed minor differences between bacterial and eukaryotic species in MPBRs at phylum and class levels.
Collapse
Affiliation(s)
- Göknur Güneş
- Firat University, Department of Environmental Engineering, 23119, Elazig, Turkey
| | - Ergin Taşkan
- Firat University, Department of Environmental Engineering, 23119, Elazig, Turkey.
| |
Collapse
|
25
|
Liu Y, Han Y, Guo J, Zhang J, Hou Y, Song Y, Lu C, Li H, Zhong Y. New insights of simultaneous partial nitritation, anammox and denitrification (SNAD) system to Zn(II) exposure: Focus on affecting the regulation of quorum sensing on extracellular electron transfer and microbial metabolism. BIORESOURCE TECHNOLOGY 2022; 346:126602. [PMID: 34953995 DOI: 10.1016/j.biortech.2021.126602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Here, the toxicity responses mechanism of the simultaneous partial nitritation, anammox and denitrification (SNAD) system to Zn(II) exposure were explored with emphasis on the repressed quorum sensing (QS) regulation on extracellular electron transfer and microbial metabolism. Results showed that Zn(II) accumulated in cells and induced oxidative stress, which led to microbial structure destruction. The increased electron transfer impedance and reduced redox substances (flavin/Cytochrome c) implied that Zn(II) affected electron transfer. The decreased ATP level, dehydrogenase and nitrogen related enzymatic activities showed Zn(II) affected organic matter and nitrogen metabolism. Furthermore, combined with Pearson network analysis, Zn(II) exposure disturbed the QS to decrease Acyl Homoserine Lactones (AHLs) secretion responsible for regulating extracellular electron transfer and microbial metabolism, thereby disturbing the performance of the SNAD system. This study provided new insights into the toxicity responses mechanism of the SNAD system to HM exposure.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jianbing Zhang
- Tianjin Municipal Engineering Design & Research Institute Co.,Ltd., Tianjin 300051, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Zhong
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
26
|
Yang H, Li Z, Chen Y, Zhou Z. Role of microparticles in membrane fouling from acidogenesis to methanogenesis phases in an anaerobic baffled reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150663. [PMID: 34597561 DOI: 10.1016/j.scitotenv.2021.150663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microparticles (0.45-10 μm) have been recognized as key foulants in anaerobic membrane bioreactors (AnMBRs). However, their characteristics and fouling behaviors are often understood in single-stage and completely mixed reactors, failing to elucidate the occurrence of microparticles in the multi-stage anaerobic bioprocess. Here, a lab-scale anaerobic baffled reactor with four compartments (C1-C4) was employed to explore the composition and fouling potential of microparticles in different compartments. Photometric analysis showed that the microparticles had an increasing percentage in the total organics of the top supernatant but a decreasing concentration from C1 to C4. Long-term filtration and dead-end filtration tests revealed that the top supernatant in C1 had much higher fouling potential than those in C2-C4. The supernatant microparticles significantly accumulated in the cake layers for each compartment (68-95% of the total organics), particularly the fraction of 1-5 μm, and the fouling rate was positively correlated with the biomass accumulation rate. Based on reactor performance and 16S rRNA gene sequences, a significant bio-phase separation occurred between C1 (acidogenesis) and C2-C4 (methanogenesis). And hydrolytic and fermentative bacteria in the family Veillonellaceae, Streptococcaceae, and Enterobacteriaceae were dominant in the supernatant microparticles, particularly in C1, which had a positive correlation with the fouling rate and biomass accumulation rate. These above results all revealed that the microparticles in the acidogenesis phase had higher fouling potential. In summary, our results suggest that the tactic of pre-hydrolysis and acidification with feedstocks and constructing AnMBRs by coupling with multi-phase anaerobic bioprocesses and membrane units could be beneficial to fouling control.
Collapse
Affiliation(s)
- Houlong Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zicong Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
27
|
Yu H, Du C, Qu F, He J, Rong H. Efficient biostimulants for bacterial quorum quenching to control fouling in MBR. CHEMOSPHERE 2022; 286:131689. [PMID: 34352546 DOI: 10.1016/j.chemosphere.2021.131689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Quorum quenching (QQ), which disrupts bacterial communication and biofilm formation, could alleviate biofouling in MBR. QQ bio-stimulus possessing similar conserved moiety as the signal molecule could promote indigenous QQ bacteria, and thus successfully alleviate biofouling in MBR. However, efficient biostimulant has been barely explored for QQ enhancement in activated sludge system. This study extensively enumerated the potential QQ bio-stimuli, and examined their efficacy on QQ promotion for activated sludge. Moreover, the effect of the QQ consortia on fouling mitigation was also investigated. The results indicated that gamma-caprolactone (GCL), d-xylonic acid-1,4-lactone (XAL), gamma-heptalactone (GHL), urea, and acetamide proved effective in promoting AHLs inactivating activity of activated sludge. GCL, XAL, and GHL intensified the lactonase activity, while urea and acetamide augmented acylase activity. While coupled with beads entrapment, GCL consortia beads, XAL consortia beads, and urea consortia beads effectively disrupted quorum sensing (QS) and controlled membrane fouling in MBR. This work found out several optional bio-stimuli valid for tuning QQ in activated sludge system, and provided easily available and economical alternatives for QQ biostimulation, meanwhile the proposed QQ-MBR approach through QQ biostimulation and consortia entrapment also proved effective and practical.
Collapse
Affiliation(s)
- Huaorng Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chenyu Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Junguo He
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Yan H, Li J, Meng J, Li J, Jha AK, Zhang Y, Wang X, Fan Y. Insight into the effect of N-acyl-homoserine lactones-mediated quorum sensing on the microbial social behaviors in a UASB with the regulation of alkalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149413. [PMID: 34384968 DOI: 10.1016/j.scitotenv.2021.149413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) has been reported as the inducers of microbial social behaviors in anaerobic digestion (AD) processes. However, it is not well understood that how to intentionally change the secretion of AHLs by conventional engineering control such as the regulation of alkalinity. The present research investigated the effect of endogenous AHLs-mediated QS on the microbial social behaviors in an upflow anaerobic sludge bed (UASB) reactor with the influent alkalinity decreased from 2800 mg/L to 700 mg/L by stages. The results showed that the alkalinity of 1800-2200 mg/L was more favorable for the AD in the UASB, with an excellent specific methanogenic activity (SMA) and better microbial aggregation statuses. The alkalinity out of the favorable alkalinity range would decrease the SMA with the accumulation of VFAs in the reactor. It was found that signal molecule C4-HSL was always the dominant AHL in the UASB along with the decrease of influent alkalinity, while 3-oxo-C6-HSL, 3-oxo-C12-HSL and C14-HSL were remarkably improved only within the favorable range of alkalinity. Pearson correlation concluded that the dominant signal molecule C4-HSL was the specific AHL in enhancing the synthesis of extracellular polysaccharide and the metabolism of acidogens. The co-occurrence network revealed that Mesotoga, Sulfurospirillum and Methanoregula were the key hubs in the microbial interaction network, and the AHLs-mediated QS indirectly facilitated the methanogenic metabolism. The present work provided a revealing insight into the effect of AHLs-mediated QS on the microbial social behaviors in AD process with the regulation of alkalinity.
Collapse
Affiliation(s)
- Han Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Avinash Kumar Jha
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
29
|
Wang X, Yu D, Chen G, Liu C, Xu A, Tang Z. Effects of interactions between quorum sensing and quorum quenching on microbial aggregation characteristics in wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2883-2902. [PMID: 34719836 DOI: 10.1002/wer.1657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasingly urgent demand for effective wastewater denitrification and dephosphorization systems, there is a need to improve the performance of existing biological treatment technologies. As a bacteria-level communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. On this basis, the QS-based bacterial communication mechanism and environmental factors affecting QS are discussed. This paper reviews the influence of QS on sludge granulation, biofilm formation, emerging contaminants (ECs) removal, and horizontal gene transfer in sewage treatment system. Furthermore, the QS inhibition strategies are compared. Based on the coexistence and balance of QQ and QS in the long-term operation system, QQ, as an effective tool to regulate the growth density of microorganisms, provides a promising exogenous regulation strategy for residual sludge reduction and biofilm pollution control. This paper reviews the potential of improving wastewater treatment efficiency based on QS theory and points out the feasibility and prospect of exogenous regulation strategy. PRACTITIONER POINTS: The mechanism of bacterial communication based on QS and the environmental factors affecting QS were discussed. The application of QS and QQ in improving the sludge performance of biological treatment systems was described. The significance of QS and QQ coexistence in sewage treatment process was described.
Collapse
Affiliation(s)
- Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Su C, Tao AF, Zhao L, Wang P, Wang A, Huang X, Chen M. Roles of modified biochar in the performance, sludge characteristics, and microbial community features of anaerobic reactor for treatment food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144668. [PMID: 33513502 DOI: 10.1016/j.scitotenv.2020.144668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a green technology widely applied to food waste treatment. Although the AD has high efficiency, instability often occurs. The main purpose of the study is to understand the mechanism of modified biochar improving AD performance. The effects of different modified biochar on the efficiency and microecology of an anaerobic reactor treating food waste were investigated. Bagasse biochar was used as the substrate to explore the effects of iron-modified (A), chitosan-modified (B), iron-chitosan-modified (C) and iron‑magnesium-chitosan-modified (D) biochar on the anaerobic digestion process, sludge characteristics and microbial community. The results show that the average COD removal efficiency of the four reactors during the last five days of the experimentation period was 86.95%, 85.90%, 92.22% and 93.29%, respectively. Adding iron‑magnesium-chitosan-modified biochar could improve the efficiency of COD removal in the anaerobic reactor under ammonia nitrogen stress. On day 10 of operation, the content of coenzyme F420 in the sludge of anaerobic reactors C and D reached to 0.44 and 0.57 mmol/g, respectively, indicating that the metal-chitosan complex biochar could promote the production of coenzyme F420 in the early stage of the experiment. Within the four anaerobic reactors, Firmicutes, Bacteroidetes, Proteobacteria and Chloroflexi were the dominant bacteria, and the abundance of Chloroflexi reached a maximum of 26.24% in the reactor C. As for archaea, Methanobacterium and Methanothrix were the most dominant accounting for 44.03%, 49.88%, 31.29%, 52.01% and 38.34%, 34.52%, 50.9%, 35.72% respectively in the four reactors. KEGG functional analysis showed that the energy metabolism of bacteria and archaea in the reactor D was the largest among the four reactors. Meanwhile, the gene abundance associated with carbohydrate metabolism and membrane transport of microorganisms in the reactor D was greater than that of other groups.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, 12 Jiangan Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - AFeng Tao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Lijian Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Pengfei Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Anliu Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
31
|
Ying XB, Huang JJ, Shen DS, Feng HJ, Jia YF, Guo QQ. Fouling behaviors are different at various negative potentials in electrochemical anaerobic membrane bioreactors with conductive ceramic membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143199. [PMID: 33234267 DOI: 10.1016/j.scitotenv.2020.143199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling remains a critical challenge to the practical application of anaerobic membrane bioreactor (AnMBR). To address this challenge, a conductive ceramic membrane was prepared for fouling control in AnMBR. By using the conductive membranes, the anti-fouling performances were enhanced about 3 times at potentials below -1.0 V vs Ag/AgCl compared to the conventional AnMBR. The particle size distributions and the electric field calculations suggest that such an enhancement was mainly attributed to the increased particle sizes of foulants in the supernatant and the electric field forces. Moreover, the scanning electron microscope and confocal laser scanning microscope results show that the conductive membrane at -1.0 V could increase the porosity of the gel layer on the surface, whereas the conductive membrane at -2.0 V could inhibit the activity of adhering bacteria. Surprisingly, membrane fouling of electrically-assisted AnMBR (AnEMBR) at -0.5 V was increased, which was attributed to a dense biofilm-like structure formation. Such a result is contrary to the conventional cognition that negative potential could mitigate the membrane fouling. Overall, this work supplements the understanding of the anti-fouling effects of the electric field in AnEMBR, and provides supplementary information for the engineering application of AnEMBR.
Collapse
Affiliation(s)
- Xian-Bin Ying
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jing-Jing Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dong-Sheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| | - Yu-Feng Jia
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, PR China
| | - Qiao-Qi Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| |
Collapse
|
32
|
Li Y, Yang Y, Feng Y, Pu J, Hou LA. Combined effects of Pseudomonas quinolone signal-based quorum quenching and graphene oxide on the mitigation of biofouling and improvement of the application potential for the thin-film composite membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143348. [PMID: 33162137 DOI: 10.1016/j.scitotenv.2020.143348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Biofouling caused by the growth of the biofilm is the main bottleneck that limits the effective operation of thin-film composite (TFC) membrane in the forward osmosis (FO) process. This study investigated the combined effects of graphene oxide (GO) immobilized thin-film nanocomposite (TFN-S) membrane and Pseudomonas quinolone signal (PQS)-based quorum quenching on biofouling mitigation, especially under the operation of pressure-retarded osmosis (PRO) mode, and the influence of methyl anthranilate (MA) inhibitor on the composition and structure of biofilm was also evaluated. Synthetic wastewater was used as the feed solution, in which the model strain Pseudomonas aeruginosa was added to simulate biofouling. The results showed that GO modification and MA addition both efficiently mitigated flux decline and EPS secretion, but the interference of PQS pathway on biofouling control was better than GO embedding. TFN-S membrane with MA addition exhibited superior anti-biofouling performance based on the combined effects of GO and MA. The alleviated concentration polarization and enhanced hydrophilicity of the TFN-S membrane reduced the flux decline in the early stage. Additionally, the antibacterial property of GO inhibited the viability of the attached bacteria (under PRO mode) and MA further mitigated the EPS secretion and biofilm development in the later stage. In the presence of PQS inhibitor MA, live/total cells ratio was 15% and 13% higher than that of TFC membrane in FO and PRO modes, respectively. Furthermore, exogenous addition of MA led to a relatively loose biofilm structure, resulting in high membrane permeability in the biofouling formation process.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yuruo Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo 113-8654, Japan.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Xi'an High-Tech Institute, Xi'an 710025, China.
| |
Collapse
|
33
|
Li Y, Wang Q, Liu L, Tabassum S, Sun J, Hong Y. Enhanced phenols removal and methane production with the assistance of graphene under anaerobic co-digestion conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143523. [PMID: 33223184 DOI: 10.1016/j.scitotenv.2020.143523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Coal gasification wastewater (CGW) contains high concentration phenols which lead to poor anaerobic biodegradability and resource utilization. In this paper, new insights to improve synthetic CGW anaerobic degradation with the help of graphene under co-digestion conditions were investigated. Batch tests showed that with the addition of graphene dosage of 10 g/L and glucose as a co-substrate with chemical oxygen demand (COD) concentration of 2000 mg/L, the average COD concentration decreased from 3995 mg/L on day 1 to 983 mg/L on day 12. The average total phenol (TP) concentration decreased from 431 mg/L on day 1 to 23 mg/L on day 12. The cumulative methane production for 12 days was about 200 mL. Long-term experiments showed the average effluent COD and total phenol reached 1137 mg/L and 200 mg/L, respectively. While methane production stabilized at 500 mL/d. In addition, the coenzyme F420 concentration increased from 1.075 μmol/g/VSS to 2.3 μmol/g/VSS. The analysis of microbial community structure indicated that the performance of phenols removal and methane production was related to the main microbial flora. The enriched Clostridium, Pseudomonas and species from Firmicutes and Chloroflexi participated in the stages of hydrolysis and acidogenesis. The electrogens Pseudomonas and archaea Methanosaeta were likely the major groups taking part in the direct interspecies electron transfer (DIET). The results obtained in this paper provide a theoretical basis for high-efficiency anaerobic degradation of CGW in practical engineering applications.
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Qingshui Wang
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lingyu Liu
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Salma Tabassum
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia
| | - Jie Sun
- Aeronautic and Mechanic Engineering school, Changzhou Institute of Technology, Changzhou 213031, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
34
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|