1
|
Huan C, Wang J, He Y, Liu Y, Tian X, Lyu Q, Wang Z, Ji G, Yan Z. Efficient strategy for employing HN-AD bacterium enhanced biofilter reactors to remove NH 3 and reduce secondary pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135802. [PMID: 39312845 DOI: 10.1016/j.jhazmat.2024.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) strain (Paracoccus denitrificans HY-1) was employed in this study to enhance the removal efficiency of NH3 in a biological trickling filter (BTF) reactor. The results demonstrated that inoculation with HY-1 and packed with bamboo charcoal as filler significantly improved the RE of NH3 in BTF, reaching 96.52 % under 27 s of empty bed residence time (EBRT) and 812.56 ppm of inlet gas concentration. Meanwhile, the titer of NH4+-N, NO2--N, and NO3--N in the circulating fluid were merely 8.52 mg/L, 5.14 mg/L, and 18.07 mg/L, respectively. Microbial community and metabolism analyses revealed that HY-1 have successfully colonized in the BTF, and the high expression of denitrification-related genes (nar, nap, nir, nor and nos) further confirmed that the inoculation of HY-1 greatly improved both nitrification and denitrification metabolism. Furthermore, the biofilter reactor inoculated with HY-1 was applied at a large-scale piggery and exhibited remarkable odor removal effect, in which 99.61 % of NH3 and 96.63 % of H2S were completely eliminated. In general, the HN-AD bacterium could strengthen the performance of BTF reactor and reduce the secondary pollution of circulating fluid during bio-deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yue He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhenhong Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Zheng Z, Liao C, Chen Y, Ming T, Jiao L, Kong F, Su X, Xu J. Revealing the functional potential of microbial community of activated sludge for treating tuna processing wastewater through metagenomic analysis. Front Microbiol 2024; 15:1430199. [PMID: 39101040 PMCID: PMC11294940 DOI: 10.3389/fmicb.2024.1430199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Reports regarding the composition and functions of microorganisms in activated sludge from wastewater treatment plants for treating tuna processing wastewater remains scarce, with prevailing studies focusing on municipal and industrial wastewater. This study delves into the efficiency and biological dynamics of activated sludge from tuna processing wastewater, particularly under conditions of high lipid content, for pollutant removal. Through metagenomic analysis, we dissected the structure of microbial community, and its relevant biological functions as well as pathways of nitrogen and lipid metabolism in activated sludge. The findings revealed the presence of 19 phyla, 1,880 genera, and 7,974 species, with Proteobacteria emerging as the predominant phylum. The study assessed the relative abundance of the core microorganisms involved in nitrogen removal, including Thauera sp. MZ1T and Alicycliphilus denitrificans K601, among others. Moreover, the results also suggested that a diverse array of fatty acid-degrading microbes, such as Thauera aminoaromatica and Cupriavidus necator H16, could thrive under lipid-rich conditions. This research can provide some referable information for insights into optimizing the operations of wastewater treatment and identify some potential microbial agents for nitrogen and fatty acid degradation.
Collapse
Affiliation(s)
- Zhangyi Zheng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Changyu Liao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yubin Chen
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Tinghong Ming
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Lefei Jiao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Fei Kong
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Jia S, Diao Y, Li Y, Zhang J, Han H, Li G, Pei Y. Microbiological interpretation of weak ultrasound enhanced biological wastewater treatment - using Escherichia coli degrading glucose as model system. BIORESOURCE TECHNOLOGY 2024; 403:130873. [PMID: 38782192 DOI: 10.1016/j.biortech.2024.130873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The Escherichia coli (E.coli) degrading glucose irradiated by ultrasound irradiation (20 W, 14 min) was investigated as the model system, the glucose degradation increased by 13 % while the E.coli proliferation decreased by 10 % after culture for 18 h. It indicated a tradeoff effect between substrate degradation and cell proliferation, which drove the enhanced contaminants removal and excess sludge reduction in a weak ultrasound enhanced biological wastewater treatment. The enzymatic activities (catalase, superoxide dismutase, adenosine triphosphatases, lactic dehydrogenase, membrane permeability, intracellular reactive oxygen species and calcium ion of E. coli increased immediately by 12 %, 63 %, 124 %, 19 %, 15 %, 4-fold and 38-fold, respectively by ultrasound irradiation power of 20 W for 14 min. Furthermore, the membrane permeability of irradiated E. coli increased by 26 % even though the ultrasound stopped for 10 h. Additionally, pathways associated with glucose degradation and cell proliferation were continuously up-regulated and down-regulated, respectively.
Collapse
Affiliation(s)
- Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfang Diao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanhu Pei
- Henan Qingshuiyuan Technology Co., Ltd, Jiyuan 454650, China
| |
Collapse
|
4
|
Hu Y, Sun S, Gu X, Li Z, Zhang J, Xing Y, Wang L, Zhang W. Linking the removal of enrofloxacin to the extracellular polymers of microalgae in water bodies: A case study focusing on the shifts in microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48062-48072. [PMID: 39017865 DOI: 10.1007/s11356-024-34238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.
Collapse
Affiliation(s)
- Youyin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangsheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuewei Gu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziyi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
González-Cortés JJ, Lamprea-Pineda PA, Ramírez M, Demeestere K, Van Langenhove H, Walgraeve C. Biofiltration of gaseous mixtures of dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide: Effect of operational conditions and microbial analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121320. [PMID: 38843750 DOI: 10.1016/j.jenvman.2024.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The efficient removal of volatile sulfur compounds (VSCs), such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), is crucial due to their foul odor and corrosive potential in sewer systems. Biofilters (BFs) offer promise for VSCs removal, but face challenges related to pH control and changing conditions at full scale. Two BFs, operated under acidophilic conditions for 78 days, were evaluated for their performance at varying inlet concentrations and empty bed residence times (EBRTs). BF1, incorporating 4-6 mm marble limestone for pH control, outperformed BF2, which used NaHCO3 in the nutrient solution. BF1 displayed better resilience, maintained a stable pH of 4.6 ± 0.6, and achieved higher maximum elimination capacities (ECmax, 41 mg DMS m-3 h-1 (RE 38.3%), 146 mg DMDS m-3 h-1 (RE 83.1%), 47 mg DMTS m-3 h-1 (RE 93.1%)) at an EBRT of 56 s compared to BF2 (9 mg DMS m-3 h-1 (RE 7.1%), 9 mg DMDS m-3 h-1 (RE 4.8%) and 11 mg DMTS m-3 h-1 (RE 26.6%)). BF2 exhibited pH stratification and decreased performance after feeding interruptions. The biodegradability of VSCs followed the order DMTS > DMDS > DMS, and several microorganisms were identified contributing to VSCs degradation in BF1, including Bacillus (14%), Mycobacterium (11%), Acidiphilium (7%), and Acidobacterium (3%).
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain; Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - P A Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain
| | - K Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - H Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Lyu Q, Feng Z, Liu Y, Wang J, Xu L, Tian X, Yan Z, Ji G. Analysis of latrine fecal odor release pattern and the deodorization with composited microbial agent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:371-384. [PMID: 38432182 DOI: 10.1016/j.wasman.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
As an important source of malodor, the odor gases emitted from public toilet significantly interfered the air quality of living surroundings, resulting in environmental problem which received little attention before. Thus, this paper explored the odor release pattern of latrine feces and deodorization effect with composited microbial agent in Chengdu, China. The odor release rules were investigated in sealed installations with a working volume of 9 L for 20 days. The odor units (OU), ammonia (NH3), hydrogen sulfide (H2S) and total volatile organic compounds (TVOC) were selected to assess the release of malodorous gases under different temperature and humidity, while the highest malodor release was observed under 45℃, with OU and TVOC concentration was 643.91 ± 2.49 and 7767.33 ± 33.50 mg/m3, respectively. Microbes with deodorization ability were screened and mixed into an agent, which composited of Bacillus amyloliquefaciens, Lactobacillus plantarum, Enterococcus faecalis and Pichia fermentans. The addition of microbial deodorant could significantly suppress the release of malodor gas during a 20-day trial, and the removal efficiency of NH3, H2S, TVOC and OU was 81.50 %, 38.31 %, 64.38 %, and 76.86 %, respectively. The analysis of microbial community structure showed that temperature was the main environmental factor driving the microbial variations in latrine feces, while Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were the main bacteria phyla involved in the formation and emission of malodorous gases. However, after adding the deodorant, the abundance of Bacteroidetes, Proteobacteria and Actinobacteria were decreased, while the abundance of Firmicutes was increased. Furthermore, P. fermentans successfully colonized in fecal substrates and became the dominant fungus after deodorization. These results expanded the understanding of the odor release from latrine feces, and the composited microbial deodorant provided a valuable basis to the management of odor pollution.
Collapse
Affiliation(s)
- Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhaozhuo Feng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Li Y, He Y, Guo H, Hou J, Dai S, Zhang P, Tong Y, Ni BJ, Zhu T, Liu Y. Sulfur-containing substances in sewers: Transformation, transportation, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133618. [PMID: 38335612 DOI: 10.1016/j.jhazmat.2024.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.
Collapse
Affiliation(s)
- Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suwan Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Cheng Y, Chen T, Zheng G, Yang J, Yu B, Ma C. Comprehensively assessing priority odorants emitted from swine slurry combining nontarget screening with olfactory threshold prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170428. [PMID: 38286275 DOI: 10.1016/j.scitotenv.2024.170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The lack of one-to-one olfactory thresholds (OTs) poses an obstacle to the comprehensive assessment of priority odorants emitted from swine slurry using mass spectrometric nontarget screening. This study screened out highly performing quantitative structure-activity relationship (QSAR) models of OT prediction to complement nontarget screening in olfactory perception evaluation. A total of 27 compounds emitted at different slurry removal frequencies were identified and quantified using gas chromatography-mass spectrometry (GC-MS), including thiirane, dimethyl trisulfide (DMTS), and dimethyl tetrasulfide (DMQS) without OT records. Ridge regression (RR, R2 = 0.77, RMSE = 0.93, MAE = 0.73) and random forest regression (RFR, R2 = 0.76, RMSE = 0.97, MAE = 0.69) rather than the commonly used principal component regression (PCR) and partial least squares regression (PLSR) were used to assign OTs and assess the contributions of emerging volatile sulfur compounds (VSCs) to the sum of odor activity value (SOAV). Priority odorants were p-cresol (25.0-58.9 %) > valeric acid (8.3-31.7 %) > isovaleric acid (6.7-19.0 %) > dimethyl disulfide (4.7-15.7 %) > methanethiol (0-13.6 %) > isobutyric acid (0-8.6 %), whereas the contributions of three emerging VSCs were below 10 %. Vital olfactory active structures were identified by QSAR models as having high molecular polarity, high hydrophilicity, high charge quantity, flexible structure, high reactivity, and a high number of sulfur atoms. This protocol can be further extended to evaluate odor pollution levels for distinct odor sources and guide the development of pertinent deodorization technologies.
Collapse
Affiliation(s)
- Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
9
|
Yuan X, Sun Y, Ni D, Xie Z, Zhang Y, Miao S, Wu L, Xing X, Zuo J. A biological strategy for sulfide control in sewers: Removing sulfide by sulfur-oxidizing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119237. [PMID: 37832290 DOI: 10.1016/j.jenvman.2023.119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Sulfide produced from sewers is considered one of the dominant threats to public health and sewer lifespan due to its toxicity and corrosiveness. In this study, we developed an environmentally friendly strategy for gaseous sulfide control by enriching indigenous sulfur-oxidizing bacteria (SOB) from sewer sediment. Ceramics acted as bio-carriers for immobilizing SOB for practical use in a lab-scale sewer reactor. 16 S rRNA gene sequences revealed that the SOB consortium was successfully enriched, with Thiobacillus, Pseudomonas, and Alcaligenes occupying a dominant abundance of 64.7% in the microbial community. Metabolic pathway analysis in different acclimatization stages indicates that microorganisms could convert thiosulfate and sulfide into elemental sulfur after enrichment and immobilization. A continuous experiment in lab-scale sewer reactors confirmed an efficient result for sulfide removal with hydrogen sulfide reduction of 43.9% and 85.1% under high-sulfur load and low-sulfur load conditions, respectively. This study shed light on the promising application for sewer sulfide control by biological sulfur oxidation strategy.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute of Highway Ministry of Transport, Beijing 100088, China
| | - Yiquan Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Ni
- Research Institute of Highway Ministry of Transport, Beijing 100088, China
| | - Zhenwen Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sun Miao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Linjun Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute of Highway Ministry of Transport, Beijing 100088, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
10
|
Cheng H, Lee W, Wen C, Dai H, Cheng F, Lu X. A sustainable integrated anoxic/aerobic bio-contactor process for simultaneously in-situ deodorization and pollutants removal from decentralized domestic sewage. Heliyon 2023; 9:e22339. [PMID: 38045187 PMCID: PMC10689935 DOI: 10.1016/j.heliyon.2023.e22339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The integration of anoxic filter and aerobic rotating biological contactor shows promise in treating rural domestic sewage. It offers high efficiency, low sludge production, and strong shock resistance. However, further optimization is needed for odor control, pollutant removal, and power consumption. In this study, the investigation on a one-pump-drive lab-scale device of retention anoxic filter (RAF) integrated with hydraulic rotating bio-contactor (HRBC) and its optimal operation mode were conducted. During the 50-day operation, optimal operation parameters were investigated. These parameters included a 175 % reflux ratio (RR), 5-h hydraulic retention time in the RAF (HRTRAF), and 2.5-h hydraulic retention time in the HRBC (HRTHRBC). Those conditions characterized a micro-aerobic environment (DO: 0.6-0.8 mg/L) in RAF, inducing improved deodorization (89.3 % sulfide removal) and denitrification (85.9 % nitrate removal) simultaneously. During the operation period, 84.79 ± 3.87 % COD, 82.71± 2.06 % NH 4 + -N, 74.83 ± 2.06 % TN, 91.68± 2.12 % S2-, and 89.04 ± 1.68 % TON were removed in RAF-HRBC. Based on large amount of operational data, organic loading rate curves of RAF-HRBC were validated and calibrated as a crucial reference to aid in full-scale designs and applications. The richness of microbial community was improved in both RAF and HRBC. In the RAF, the autotrophic sulfide-oxidizing nitrate-reducing bacteria (a-son) and heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-son) were selectively enriched, which intensified the sulfide removal and denitrification process. In the two-stage HRBC system, the 1st stage RBC was primarily composed of organics degraders, while the 2nd stage RBC consisted mainly of ammonium oxidizers. Overall, the integrated RAF-HRBC process holds significant potential for simultaneously improving pollutant removal and in-situ odor mitigation in decentralized domestic sewage treatment. This process specifically contributes to enhancing environmental sustainability and operational efficiency.
Collapse
Affiliation(s)
- Helai Cheng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Wenhua Lee
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Cangxiang Wen
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Hongliang Dai
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China
| | - Fangkui Cheng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| |
Collapse
|
11
|
Luckert A, Aguado D, García-Bartual R, Lafita C, Montoya T, Frank N. Odour mapping and air quality analysis of a wastewater treatment plant at a seaside tourist area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1013. [PMID: 37526776 DOI: 10.1007/s10661-023-11598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Although wastewater treatment plants (WWTPs) play a fundamental role in protecting the aquatic environment as they prevent organic matter, nutrients and other pollutants from reaching the natural ecosystems, near residential areas they can generate unpleasant smells and noise. The plant studied in the present work is in a seaside tourist area in the Valencian Community, Spain. The main aim was to detect any possible perceptible H2S concentrations from the WWTP by experimental measurement campaigns (including sensor readings and olfactometry measurements by two experts) plus mathematical modelling. After a thorough data analysis of the essential variables involved, such as wind speed, wind direction and H2S concentrations (the main odorant) and comparing their temporal patterns, it was found that the probability of affecting the residential area was highest from June to August before noon and in the late evening. The hourly H2S concentration, influent flow rate and temperature showed a positive correlation, the strongest (R2 = 0.89) being the relationship between the H2S concentration and influent flow rate. These two variables followed a similar daily pattern and indicated that H2S was emitted when influent wastewater was being pumped into the biological reactor. The H2S median concentration at the source of the emission was below 1393.865 μg/m3 (1 ppm), although concentrations 10 times higher were occasionally recorded. The observed H2S peak-to-mean ratio (1 min to 1 h of integration times) ranged from 1.15 to 16.03. This ratio and its attenuation with distance from the source depended on the atmospheric stability. Both H2S concentrations and variability were considerably reduced after submerging the inlet. The AERMOD modelling framework and applying the peak-to-mean ratio were used to map the peak H2S concentration and determine the best conditions to eliminate the unpleasant odour.
Collapse
Affiliation(s)
- Andreas Luckert
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Daniel Aguado
- Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient-IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain.
| | - Rafael García-Bartual
- Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient-IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - Carlos Lafita
- Global Omnium Medioambiente S.L., Avenida Marqués del Turia 19, 46005, Valencia, Spain
| | - Tatiana Montoya
- Global Omnium Medioambiente S.L., Avenida Marqués del Turia 19, 46005, Valencia, Spain
| | - Norbert Frank
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Wang Y, Shao L, Kang X, Zhang H, Lü F, He P. A critical review on odor measurement and prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117651. [PMID: 36878058 DOI: 10.1016/j.jenvman.2023.117651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liming Shao
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xinyue Kang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
13
|
Tian H, Liu J, Zhang Y, Yue P. A novel integrated industrial-scale biological reactor for odor control in a sewage sludge composting facility: Performance, pollutant transformation, and bioaerosol emission mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:9-19. [PMID: 37185067 DOI: 10.1016/j.wasman.2023.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
In order to remove multiple pollutants in the sewage sludge (SS) composting facility, a novel integrated industrial-scale biological reactor based on biological trickling filtration and fungal biological filtration (BTF-FBF) was developed. This study examined bioaerosol emission, odour removal, pollutant transformation mechanism, and project investment. At an inlet flow rate of 7200 m3/h, the average removal efficiencies of hydrogen sulfide (H2S), ammonia (NH3), and volatile organic compounds (VOCs) during the steady stage were 97.2 %, 98.9 %, and 92.2 %. The BTF-FBF separates microbial phases (bacteria and fungi) of different modules. BTF removed most hydrophilic compounds, while FBF removed hydrophobic ones. Moreover, the reactor could effectively remove pathogens or opportunistic pathogens bioaerosols, such as Escherichia coli (61.9%), Salmonella sp. (85%), and Aspergillus fumigatus (82.1%). The pollutant transformation mechanism of BTF-FBF was proposed. BTF-FBF annualized costs were 324,783 CNY/year at 15 years. In conclusion, BTF-FBF provides new insights into composting facility bioaerosol, odour, and pathogen emission control.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
14
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
15
|
Czarnota J, Masłoń A, Pajura R. Wastewater Treatment Plants as a Source of Malodorous Substances Hazardous to Health, Including a Case Study from Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5379. [PMID: 37047993 PMCID: PMC10093992 DOI: 10.3390/ijerph20075379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Using Poland as an example, it was shown that 41.6% of the requests for intervention in 2016-2021 by Environmental Protection Inspections were related to odour nuisance. Further analysis of the statistical data confirmed that approximately 5.4% of wastewater treatment plants in the group of municipal facilities were subject to complaints. Detailed identification of the subject of odour nuisance at wastewater treatment plants identified hydrogen sulphide (H2S), ammonia (NH3) and volatile organic compounds (VOCs) as the most common malodorous substances within these facilities. Moreover, the concentrations of hydrogen sulphide and ammonia exceed the reference values for some substances in the air (0.02 mg/m3 for H2S and 0.4 mg/m3 for NH3). A thorough assessment of the properties of these substances made it clear that even in small concentrations they have a negative impact on the human body and the environment, and their degree of nuisance is described as high. In the two WWTPs analysed in Poland (WWTP 1 and WWTP 2), hydrogen sulphide concentrations were in the range of 0-41.86 mg/m3 (Long-Term Exposure Limit for H2S is 7.0 mg/m3), ammonia 0-1.43 mg/m3 and VOCs 0.60-134.79 ppm. The values recognised for H2S cause lacrimation, coughing, olfactory impairment, psychomotor agitation, and swelling of the cornea with photophobia. Recognition of the methods used in practice at WWTPs to reduce and control malodorous emissions indicates the possibility of protecting the environment and human health, but these solutions are ignored in most facilities due to the lack of requirements specified in legislation.
Collapse
|
16
|
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161193. [PMID: 36581268 DOI: 10.1016/j.scitotenv.2022.161193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is an economical and environment-friendly technology for treating organic solid wastes (OSWs). OSWs with high sulfur can lead to the accumulation of toxic and harmful hydrogen sulfide (H2S) during AD, so a considerable amount of studies have focused on removing H2S emissions. However, current studies have found that sulfide induces phosphate release from the sludge containing iron‑phosphorus compounds (FePs) and the feasibility of recovering elemental sulfur (S0) during AD. To tap the full potential of sulfur in OSWs resource recovery, deciphering the sulfur transformation pathway and its influencing factors is required. Therefore, in this review, the sulfur species and distributions in OSWs and the pathway of sulfur transformation during AD were systematically summarized. Then, the relationship between iron (ferric compounds and zero-valent iron), phosphorus (FePs) and sulfur were analyzed. It was found that the reaction of iron with sulfide during AD drove the conversion of sulfide to S0 and iron sulfide compounds (FeSx), and consequently iron was applied in sulfide abatement. In particular, ferric (hydr)oxide granules offer possibilities to improve the economic viability of hydrogen sulfide control by recovering S0. Sulfide is an interesting strategy to release phosphate from the sludge containing FePs for phosphorus recovery. Critical factors affecting sulfur transformation, including the carbon source, free ammonia and pretreatment methods, were summarized and discussed. Carbon source and free ammonia affected sulfur-related microbial diversity and enzyme activity and different sulfur transformation pathways in response to varying pretreatment methods. The study on S0 recovery, organic sulfur conversion, and phosphate release mechanism triggered by sulfur deserves further investigation. This review is expected to enrich our knowledge of the role of sulfur during AD and inspire new ideas for recovering phosphorus and sulfur resources from OSWs.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Ruiz-Muñoz A, Siles JA, Márquez P, Toledo M, Gutiérrez MC, Martín MA. Odor emission assessment of different WWTPs with Extended Aeration Activated Sludge and Rotating Biological Contactor technologies in the province of Cordoba (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116741. [PMID: 36399884 DOI: 10.1016/j.jenvman.2022.116741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
In this study, five urban WWTPs (Wastewater Treatment Plant) with different biological treatment (Extended Aeration Activated Sludge - EAAS; Rotating Biological Contactor - RBC), wastewater type (Urban; Industrial) and size, were jointly evaluated. The aim was twofold: (1) to analyze and compare their odor emissions, and (2) to identify the main causes of its generation from the relationships between physico-chemical, respirometric and olfactometric variables. The results showed that facilities with EAAS technology were more efficient than RBC, with elimination yields of organic matter higher than 90%. In olfactometric terms, sludge managements facilities (SMFs) were found to be the critical odor source in all WWTPs compared to the Inlet point (I) or Post primary treatment (PP), and for seasonal periods with ambient temperature higher than 25 °C. Moreover, the global odor emissions quantified in all SMFs revealed that facilities with EAAS (C-WWTP, V-WWTP and Z-WWTP) had a lower odor contribution (19,345, 14,800 and 11,029 ouE/s·m2, respectively) than for those with RBC technology (P-WWTP and NC-WWTP) which accounted for 19,747 ouE/s·m2 and 80,061 ouE/s·m2, respectively. In addition, chemometric analysis helped to find groupings and differences between the WWTPs considering the wastewater (71.27% of total variance explained) and sludge management (64.52% of total variance explained) lines independently. Finally, odor emissions were adequately predicted from the physico-chemical and respirometric variables in the wastewater (r2 = 0.8738) and sludge (r2 = 0.9373) lines, being pH, volatile acidity and temperature (wastewater line), and pH, moisture, temperature, SOUR (Specific Oxygen Uptake Rate) and OD20 (Cumulative Oxygen Demand at 20 h) (sludge line) the most influential variables.
Collapse
Affiliation(s)
- A Ruiz-Muñoz
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - J A Siles
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - P Márquez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M Toledo
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M C Gutiérrez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M A Martín
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain.
| |
Collapse
|
18
|
Yan Z, Shen L, Pei Z, Yang M, Zhang W. Efficiencies and mechanism of enhanced coagulation pre-treatment on domestic sewage with PAC-HCA compound. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:27-38. [PMID: 36640022 DOI: 10.2166/wst.2022.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poly dimethyl diallyl propyl ammonium chloride (HCA) and poly aluminum chloride (PAC) were used to prepare complex coagulants for the enhanced coagulation (EC) pretreatment of domestic sewage. The influences of hydraulic conditions, the dosage ratio of PAC-HCA complex coagulants, initial pH value, and dosage on the removal efficiency of SS, COD, and TP in domestic sewage were investigated. The fractal dimension and Zeta potential were used to verify and characterize the experimental results. The results showed that the optimum coagulant conditions were as follows: G1 = 200.0-265.0 s-1, T1 = 1.5 min, G2 = 40.0 s-1, T2 = 5 min, PAC: HCA = 25:1, dosage = 15 mL/L, pH = 8. At the mentioned point, the removal rates of SS, COD, and TP are 98.74%, 44.63%, and 89.85%, respectively. In addition, through comparative tests, PAC-HCA compound coagulants show better treatment efficiency than PAC and HCA used alone. When the HCA dosage was 15 mg/L, Zeta potential and flocs fractal dimension was 2.29 mv and 0.9844, respectively. This indicates that PAC-HCA has a good treatment effect on domestic sewage, and the mechanism of enhanced coagulation to remove nutrients is mainly electrical neutralization.
Collapse
Affiliation(s)
- Zichun Yan
- Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Li Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Zhibing Pei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Mingxia Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Wei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| |
Collapse
|
19
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
20
|
Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Liu H, Li Z, Qiang Z, Karanfil T, Yang M, Liu C. The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155250. [PMID: 35427607 DOI: 10.1016/j.scitotenv.2022.155250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 05/09/2023]
Abstract
With increasing water reuse as a sustainable water management strategy, antibiotic resistance genes (ARGs) which have been identified as emerging contaminants in wastewater are attracting global attentions. Given that wastewater treatment plants are now well-established as a sink and source of ARGs in both cell-associated and non-cell-associated forms, a need is acknowledged to reduce their proliferation and protect public health. Due to their different characteristics, cell-associated and non-cell-associated ARGs may have distinct responses to membrane filtration processes which are widely used as advanced treatment to the secondary effluent. This review improves the understanding of the abundance of cell-associated and non-cell-associated ARGs in wastewaters and the secondary effluents and compares the elimination of ARGs in cell-associated and non-cell-associated forms by low-pressure and high-pressure membrane filtration processes. The former process reduces the concentration of cell-associated ARGs by more than 2-logs on average. An increase of the retention efficiency of non-cell-associated ARGs is observed with decreasing molecular weight cut-offs in ultrafiltration. The high-pressure membrane filtration (i.e., nanofiltration and reverse osmosis) can effectively eliminate both cell-associated and non-cell-associated ARGs, with averagely more than 4.6-log reduction. In general, the two forms of ARGs can be removed from water by the membrane filtration processes via the effects of size exclusion, adsorption, and electrostatic repulsion. The size and conformation of cell-associated and non-cell-associated ARGs, characteristics of membranes, coexisting substances, and biofilm formation influence ARG retention. Accumulation and potential proliferation of cell-associated and non-cell-associated ARGs in foulants and concentrate and corresponding control strategies warrant future research.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziqi Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Zheng Y, Wang Y, Yang X, Gao J, Xu G, Yuan J. Effective mechanisms of water purification for nitrogen-modified attapulgite, volcanic rock, and combined exogenous microorganisms. Front Microbiol 2022; 13:944366. [PMID: 36033894 PMCID: PMC9399813 DOI: 10.3389/fmicb.2022.944366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 12/07/2022] Open
Abstract
The study tested the water purification mechanism of the combination of microorganisms and purification materials via characteristic, enzymatic, and metagenomics methods. At 48 h, the removal rates of total nitrogen, total phosphorous, and Mn chemical oxygen demand in the combination group were 46.91, 50.93, and 65.08%, respectively. The alkaline phosphatase (AKP) activity increased during all times tested in the volcanic rock, Al@TCAP, and exogenous microorganism groups, while the organophosphorus hydrolase (OPH), dehydrogenase (DHO), and microbial nitrite reductase (NAR) activities increased at 36-48, 6-24, and 36-48 h, respectively. However, the tested activities only increased in the combination groups at 48 h. Al@TCAP exhibits a weak microbial loading capacity, and the Al@TCAP removal is primarily attributed to adsorption. The volcanic rock has a sufficient ability to load microorganisms, and the organisms primarily perform the removal for improved water quality. The predominant genera Pirellulaceae and Polynucleobacter served as the sensitive biomarkers for the treatment at 24, 36-48 h. Al@TCAP increased the expression of Planctomycetes and Actinobacteria, while volcanic rock increased and decreased the expression of Planctomycetes and Proteobacteria. The growth of Planctomycetes and the denitrification reaction were promoted by Al@TCAP and the exogenous microorganisms. The purification material addition group decreased the expression of Hyaloraphidium, Chytridiomycetes (especially Hyaloraphidium), and Monoblepharidomycetes and increased at 36-48 h, respectively. Ascomycota, Basidiomycota, and Kickxellomycota increased in group E, which enhanced the nitrogen cycle through microbial enzyme activities, and the growth of the genus Aspergillus enhanced the phosphorous purification effect.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yuqin Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Xiaoxi Yang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Gangchun Xu,
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- Julin Yuan,
| |
Collapse
|
23
|
Piccardo MT, Geretto M, Pulliero A, Izzotti A. Odor emissions: A public health concern for health risk perception. ENVIRONMENTAL RESEARCH 2022; 204:112121. [PMID: 34571035 DOI: 10.1016/j.envres.2021.112121] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The olfactory nuisance, due to the emissions of active molecules, is mainly associated with unproperly managed waste disposal and animal farming. Volatile compounds e.g., aromatics, organic and inorganic sulfide compounds, as well as nitrogen and halogenated compounds are the major contributor to odor pollution generated by waste management plants; the most important source of atmospheric ammonia is produced by livestock farming. Although an odorous compound may represent a nuisance rather than a health risk, long-term exposure to a mixture of volatile compounds may represent a risk for different diseases, including asthma, atopic dermatitis, and neurologic damage. Workers and communities living close to odor-producing facilities result directly exposed to irritant air pollutants through inhalation and for this reason the cumulative health risk assessment is recommended. Health effects are related to the concentration and exposure duration to the odorants, as well as to their irritant potency and/or biotransformation in hazardous metabolites. The health effects of a single chemical are well known, while the interactions between molecules with different functional groups have still to be extensively studied. Odor emissions are often due to airborne pollutants at levels below the established toxicity thresholds. The relationship between odor and toxicity does not always occurs but depends on the specific kind of pollutant involved. Indeed, some toxic agents does not induce odor nuisance while untoxic agents do. Accordingly, the relationship between toxicity and odor nuisance should be always analyzed in detail evaluating on the characteristics of the airborne mixture and the type of the source involved.
Collapse
Affiliation(s)
- M T Piccardo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M Geretto
- Department of Experimental Medicine, University of Genoa, Italy
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Italy.
| |
Collapse
|
24
|
Yao X, Shi Y, Wang K, Wang C, He L, Li C, Yao Z. Highly efficient degradation of hydrogen sulfide, styrene, and m-xylene in a bio-trickling filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152130. [PMID: 34863757 DOI: 10.1016/j.scitotenv.2021.152130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Controlling the release of malodorous gas discharged from wastewater treatment plants (WWTPs) has become an urgent environmental problem in recent years. In this study, a bio-trickling filter (BTF) inoculated with microorganisms acclimated to activated sludge in a WWTP was used as the degradation equipment. A continuous degradation experiment with hydrogen sulfide, styrene, and m-xylene in the BTF lasted for 84 days (12 weeks). The degradation capacities of the BTF for hydrogen sulfide, styrene, and m-xylene were evaluated, and the synergy and inhibition among the substrates during biodegradation are discussed. The results indicated that the degradation efficiencies of the BTF were as high as 99.2% for hydrogen sulfide, 94.6% for styrene, and 100.0% for m-xylene. When the empty bed residence time was 30 s, the maximum elimination capacities (EC) achieved for hydrogen sulfide was 38 g m-3 h-1, for styrene was 200 g m-3 h-1, and for m-xylene was 75 g m-3 h-1. Furthermore, the microbial species and quantity of microorganisms in the middle and top of the BTF were much higher than those at the bottom of the BTF. A variety of microorganisms in the BTF can efficiently degrade the typical and highly toxic malodorous gases released from WWTPs. This study can help increase the understanding of the degradation of a mixture of sulfur-containing substances and aromatic hydrocarbons in BTF degradation and promote the development of technologies for the reduction of a complex mixture of malodorous gas emissions from organic wastewater treatment.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Huan C, Lyu Q, Tong X, Li H, Zeng Y, Liu Y, Jiang X, Ji G, Xu L, Yan Z. Analyses of deodorization performance of mixotrophic biotrickling filter reactor using different industrial and agricultural wastes as packing material. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126608. [PMID: 34280718 DOI: 10.1016/j.jhazmat.2021.126608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration H2S and NH3. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.06% under the H2S and NH3 loading rates of 53.59 g/m³·h while the empty bed residence time (EBRT) was 40.5 s. The theoretical maximum load was obtained by fitting the kinetic curve, and the value were 90.09 g H2S m-³·h-1 and 172.41 g NH3 m-³·h-1. Meanwhile, after treating with 720 ppm of NH3, the average concentration of NO3- in the BTF circulating fluid was only 127.58 mg/L, indicating the better performance of secondary pollutants control. Microbiological analysis showed that Dokdonella, Micropruina, Candidatus_Alysiosphaera, Nakamurella and Thiobacillus possessed high abundance at the genus level, and their entire percentage in four BTF reactors were 62.87%, 46.32%, 47.98%, and 57.35% respectively. It is worthwhile that the genera Comamonas and Trichococcus with heterotrophic nitrification and aerobic denitrification capabilities and proportion of 3.66%, 1.45%, 5.43%, and 3.23% were observed in four reactors.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinyu Tong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Haihong Li
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
26
|
Wang H, Chen N, Feng C, Deng Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146521. [PMID: 34030330 DOI: 10.1016/j.scitotenv.2021.146521] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrate, as the most stable form of nitrogen pollution, widely exists in aquatic environment, which has great potential threat to ecological environment and human health. Heterotrophic denitrification, as the most economical and effective method to treat nitrate wastewater, has been widely and deeply studied. From the perspective of heterotrophic denitrification, this review discusses nitrate removal in the aquatic environment, and the behaviors of different carbon source types were classified and summarized to explain the cyclical evolution of carbon and nitrogen in global biochemical processes. In addition, the denitrification process, electron transfer as well as denitrifying and hydrolyzing microorganisms among different carbon sources were analyzed and compared, and the commonness and characteristics of the denitrification process with various carbon sources were revealed. This study provides theoretical support and technical guidance for further improvement of denitrification technologies.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
27
|
Varela-Bruce C, Antileo C. Assessment of odour emissions by the use of a dispersion model in the context of the proposed new law in Chile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113208. [PMID: 34346388 DOI: 10.1016/j.jenvman.2021.113208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Chile is looking to define a regulatory framework for the odour emissions of various critical industrial activities. One of these is the sanitary sector, with 300 wastewater treatment plants (WWTP). The basis currently used by the Chilean environmental authority to assess odours is the set of odour emission factors (OEF) taken from the Dutch standard. The aim of this study was to compare these, used as a national reference, with our own OEF calculated from measurements using dynamic olfactometry of 41 WWTP. The dependence of OEF on operational variables such as flow rate and BOD5 was analysed in different plant processes. The current regulations were assessed under the two OEF scenarios for the 95th, 98th and 99.9th percentiles in the Temuco WWTP, using the WRF-CALPUFF modelling protocol. The OEF values of the emission sources showed no strong correlation with operating variables like BOD5 and wastewater flow rates in all plant sections. Our OEF values based on real measurements presented significant differences from the Dutch reference OEF, of the order of 6 UOe/m2/s. The odour emitting-units with the largest differences were the pre-treatment units, flow-splitting chamber and most units of the sludge processing sections. These new OEF offer an alternative paradigm for measuring emissions and an incentive to more accurate calculation of the emissions in critical units such as sludge treatment lines. When the WWTP studied in Temuco was assessed using the OEF calculated in this study, a difference of 1041 OUe/s was found above the odours emissions calculated using the Dutch reference database. Using the Dutch OEF, the odour immission concentrations at nearby receptors were not exceeded for the 95th and 98th percentiles; this might result in deficient environmental assessment under current Chilean laws. We therefore recommend that Chilean institutions should assess projects using the OEF calculated in this study.
Collapse
Affiliation(s)
- Cristian Varela-Bruce
- SICAM Engineering, Prieto Sur 965, 4791315, Temuco, Chile; Department of Chemical Engineering, Universidad de La Frontera, Cas. 54-D, Temuco, Chile.
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Cas. 54-D, Temuco, Chile.
| |
Collapse
|
28
|
Liang F, Xu L, Ji L, He Q, Wu L, Yan S. A new approach for biogas slurry disposal by adopting CO 2-rich biogas slurry as the flower fertilizer of Spathiphyllum: Feasibility, cost and environmental pollution potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145333. [PMID: 33517019 DOI: 10.1016/j.scitotenv.2021.145333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
A new approach for biogas slurry disposal was put forward in this study through converting biogas slurry to the organic fertilizer of Spathiphyllum. The biogas slurry was firstly concentrated by vacuum distillation to reduce its volume by 80% who is called 5CBS, and then CO2 saturated to reduce its pH to about 6.50 ± 0.20. With or without adding the exogenetic Ca, Mg and P nutrients, CO2-rich 5CBS (i.e., CR-5CBS) was adopted as the root or foliar fertilizer to cultivate Spathiphyllum. Additionally, the commercial Spathiphyllum fertilizer was also experimented as a control. Results showed that the cases adopting CR-5CBS as the root or foliar fertilizer can obtain the agronomic traits and ornamental values of Spathiphyllum better those irrigated by the commercial fertilizer. Exogenetic nutrients added into CR-5CBS can lead to a decreased dead leaf number of Spathiphyllum, an enhanced N assimilation performance, however only a slightly improved assimilation performance of Ca, Mg and P. In terms of the fertilizer economy, CR-5CBS without exogenetic nutrient addition may be a promising for replacing the commercial Spathiphyllum fertilizer in the future. Economic and environmental pollution potential (EPP) analyses indicated that treating biogas slurry as the organic flower fertilizer can achieve a high net profit with about $ 28.89/m3-biogas slurry and a negative EPP value (-3.9), showing its profitability and environmental friendliness.
Collapse
Affiliation(s)
- Feihong Liang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China
| | - Lang Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China
| | - Long Ji
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China
| | - Qingyao He
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China
| | - Lanlan Wu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China
| | - Shuiping Yan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, PR China.
| |
Collapse
|
29
|
Wang J, Liang J. Insight: High intensity and activity carrier granular sludge cultured using polyvinyl alcohol/chitosan and polyvinyl alcohol/chitosan/iron gel beads. BIORESOURCE TECHNOLOGY 2021; 326:124778. [PMID: 33545627 DOI: 10.1016/j.biortech.2021.124778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The newly developed carrier granular sludge (CGS) with polyvinyl alcohol/chitosan (PVA/CS) and PVA/CS/Fe gel beads assistance showed higher intensity and anammox activity than the natural granular sludge (NGS). Through comprehensive investigation, it was found: (1) the gel beads provided a stable framework of cells entangle with extracellular polymeric substances (EPS) to enhance the sludge intensity. In this framework, β-polysaccharides are distributed at the edge of CGS as a protection layer, α-polysaccharides and proteins are spread in the whole cross-section as backbones, and Fe2+/Fe3+ in CGS-PVA/CS/Fe act as bridges to link with the negatively charged groups on bacterial surfaces and proteins. (2) The porous gel beads satisfied a relatively unimpeded mass transfer. Thus, the sludge activity, microbe's metabolism, membrane transportation and environmental adaption in CGS were apparently improved. The results improved the understanding about the advantages of the CGS and indicated their possible application in full-scale anammox processes.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
30
|
Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Odorous emissions from wastewater treatment plants (WWTPs) cause negative impacts on the surrounding areas and possible health risks on nearby residents. However, the efficient and reliable identification of WWTPs’ odorants is still challenging. In this study, odorous volatile organic compounds (VOCs) from domestic wastewater at different processing units were profiled and identified using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS). The GC-QTOF-MS results confirmed the odor contribution of sulfur organic compounds in wastewater before primary sedimentation and ruled out the significance of most of the hydrocarbons in wastewater odor. The problems in odorous compounds analysis using GC-QTOF-MS were discussed. GC-IMS was developed for visualized analysis on composition characteristics of odorants. Varied volatile compounds were detected by GC-IMS, mainly oxygen-containing VOCs including alcohols, fatty acids, aldehydes and ketones with low odor threshold values. The fingerprint plot of IMS spectra showed the variation in VOCs’ composition, indicating the changes of wastewater quality during treatment process. The GC-IMS technique may provide an efficient profiling method for the changes of inlet water and performance of treatment process at WWTPs.
Collapse
|