1
|
Ren J, Tang M, Wang L, Chu W, Shi W, Zhou Q, Pan Y. How to achieve adequate quenching for DBP analysis in drinking water? WATER RESEARCH 2024; 253:121264. [PMID: 38335842 DOI: 10.1016/j.watres.2024.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.
Collapse
Affiliation(s)
- Jiafeng Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengmeng Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Parveen N, Joseph A, Goel S. Leaching of organic matter from microplastics and its role in disinfection by-product formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167640. [PMID: 37806590 DOI: 10.1016/j.scitotenv.2023.167640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Natural organic matter (NOM) is the primary precursor of disinfection by-products (DBPs). However, as emerging environmental contaminants continue to increase in natural waters, there is a possibility of new precursors of DBPs. We investigated the potential of microplastics (MPs), a growing environmental concern, for leaching organic matter (OM) and subsequent DBP formation. Two experimental setups were used, including chlorinated water containing MPs (Cl2-MP), and non-chlorinated water containing MPs (Non-Cl2-MP), using polyethylene (PE), polyethylene tetrahydrate (PET), polypropylene (PP), and polyvinyl chloride (PVC) as MP materials. The UV absorbance spectra of Cl2-PET/PP/PVC showed peaks at 218 nm, which were significantly correlated with dissolved organic carbon (DOC), indicating lower aromaticity of the leached OM. The DOC concentrations in Cl2-MP samples were several times higher than those in Non-Cl2-MP samples. The leached OM from MPs formed trihalomethanes (THMs) and haloacetic acids (HAAs) in Cl2-MP samples. Among the MPs tested, PVC showed the highest total THM formation after 7 days, followed by PET, PE, and PP. Brominated THMs were predominant, while HAAs were highly chlorinated. THM formation increased with contact time for PE, PET, and PVC, and decreased for PP. Compared to THMs, the concentration of HAAs was low (highest total THM = 185.5 μg/L per g-MP and highest total HAA = 120.7 μg/L per g-MP). Further, the total THM concentration decreased and the total HAA concentration increased over the reaction period, indicating the leaching of different types of OM with increasing contact time. Additionally, the differences in the pattern of DOC leaching and DBP formation among different MPs suggested changes in the leached OM.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Lim S, Barrios B, Minakata D, von Gunten U. Reactivity of Bromine Radical with Dissolved Organic Matter Moieties and Monochloramine: Effect on Bromate Formation during Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18658-18667. [PMID: 36706342 PMCID: PMC10690713 DOI: 10.1021/acs.est.2c07694] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Bromine radical (Br•) has been hypothesized to be a key intermediate of bromate formation during ozonation. Once formed, Br• further reacts with ozone to eventually form bromate. However, this reaction competes with the reaction of Br• with dissolved organic matter (DOM), of which reactivity and reaction mechanisms are less studied to date. To fill this gap, this study determined the second-order rate constant (k) of the reactions of selected organic model compounds, a DOM isolate, and monochloramine (NH2Cl) with Br• using γ-radiolysis. The kBr• of all model compounds were high (kBr• > 108 M-1 s-1) and well correlated with quantum-chemically computed free energies of activation, indicating a selectivity of Br• toward electron-rich compounds, governed by electron transfer. The reaction of phenol (a representative DOM moiety) with Br• yielded p-benzoquinone as a major product with a yield of 59% per consumed phenol, suggesting an electron transfer mechanism. Finally, the potential of NH2Cl to quench Br• was tested based on the fast reaction (kBr•, NH2Cl = 4.4 × 109 M-1 s-1, this study), resulting in reduced bromate formation of up to 77% during ozonation of bromide-containing lake water. Overall, our study demonstrated that Br• quenching by NH2Cl can substantially suppress bromate formation, especially in waters containing low DOC concentrations (1-2 mgC/L).
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf 8600, Switzerland
| | - Benjamin Barrios
- Department
of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Daisuke Minakata
- Department
of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf 8600, Switzerland
- School
of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Qin W, Peng J, Yang J, Song Y, Ma J. UV absorbance and electron donating capacity as surrogate parameters to indicate the abatement of micropollutants during the oxidation of Fe(II)/PMS and Mn(II)/NTA/PMS. ENVIRONMENTAL RESEARCH 2023:116253. [PMID: 37276973 DOI: 10.1016/j.envres.2023.116253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
In this study, the relative residual UV absorbance (UV254) and/or electron donating capacity (EDC) was investigated as a surrogate parameter to evaluate the abatement of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes. In the Fe(II)/PMS process, due to the generation of SO4•- and •OH at acidic pH, UV254 and EDC abatement was greater at pH 5. In the Mn(II)/NTA/PMS process, UV254 abatement was greater at pH 7 and 9, while EDC abatement was greater at pH 5 and 7. This was attributed to the fact that MnO2 was formed at alkaline pH to remove UV254 by coagulation, and manganese intermediates (Mn(V)) were formed at acidic pH to remove EDC via electron transfer. Due to the strong oxidation capacity of SO4•-, •OH and Mn(V), the abatement of micropollutants increased with increasing dosages of oxidant in different waters in both processes. In the Fe(II)/PMS and Mn(II)/NTA/PMS processes, except for nitrobenzene (∼23% and 40%, respectively), the removal of other micropollutants was greater than 70% when the oxidant dosages were greater in different waters. The linear relationship between the relative residual UV254, EDC and the removal of micropollutants was established in different waters, showing a one-phase or two-phase linear relationship. The differences of the slopes for one-phase linear correlation in the Fe(II)/PMS process (micropollutant-UV254: 0.36-2.89, micropollutant-EDC: 0.26-1.75) were less than that in the Mn(II)/NTA/PMS process (micropollutant-UV254: 0.40-13.16, micropollutant-EDC: 0.51-8.39). Overall, these results suggest that the relative residual UV254 and EDC could truly reflect the removal of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes.
Collapse
Affiliation(s)
- Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jianshan Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jingru Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Houska J, Manasfi T, Gebhardt I, von Gunten U. Ozonation of lake water and wastewater: Identification of carbonous and nitrogenous carbonyl-containing oxidation byproducts by non-target screening. WATER RESEARCH 2023; 232:119484. [PMID: 36746701 DOI: 10.1016/j.watres.2022.119484] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Ozonation of drinking water and wastewater is accompanied by the formation of disinfection byproducts (DBPs) such as low molecular weight aldehydes and ketones from the reactions of ozone with dissolved organic matter (DOM). By applying a recently developed non-target workflow, 178 carbonous and nitrogenous carbonyl compounds were detected during bench-scale ozonation of two lake waters and three secondary wastewater effluent samples and full-scale ozonation of secondary treated wastewater effluent. An overlapping subset of carbonyl compounds (20%) was detected in all water types. Moreover, wastewater effluents showed a significantly higher fraction of N-containing carbonyl compounds (30%) compared to lake water (17%). All carbonyl compounds can be classified in 5 main formation trends as a function of increasing specific ozone doses. Formation trends upon ozonation and comparison of results in presence and absence of the •OH radical scavenger DMSO in combination with kinetic and mechanistic information allowed to elucidate potential carbonyl structures. A link between the detected carbonyl compounds and their precursors was established by ozonating six model compounds (phenol, 4-ethylphenol, 4-methoxyphenol, sorbic acid, 3-buten-2-ol and acetylacetone). About one third of the detected carbonous carbonyl compounds detected in real waters was also detected by ozonating model compounds. Evaluation of the non-target analysis data revealed the identity of 15 carbonyl compounds, including hydroxylated aldehydes and ketones (e.g. hydroxyacetone, confidence level (CL) = 1), unsaturated dicarbonyls (e.g. acrolein, CL = 1; 2-butene-1,4-dial, CL = 1; 4-oxobut-2-enoic acid, CL = 2) and also a nitrogen-containing carbonyl compound (2-oxo-propanamide, CL =1). Overall, this study shows the formation of versatile carbonous and nitrogenous carbonyl compounds upon ozonation involving ozone and •OH reactions. Carbonyl compounds with unknown toxicity might be formed, and it could be demonstrated that acrolein, malondialdehyde, methyl glyoxal, 2-butene-1,4-dial and 4-oxo-pentenal are degraded during biological post-treatment.
Collapse
Affiliation(s)
- Joanna Houska
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Tarek Manasfi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Isabelle Gebhardt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich 8092, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
6
|
Chen M, Rholl CA, Persaud SL, Wang Z, He Z, Parker KM. Permanganate preoxidation affects the formation of disinfection byproducts from algal organic matter. WATER RESEARCH 2023; 232:119691. [PMID: 36774754 DOI: 10.1016/j.watres.2023.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
During harmful algal blooms (HABs), permanganate may be used as a preoxidant to improve drinking water quality by removing algal cells and degrading algal toxins. However, permanganate also lyses algal cells, releasing intracellular algal organic matter (AOM). AOM further reacts with permanganate to alter the abundance of disinfection byproduct (DBP) precursors, which in turn affects DBP formation during disinfection. In this study, we evaluated the impacts of preoxidation by permanganate applied at commonly used doses (i.e., 1-5 mg/L) on DBP generation during chlorination and chloramination of AOM. We found that permanganate preoxidation increased trichloronitromethane (TCNM) formation by up to 3-fold and decreased dichloroacetonitrile (DCAN) formation by up to 40% during chlorination, indicating that permanganate oxidized organic amines in AOM to organic nitro compounds rather than organic nitrile compounds. To test this proposed mechanism, we demonstrated that permanganate oxidized organic amines in known DBP precursors (i.e., tyrosine, tryptophan) to favor the production of TCNM over DCAN during chlorination. Compared to the decreased formation of DCAN during chlorination, permanganate increased DCAN formation by 30-50% during chloramination of AOM. This difference likely arose from monochloramine's ability to react with non-nitrogenous precursors (e.g., organic aldehydes) that formed during permanganate preoxidation of AOM to generate nitrogen-containing intermediates that go on to form DCAN. Our results also showed that permanganate preoxidation favored the formation of dichlorobromomethane (DCBM) over trichloromethane (TCM) during chlorination and chloramination. The increased formation of DBPs, especially nitrogenous DBPs that are more toxic than carbonaceous DBPs, may increase the overall toxicity in finished drinking water when permanganate preoxidation is implemented.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Carter A Rholl
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Shane L Persaud
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
7
|
Su R, Li N, Liu Z, Song X, Liu W, Gao B, Zhou W, Yue Q, Li Q. Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co 3O 4-Activated Chlorite Process: Insight into the Proton Enhancement Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1882-1893. [PMID: 36607701 DOI: 10.1021/acs.est.2c04903] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Xiaoyang Song
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, P. R. China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong250100, P. R. China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| |
Collapse
|
8
|
Chen Y, Jafari I, Zhong Y, Chee MJ, Hu J. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157454. [PMID: 35868393 DOI: 10.1016/j.scitotenv.2022.157454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Combined processes of light-emitting diodes ultraviolet (LED UV) and chlorination (Cl2) are alternative disinfection technologies in drinking water, while the formation of disinfection by-products (DBPs) needs to be evaluated. This study investigated the impacts of critical water matrix factors on the DBP formation in the combined processes. Moreover, the correlation between the degraded natural organic matter (NOM) and the formed DBP was studied. Simultaneous UV/Cl2 outperformed single Cl2 and sequential combined processes in degrading humic acids (HA) and resulted in the highest DBP yield. Iodide at 5-20 μg/L and bromide at 0.05-0.2 mg/L slightly affected the degradation of organics, while increased the formation of brominated DBPs up to 36.6 μg/L. pH 6 was regarded as the optimum pH, achieving high efficiency of HA degradation and a lower level of total DBP formation than pH 7 and 8 by 11 % and 24 %, respectively. Compared to HA samples (46.8-103.9 μg/L per mg/L DOC), NOM in canal water were less aromatic and yielded fewer DBPs (19.6 and 21.2 μg/L per mg/L DOC). However, the extremely high bromide in site 1 samples (18.6 mg/L) shifted the chlorinated DBPs to their brominated analogues, posting around 1 order of magnitude higher levels of toxicities than HA samples. The reduction of absorbance at 254 nm (UV254) correlated with all DBP categories in HA samples, while the correlation coefficients were compromised when included in the canal samples. For the first time, this study found that parallel factor analysis (PARAFAC) would neglect the fluorescence change caused by iodide/bromide in UV/Cl2, while the changes could be captured by self-organising map (SOM) trained with full fluorescence spectra. Fluorescence Ex/Em pairs were proposed to predict DBP formation, suggesting a potential method to develop an online monitoring system for DBPs.
Collapse
Affiliation(s)
- Yiwei Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Iman Jafari
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yu Zhong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Min Jun Chee
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
9
|
Du L, Liu Y, Hao Z, Chen M, Li L, Ren D, Wang J. Fertilization regime shifts the molecular diversity and chlorine reactivity of soil dissolved organic matter from tropical croplands. WATER RESEARCH 2022; 225:119106. [PMID: 36152442 DOI: 10.1016/j.watres.2022.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Soil-derived dissolved organic matter (SDOM) is an important site-specific disinfection byproduct (DBP) precursor in watersheds. However, it remains unclear how fertilization regime shifts the molecular diversity and chlorine reactivity of SDOM in cropland-impacted watersheds. Here, we analyzed the spectroscopic and molecular-level characteristics of the SDOM from croplands that had different fertilization regimes (i.e., non-fertilization, chemical fertilization, straw return, and chemical fertilization plus straw return) for 5 years and evaluated the chlorine reactivity of the SDOM by determining the 24-h chlorine consumption and specific DBP formation potential (SDBP-FP). The SDOM level decreased by chemical fertilization and was not significantly altered by straw return alone or combined with chemical fertilizer. However, all fertilization regimes elevated the molecular diversity of SDOM by increasing the abundance of protein-, lignin-, and tannin-like compounds. The chlorine reactivity of SDOM was reduced by chemical fertilization, but was significantly increased by straw return. Typically, straw return increased the formation potential of specific trihalomethane and chloral hydrate by 339% and 56% via increasing the aromatics in SDOM, whereas chemical fertilization could effectively decrease about 231% of the increased specific trihalomethane formation potential caused by straw return. This study highlights that fertilization regime can significantly shape the molecular diversity and chlorine reactivity of the SDOM in croplands and that partially replacing chemical fertilizer with crop straw is an advantageous practice for reducing DBP risks in drinking water in cropland-impacted watersheds.
Collapse
Affiliation(s)
- Ling Du
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhineng Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Miao Chen
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Liping Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Kämmler J, Zoumpouli GA, Sellmann J, Chew YMJ, Wenk J, Ernst M. Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater. WATER RESEARCH 2022; 221:118739. [PMID: 35716412 DOI: 10.1016/j.watres.2022.118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Membrane ozonation of bromide-containing, high-color natural organic matter (NOM) containing groundwater was performed using single-tube polydimethylsiloxane (PDMS) and multi-tube polytetrafluoroethylene (PTFE) membrane contactors, and compared to batch ozonation. For membrane ozonation, dissolved ozone concentration, water color (VIS436), ultraviolet light absorption (UV254) and bromate formation were correlated with ozone dose, ozone gas concentration, hydraulic retention time and Hatta number (Ha). NOM color removal of up to 45 % for the single-tube contactor and 17 % for the multi-tube contactor were achieved while containing bromate formation below 10 µg L-1. Higher color removal using higher ozone doses was associated with high bromate formation i.e. >>10 µg L-1. In membrane ozonation, low ozone gas concentrations, long hydraulic retention times and high Ha resulted in low dissolved ozone concentrations due to quenching of ozone by NOM. At specific ozone doses of < 0.5 mg O3/mg DOC and Ha > 1, single-tube ozonation resulted in comparable results to batch ozonation while bromate formation was higher in the single-tube contactor at specific ozone doses > 0.5 mg O3/mg DOC and Ha < 1. At comparable ozone doses and Ha, bromate formation in the multi-tube contactor was always higher compared to single-tube and batch ozonation. This could be associated with the uneven ozone distribution within the multi-tube contactor. Results show that ozone dose is the major driver for selectivity between bromate formation and NOM color removal in both membrane and batch ozonation. Bromate formation in membrane ozonation may be controlled by adjusting gas concentration, Ha and hydraulic retention time. Membrane module design and process parameters of membrane ozonation reactors significantly affect treatment performance and should be optimized for selective target compound removal over by-product formation.
Collapse
Affiliation(s)
- Jakob Kämmler
- Hamburg University of Technology, Institute for Water Resources and Water Supply, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany; DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Garyfalia A Zoumpouli
- Centre for Doctoral Training, Centre for Sustainable Chemical Technologies, University of Bath, Bath BA27AY, United Kingdom; Department of Chemical Engineering, University of Bath, Bath BA27AY, United Kingdom; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA27AY, United Kingdom
| | - Jörn Sellmann
- Hamburg University of Technology, Institute for Water Resources and Water Supply, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Y M John Chew
- Department of Chemical Engineering, University of Bath, Bath BA27AY, United Kingdom; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA27AY, United Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath BA27AY, United Kingdom; Water Innovation & Research Centre (WIRC), University of Bath, Bath BA27AY, United Kingdom.
| | - Mathias Ernst
- Hamburg University of Technology, Institute for Water Resources and Water Supply, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany; DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany.
| |
Collapse
|
11
|
Rougé V, Lee Y, von Gunten U, Allard S. Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO 2 pre-oxidation for disinfection byproduct control. WATER RESEARCH 2022; 220:118515. [PMID: 35700645 DOI: 10.1016/j.watres.2022.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In this study, a kinetic model for the reaction of chlorine with ClO2- was developed to predict the fate of ClO2- during chlorine disinfection. The reaction of ClO2- with chlorine was found to be highly pH-dependent with formation of ClO3- and ClO2 in ultrapure water. In presence of dissolved organic matter (DOM), 60-70% of the ClO2- was transformed to ClO3- during chlorination, while the in situ regenerated ClO2 was quickly consumed by reaction with DOM. The remaining 30-40% of the ClO2- first reacted to ClO2 which then formed chlorine from the DOM-ClO2 reaction. Since only part of the ClO2- was transformed to ClO3-, the sum of the molar concentrations of oxychlorine species (ClO2- + ClO3-) decreased during chlorination. By kinetic modelling, the ClO2- concentration after 24 h of chlorination was accurately predicted in synthetic waters but was largely overestimated in natural waters, possibly due to a ClO2- decay enhanced by high concentrations of chloride and in situ formed bromine from bromide. Understanding the chlorine-ClO2- reaction mechanism and the corresponding kinetics allows to potentially apply higher ClO2 doses during the pre-oxidation step, thus improving disinfection byproduct mitigation while keeping ClO2-, and if required, ClO3- below the regulatory limits. In addition, ClO2 was demonstrated to efficiently degrade haloacetonitrile precursors, either when used as pre-oxidant or when regenerated in situ during chlorination.
Collapse
Affiliation(s)
- Valentin Rougé
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Sébastien Allard
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
12
|
Li T, Shang C, Xiang Y, Yin R, Pan Y, Fan M, Yang X. ClO 2 pre-oxidation changes dissolved organic matter at the molecular level and reduces chloro-organic byproducts and toxicity of water treated by the UV/chlorine process. WATER RESEARCH 2022; 216:118341. [PMID: 35367942 DOI: 10.1016/j.watres.2022.118341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The formation of undesirable chloro-organic byproducts is of great concern in the UV/chlorine process. In this study, chlorine dioxide (ClO2) pre-oxidation was applied to control the formation of chloro-organic byproducts and the toxicity in UV/chlorine-treated water. The molecular-level changes in dissolved organic matter (DOM) were tracked by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ClO2 pre-oxidation was found to preferentially react with DOM moieties with high aromaticity level and with a carbon number of > 18, producing compounds with a higher degree of oxidation and lower aromaticity. The ClO2-treated DOM was found to be less susceptible to attack by radicals and free chlorine in the UV/chlorine process compared to the raw DOM. ClO2 pre-oxidation resulted in a significant decrease in the number of unknown chloro-organic byproducts (i.e., -17%) and the total intensity of organic chlorine detected by FT-ICR-MS (i.e., -31%). The molecular characteristics, such as O/C, aromaticity index, and the average number of chlorine atoms, of these unknown chloro-organic byproducts generated in the scenarios with and without ClO2 pre-oxidation were also different. Additionally, ClO2 pre-oxidation reduced the genotoxicity (SOS/umu test) and cytotoxicity (Hep G2 cytotoxicity assay) of UV/chlorine-treated water by 26% and 20%, respectively. The findings in this study highlight the merits of ClO2 pre-oxidation for controlling chloro-organic byproducts and reducing the toxicity of water treated by the UV/chlorine process in actual practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengge Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Detection and Stability of Cyanogen Bromide and Cyanogen Iodide in Drinking Water. WATER 2022. [DOI: 10.3390/w14101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study systematically summarized the factors affecting the stability of CNXs, providing a reference for better control and elimination of CNXs. A method for the detection of CNBr and CNI in solution was established using a liquid–liquid extraction/gas chromatography/electron capture detector. Specifically, the method was used to investigate the stability of CNBr and CNI in drinking water, especially in the presence of chlorine and sulfite, and it showed good reproducibility (relative standard deviation <3.05%), high sensitivity (method detection limit <100 ng/L), and good recovery (91.49–107.24%). Degradation kinetic studies of cyanogen halides were conducted, and their degradation rate constants were detected for their hydrolysis, chlorination, and sulfite reduction. For hydrolysis, upon increasing pH from 9.0 to 11.0, the rate constants of CNCl, CNBr, and CNI changed from 8 to 155 × 10−5 s−1, 1.1 to 34.2 × 10−5 s−1, and 1.5 to 6.2 × 10−5 s−1, respectively. In the presence of 1.0 mg/L chlorine, upon increasing pH from 7.0 to 10.0, the rate constants of CNCl, CNBr, and CNI changed from 36 to 105 × 10−5 s−1, 15.8 to 49.0 × 10−5 s−1, and 1.2 to 24.2 × 10−5 s−1, respectively. In the presence of 3 μmol/L sulfite, CNBr and CNI degraded in two phases. In the first phase, they degraded very quickly after the addition of sulfite, whereas, in the second phase, they degraded slowly with rate constants similar to those for hydrolysis. Owing to the electron-withdrawing ability of halogen atoms and the nucleophilic ability of reactive groups such as OH− and ClO−, the rate constants of cyanogen halides increased with increasing pH, and they decreased in the order of CNCl > CNBr > CNI during hydrolysis and chlorination. The hydrolysis and chlorination results could be used to assess the stability of cyanogen halides in water storage and distribution systems. The sulfite reduction results indicate that quenching residual oxidants with excess sulfite could underestimate the levels of cyanogen halides, especially for CNBr and CNI.
Collapse
|
14
|
Wang H, Hasani M, Wu F, Warriner K. Pre-oxidation of spent lettuce wash water by continuous Advanced Oxidation Process to reduce chlorine demand and cross-contamination of pathogens during post-harvest washing. Food Microbiol 2022; 103:103937. [PMID: 35082063 DOI: 10.1016/j.fm.2021.103937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
Abstract
A continuous Photo-Fenton Advanced-Oxidation-Process (AOP) for reducing the chlorine-demand of spent lettuce wash water was developed based on the generation of hydroxyl-radicals from the UV-C degradation of hydrogen peroxide in the presence of ferric-catalyst. It was found that an interaction between UV-C and hydrogen peroxide or ferric-catalyst concentration was associated with high hydroxyl-radical generation as determined from the oxidation of methylene blue. The optimal AOP treatment was identified as 320 mJ/cm2 UV-C dose, 9.6 mg/L H2O2, and 9 mg/L ferric-catalyst. When the treatment was applied to simulated lettuce spent wash water (6.6 g romaine lettuce per liter of distilled water containing 100 mg bentonite; pH 6.9) the chlorine demand was reduced from 150 ppm to 130 ppm. The chlorination of AOP treated water did not result in a greater log reduction of pathogens (Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella) on lettuce but did reduce cross-contamination between batches during washing. The chlorinated byproducts formed in AOP treated water exhibited higher antimicrobial activity compared to untreated controls. Although the treatment was successful in reducing cross-contamination of lettuce batches the cytotoxicity of disinfection byproducts requires to be assessed.
Collapse
Affiliation(s)
- Hongran Wang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mahdiyeh Hasani
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Fan Wu
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
15
|
Fan M, Yang X, Kong Q, Lei Y, Zhang X, Aghdam E, Yin R, Shang C. Sequential ClO 2-UV/chlorine process for micropollutant removal and disinfection byproduct control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150354. [PMID: 34560452 DOI: 10.1016/j.scitotenv.2021.150354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/12/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This study systematically revealed the feasibility of the sequential ClO2-UV/chlorine process for micropollutant removal and disinfection byproduct (DBP) control. The results demonstrated that the sequential ClO2-UV/chlorine process was effective for the removal of 12 micropollutants. ClO2 pre-treatment reduced the formation of disinfect byproducts (DBPs) in the UV/chlorine process. Compared to the UV/chlorine process, ClO2 pre-treatment (1.0 mg L-1) decreased the formation of the 6 DBPs by 25.1-72.2%; and decreased the formation potential of the 6 DBPs by 13.9-51.8%. Moreover, ClO2 pre-treatment reduced the concentration of total organic chlorine by 19.8%. ClO2 pre-treatment affected the UV/chlorine process in different ways. Firstly, ClO2 pre-treatment generated chlorite, which dominantly served as a scavenger of chlorine radical (Cl) and hydroxyl radical (HO). Secondly, ClO2 pre-treatment decreased the reactivity of natural organic matter (NOM) towards radicals. Finally, ClO2 pre-treatment altered the properties of NOM, in terms of reducing the electron-donating capacity and aromaticity of NOM (SUVA254), and slightly reducing the average molecular weight of NOM. Overall, ClO2 pre-treatment effectively controlled the formation of DBPs in the UV/chlorine process. This study confirmed the sequential ClO2-UV/chlorine process was an alternative strategy to balancing the micropollutant removal and DBP control.
Collapse
Affiliation(s)
- Mengge Fan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Ehsan Aghdam
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Rougé V, Shin J, Nguyen PTTH, Jang D, Lee W, Escher BI, Lee Y. Nitriles as main products from the oxidation of primary amines by ferrate(VI): Kinetics, mechanisms and toxicological implications for nitrogenous disinfection byproduct control. WATER RESEARCH 2022; 209:117881. [PMID: 34861435 DOI: 10.1016/j.watres.2021.117881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Ferrate (Fe(VI)), a promising water treatment oxidant, can be used for micropollutant abatement or disinfection byproduct mitigation. However, knowledge gaps remain concerning the interaction between Fe(VI) and dissolved organic matter structures, notably primary amines. This study investigated degradation kinetics and products of several aliphatic primary amines by Fe(VI). Primary amines showed appreciable reactivity toward Fe(VI) (2.7-68 M-1s-1 at pH 7-9), ranking as follows: benzylamine > phenethylamine > phenylpropylamine > methylamine ≈ propylamine. Nitriles were the main oxidation products of the primary amines, with molar yields of 61-103%. Minor products included aldehydes, carboxylic acids, nitroalkanes, nitrite, nitrate, and ammonia. The buffering conditions were important. Compared to phosphate, borate enhanced the reactivity of the amines and shifted the products from nitriles to carbonyls. An evaluation of the effect potency of some cyano-compounds by an in vitro bioassay for oxidative stress response and cytotoxicity suggested that non-halogenated nitriles are unlikely to pose a significant threat because they were only toxic at high concentrations, acted as baseline toxicants and did not cause oxidative stress, unlike halonitroalkanes or halonitriles. The formation of non-halogenated nitriles is preferable to the formation of nitroalkanes arising from the ozonation of primary amines (other than amino acid N-terminals) because, during chlorination, nitriles remain unreactive while nitroalkanes lead to potent halonitroalkanes.
Collapse
Affiliation(s)
- Valentin Rougé
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Pham Thi Thai Ha Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany; Eberhard Karls University of Tübingen, Center for Applied Geoscience, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
17
|
Houska J, Salhi E, Walpen N, von Gunten U. Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. WATER RESEARCH 2021; 207:117790. [PMID: 34740166 DOI: 10.1016/j.watres.2021.117790] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The application of oxidants for disinfection or micropollutant abatement during drinking water and wastewater treatment is accompanied by oxidation of matrix components such as dissolved organic matter (DOM). To improve predictions of the efficiency of oxidation processes and the formation of oxidation products, methods to determine concentrations of oxidant-reactive phenolic, olefinic or amine-type DOM moieties are critical. Here, a novel selective oxidative titration approach is presented, which is based on reaction kinetics of oxidation reactions towards certain DOM moieties. Phenolic moieties were determined by oxidative titration with ClO2 and O3 for five DOM isolates and two secondary wastewater effluent samples. The determined concentrations of phenolic moieties correlated with the electron-donating capacity (EDC) and the formation of inorganic ClO2-byproducts (HOCl, ClO2-, ClO3-). ClO2-byproduct yields from phenol and DOM isolates and changes due to the application of molecular tagging for phenols revealed a better understanding of oxidant-reactive structures within DOM. Overall, oxidative titrations with ClO2 and O3 provide a novel and promising tool to quantify oxidant-reactive moieties in complex mixtures such as DOM and can be expanded to other matrices or oxidants.
Collapse
Affiliation(s)
- Joanna Houska
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Elisabeth Salhi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Nicolas Walpen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Wang WL, Lee MY, Du Y, Zhou TH, Yang ZW, Wu QY, Hu HY. Understanding the influence of pre-ozonation on the formation of disinfection byproducts and cytotoxicity during post-chlorination of natural organic matter: UV absorbance and electron-donating-moiety of molecular weight fractions. ENVIRONMENT INTERNATIONAL 2021; 157:106793. [PMID: 34332302 DOI: 10.1016/j.envint.2021.106793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Pre-ozonation can reduce the formation of disinfection byproducts (DBPs) and related adverse effects during subsequent chlorination, but the change of each molecular weight (MW) fraction during each step of combined pre-ozonation and post-chlorination has not been well illustrated. In this study, it was investigated in terms of electron-donating-moieties (EDMs) and UVA254 for a representative natural organic matter from Suwanee river (SRNOM). Pre-ozonation suppressed the post-chlorination of SRNOM through oxidation of almost all EDMs (>85%) and UVA254 (>90%) in high MW fractions (HMW, >3.2 kDa) and moderate EDMs (43%) and UVA254 (72%) in medium MW fractions (MMW, 1.0-3.2 kDa). Furthermore, pre-ozonation led to comparable abatements of EDMs and UVA254 for HMW fractions, but lower abatement of EDMs than UVA254 for MMW fractions. However, when t-BuOH was used as an •OH-quencher, pre-ozonation led to a few instances in which there were higher abatements of EDMs than UVA254 for the MMW fraction. These findings suggested that the HMW fraction dominantly underwent ring-cleavage of phenols via O3- or •OH-oxidation. Differently, the MMW fraction underwent ring-cleavage of phenols and quinones-formation via O3-oxidation, but occasionally underwent hydroxylation and hydro-phenol formation via •OH-oxidation. Because of forehand elimination of reactive moieties (e.g. EDMs), pre-ozonation obviously inhibited the formation of representative DBPs (67%-84% inhibition), total organic chloride (51% inhibition) and cytotoxicity (31% inhibition), but may have promoted the formation of carbonyl-DBPs (trichloroacetone and chloral hydrate). When compared with UVA254, EDMs would better for surrogate of DBPs formation. EDM abatement surrogated the formation of total organic chlorine (TOCl) and cytotoxicity following a two-stage phase, possibly because the speciation of DBPs and transformation products varied with the abatement of EDMs.
Collapse
Affiliation(s)
- Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Ye Du
- College of Architecture & Environment, Sichuan University, Chengdu 610000, PR China
| | - Tian-Hui Zhou
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
19
|
Yang Y, Ma C, He X, Li J, Li M, Wang J. Calcined Aluminum Sludge as a Heterogeneous Fenton-Like Catalyst for Methylene Blue Degradation by Three-Dimensional Electrochemical System. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Enhancing H 2O 2 Tolerance and Separation Performance through the Modification of the Polyamide Layer of a Thin-Film Composite Nanofiltration Membrane by Using Graphene Oxide. MEMBRANES 2021; 11:membranes11080592. [PMID: 34436355 PMCID: PMC8398487 DOI: 10.3390/membranes11080592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/05/2022]
Abstract
Through interfacial polymerization (IP), a polyamide (PA) layer was synthesized on the top of a commercialized polysulfone substrate to form a thin-film composite (TFC) nanofiltration membrane. Graphene oxide (GO) was dosed during the IP process to modify the NF membrane, termed TFC-GO, to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased surface hydrophilicity, water permeability, salt rejection, removal efficiency of pharmaceutical and personal care products (PPCPs), and H2O2 resistance compared with TFC. When H2O2 exposure was 0–96,000 ppm-h, the surfaces of the TFC and TFC-GO membranes were damaged, and swelling was observed using scanning electron microscopy. However, the permeate flux of TFC-GO remained stable, with significantly higher NaCl, MgSO4, and PPCP rejection with increasing H2O2 exposure intensity than TFC, which exhibited a 3.5-fold flux increase with an approximate 50% decrease in salt and PPCP rejection. GO incorporated into a PA layer could react with oxidants to mitigate membrane surface damage and increase the negative charge on the membrane surface, resulting in the enhancement of the electrostatic repulsion of negatively charged PPCPs. This hypothesis was confirmed by the significant decrease in PPCP adsorption onto the surface of TFC-GO compared with TFC. Therefore, TFC-GO membranes exhibited superior water permeability, salt rejection, and PPCP rejection and satisfactory resistance to H2O2, indicating its great potential for practical applications.
Collapse
|