1
|
Xu F, Liao Y, Bai S, Yang R, Li Y, Yuan J. The effects of phosphorus on the fate and transformation of sediment-associated cadmium from river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177812. [PMID: 39637545 DOI: 10.1016/j.scitotenv.2024.177812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The coexistence of phosphorus (P) and cadmium (Cd) in river sediments poses a significant challenge for remediating these contaminants in aquatic environments, given the ongoing debates regarding their interactions. This study aimed to elucidate the impact of water-soluble phosphorus (PO43-) on the fate and transformation of sediment-associated Cd under varying conditions. The findings revealed that the impact of PO43- on the release of sediment-associated Cd depends on the presence or absence of cations such as Ca2+ and Mg2+, with Ca2+ exerting a more pronounced effect than Mg2+. In the absence of Ca2+ and Mg2+, PO43- effectively inhibits the release of sediment-associated Cd by facilitating the formation of more stable precipitates, including (Cd)3(PO4)2. Conversely, when Ca2+ and Mg2+ are present, they compete with Cd for PO43- binding sites, reducing the formation of (Cd)3(PO4)2 and indirectly enhancing the release of sediment-associated Cd. Furthermore, redox conditions play a significant role in Cd release from sediments depending on its fractions. However, this influence may be less prominent compared to that caused by PO43-. Notably, increasing sediment ageing time diminishes the enhancing effect exerted by PO43-, likely attributed to the conversion of Cd into a more stable residual fraction. This study offers further insights into the impact of PO43- on the fate and transformation of sediment-associated Cd within river sediments, necessitating simultaneous consideration of multiple variables such as cations, redox conditions, and sediment ageing.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yuhui Liao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Shihao Bai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Rui Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaoming Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
2
|
Luo J, Li J, Feng S, Ke X. Early-warning ecological risk assessments of multi-element pollution in the surface soil of karst basins in southwest China based on the delayed geochemical hazard model. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136935. [PMID: 39708605 DOI: 10.1016/j.jhazmat.2024.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Soil potentially toxic element (PTE) pollution, especially in karst regions, poses significant ecological risks due to the unique geological features and environmental conditions. This study focuses on the delayed geochemical hazard (DGH) model to assess the progressive risks of cadmium (Cd) and lead (Pb) contamination in the surface soils of karst regions in southwestern China. The study found that Pb and Cd pollution in karst areas presents ecological risks, with the region's high porosity and alkaline soils facilitating the transformation of pollutants from stable to mobile forms. The analysis revealed that Pb underwent multidirectional transformations, with 28.3 % of the soil showing a transition from carbonate-bound Pb (PbC) to exchangeable Pb (PbE). However, Cd primarily transformed into carbonate-bound (CdC) and oxide-bound (CdO) forms, with 3.77 % of samples exhibiting the highest outbreak probability for the pathway from sum Cd (CdE+C+F+O+R) to CdC+O. In Pb-Cd co-contamination, Cd predominates, altering risk pathways by triggering transformations at iron-manganese oxide and organic matter binding sites, thereby increasing pollutant mobility. The most prominent combined risk pathway in Pb-Cd contamination was the shift from ME+O to MC (outbreak probability: 5.66 %), indicating enhanced mobility of both PTEs. New pathways also emerged, such as the transition from ME+C+F+O to ME+C, suggesting that Pb and Cd interactions accelerate the risk evolution, favoring highly mobile forms. These findings highlight the importance of not only considering total PTE concentrations but also their speciation and potential transformations in risk assessments. The DGH model effectively predicts evolutionary risks in co-contaminated karst areas, providing insights for early warning of multi-element pollution, particularly in vulnerable karst landscapes.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Li
- Geological Survey of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
3
|
Jiang CC, Yu GH, Zhou XJ, Sun FS, Liu CQ. Biogeochemical process governing cadmium availability in sediments of typical coastal wetlands driven by drying-wetting alternation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135980. [PMID: 39342848 DOI: 10.1016/j.jhazmat.2024.135980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Fluctuations in water levels within coastal wetlands can significantly affect cadmium (Cd) cycling and behavior in sediments. Understanding the effects of drying-wetting cycles on Cd availability and binding mechanisms is crucial. However, information regarding this subject remains limited. This study conducted incubation experiments employing chemical extraction, high-resolution mass spectrometry, and microbiological analysis to investigate the Cd behavior under these conditions. The results from a 40-day anaerobic incubation followed by a 20-day aerobic phase indicated that the drying-wetting cycles triggered fluctuations in physicochemical parameters (e.g., pH, EC, and reactive iron (Fed)), affecting Cd mobility. The mobility of Cd was closely linked to nanozyme activity (R2=0.63), exhibiting a strong correlation with Fed (R2=0.51). This suggested that the drying-wetting cycles induced Fed changes, which regulated the nanozyme activity, thereby affecting Cd availability. The changes in Cd availability were strongly linked to transformations in iron oxides and organic functional groups (carboxylic-OH and aliphatic C-H), whereas the bacterial community composition, particularly Bacilli and Clostridia, notably influenced Cd accessibility. These findings offer valuable insights into the geochemical dynamics of Cd in coastal wetland sediments under alternating drying-wetting cycles, enhancing our understanding of its biogeochemical cycling and potential risks.
Collapse
Affiliation(s)
- Cheng-Cheng Jiang
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| | - Xiao-Jie Zhou
- National Center for Protein Sciences Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China.
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Sun C, Gong W, Pan G, Mortimer RJG, Yao E, Wen S, Chen M, Zhong J. Comprehensive effects of sediment dredging on environmental risk and bioavailability of heavy metals from the sediment of Lake Taihu, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136789. [PMID: 39647333 DOI: 10.1016/j.jhazmat.2024.136789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The comprehensive effects of environmental dredging on heavy metals (HM) are still uncertain. This study comprehensively evaluates the long-term effects of dredging on the environmental risk and bioavailability of HM (Cu, Ni, Zn, Pb, Cd, Cr, and As) in Lake Taihu, China, by comparing simulated dredged treated (D) and undredged (UD) sediment cores under in-situ conditions for one year. Threshold effect level (TEL), geological accumulation index (Igeo), potential ecological risk index (RI), and ratios of secondary phase and primary phase (RSP) methods were used to assess the environmental risk of sediment HM; and the diffusive gradient in thin-films (DGT) technique was applied to assess the bioavailability of sediment HM. The results indicate that Cd was the most polluted metal assessed by the Igeo and RI method, and that dredging significantly reduced the total content of sediment HM, particularly for Cu, Zn, and Cd, and its Igeo and RI index, but caused a slight effect on its fractionation and distinct effect on RSP index. These indices changed independently and seasonally. Porewater analysis suggested higher HM concentrations in summer and winter may cause corresponding deterioration in overlying water. DGT analysis suggested a large proportion of metal-DOM complexes and showed that dredging reduced the bioavailability of Ni, Cd, and As but had a mixed impact (effective and/or ineffective impact varied with seasons) on other metals. These findings highlight the complexity of dredging effects on sediment HM dynamics, underscoring the importance of seasonal monitoring and multi-geoengineering techniques targeted at total and specific metals.
Collapse
Affiliation(s)
- Chuanzhe Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, PR China
| | - Wanqing Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Gang Pan
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK; School of Chemical and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Robert J G Mortimer
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Enqin Yao
- Huzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Huzhou, 313000, PR China
| | - Shuailong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
5
|
Wei X, Kong S, Cai D, Bai B, Liu R, Chen Y, Chen J, Yi Z. Interface mechanism of Cd bioavailability by porewater prediction in paddy field system. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136453. [PMID: 39556910 DOI: 10.1016/j.jhazmat.2024.136453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to human health. Predicting the risk of Cd in rice grains is challenging due to the heterogeneity and complexity of bioavailable Cd in paddy soils. We proposed that porewater during the grain-filling period can effectively predict Cd bioavailability in rice (R2 > 0.5, p < 0.05). The prediction mechanism was elucidated through soil-porewater interface characterization analysis and DFT calculations. Key factors determining Cd bioavailability included Cd2+ and SO42- concentration, pH, and ORP of porewater, with pH showing the highest correlation. As porewater pH increased from 5 to 9, typical mineral surfaces gradually deprotonated and formed complexation bonds {SOCd+} instead of {SOH} or {SOH2+}. Additionally, the complexation energy between montmorillonite and Cd was 1.57-1.78 eV higher than that between goethite and Cd, while the protonation activation energy barrier on montmorillonite was 1.33-1.52 eV lower than on goethite. Therefore, {H+} concentration in porewater had the potential to quantify {SOCd+} content and binding capacity, aiding Cd bioavailability prediction. This study outlines the mechanism of predicting heavy metal health risks in rice grains through porewater and offers a potential regulation approach for agricultural product safety.
Collapse
Affiliation(s)
- Xiaguo Wei
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Shuqiong Kong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China.
| | - Dawei Cai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bing Bai
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Ruiqi Liu
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Yiyi Chen
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Jie Chen
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| | - Zhihao Yi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, China
| |
Collapse
|
6
|
Islam MR, Sanderson P, Payne TE, Naidu R. Potential amendments of coal fly ash-derived zeolite to beryllium contaminated soil at a legacy waste disposal site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123043. [PMID: 39461155 DOI: 10.1016/j.jenvman.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Management of Be contamination using industrial solid waste or solid waste-derived amendments is not well understood. This study investigated the potential of Australian coal fly ash (CFA), derived synthesized zeolite (SynZ) and chitosan-modified zeolite (ModZ), for Be immobilization at the Little Forest Legacy Waste Site (LFLS), a low-level radioactive waste disposal site near Sydney, Australia. In laboratory simulation experiments, the SynZ and ModZ were separately applied as an amendment to both naturally contaminated soil and simulated contaminated (spiked) soil. Different techniques, including pore water (PW), batch desorption, and microbial activities were assessed to provide insight into immobilization mechanisms. Results revealed that amendment of 2% ModZ in soils, substantially decreased Be concentrations in PW (PWBe) ranging from 13.3% to 99.5% across all concentrations of Be. In contrast, PWBe increased while using SynZ, which could be attributed to the increased solubility of different organic-inorganic elements in PW. Moreover, batch desorption using Milli-Q water, simulated acid rainwater [H2SO4/HNO3 = 60/40, (v/v), and 0.11 M acetic acid solution also revealed similar patterns of Be immobilization as found in PWBe analysis. Soil amendments boosted microbial biomass carbon, and phosphorous (MBC,P), along with basal respiration (BRCO2). This indicates increased microbial activities, which are linked with environmental eco-friendliness. This effect was substantially noticed in ModZ-amended soils, exhibiting up to 22 times higher in BRCO2 values compared to unamended soil. Additionally, reduced PWBe was correlated with soluble organic-inorganic elements, desorbed Be in the batch study, and soil MBc. The differences in behavior between SynZ and ModZ underline the importance of carefully studying the various potential amendment materials and the need to evaluate their performance before application in field situations. This study highlights ModZ's effectiveness in eco-friendly Be immobilization, underlining the role of organic functional groups in zeolite architecture, a key factor in controlling Be in soils.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia.
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia.
| |
Collapse
|
7
|
Li J, Liu M, Tong L, Zhou Y, Kong L. Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135598. [PMID: 39178781 DOI: 10.1016/j.jhazmat.2024.135598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.
Collapse
Affiliation(s)
- Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Mengdi Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Lizhi Tong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong 510655, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Lu T, Wang L, Hu J, Wang W, Duan X, Qiu G. Enhanced reduction of Cd uptake by wheat plants using iron and manganese oxides combined with citrate in Cd-contaminated weakly alkaline arable soils. ENVIRONMENTAL RESEARCH 2024; 257:119392. [PMID: 38857857 DOI: 10.1016/j.envres.2024.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Li Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiwen Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
9
|
He X, Yan W, Chen X, Wang Y, Li M, Li Q, Yu Z, Wu T, Luan C, Shao Y, Wu J. Arsenic distribution characteristics and release mechanisms in aquaculture lake sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135141. [PMID: 38986404 DOI: 10.1016/j.jhazmat.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
It is well known that aquaculture can alter the microenvironments of lakes at sediment-water interface (SWI). However, the main mechanisms underlying the effects of aquaculture activities on arsenic (As) transformations are still unclear. In this context, the present study aims to investigate the variations in the sediment As contents in Yangcheng Lake, as well as to assess its chemical transformations, release fluxes, and release mechanisms. The results showed substantial spatial differences in the dissolved As concentrations in the sediment pore water. The As release fluxes at the SWI ranged from 1.32 to 112.09 μg/L, with an average value of 33.68 μg/L. In addition, the highest As fluxes were observed in the aquaculture areas. The transformation of crystalline hydrous Fe oxide-bound As to adsorbed-As in the aquaculture lake sediments increased the ability of As release. The Partial least squares path modeling results demonstrated the great contributions of organic matter (OM) to the As transformations by influencing the sediment microbial communities and Fe/Mn minerals. The changes in the As fractionation and competing adsorption increased the dissolved As concentrations in the 0-10 mm surface sediment. Non-specifically and specifically adsorbed As were the major sources of dissolved As in the sediments. Specifically, microbial reduction of As[V] and dissolution of Fe oxides increased the dissolved As concentrations at the SWI (20 to -20 mm). The results of the current study highlight the positive enhancement effects of aquaculture on As release from sediments.
Collapse
Affiliation(s)
- Xiangyu He
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Zhongbo Yu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Tingfeng Wu
- Yangtze Institute for conservation and development, Hohai University, Nanjing 210098, China
| | - Chengmei Luan
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing 210027, China
| | - Yichun Shao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingwei Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
10
|
Xiang Z, Wu S, Zhu L, Yang K, Lin D. Pollution characteristics and source apportionment of heavy metal(loid)s in soil and groundwater of a retired industrial park. J Environ Sci (China) 2024; 143:23-34. [PMID: 38644020 DOI: 10.1016/j.jes.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 04/23/2024]
Abstract
Heavy metal(loid)s (HMs) pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization. Here, soil and groundwater were sampled from a retired industrial park to investigate the pollution characteristics of HMs. Results show that Ni, Pb, Cr, Zn, Cd, and Cu were the typical HMs in the soil. Source analysis with the positive matrix factorization model indicates that HMs in the topsoil stemmed from industrial activities, traffic emission, and natural source, and the groundwater HMs originated from industrial activities, groundwater-soil interaction, groundwater-rock interaction, and atmosphere deposition. The sequential extraction of soil HMs reveals that As and Hg were mainly distributed in the residue fraction, while Ni, Pb, Cr, Zn, Cd, and Cu mainly existed in the mobile fraction. Most HMs either in the total concentration or in the bioavailable fraction preferred to retain in soil as indicated by their high soil-water partitioning coefficients (Kd), and the Kd values were correlated with soil pH, groundwater redox potential, and dissolved oxygen. The relative stable soil-groundwater circumstance and the low active fraction contents limited the vertical migration of soil HMs and their release to groundwater. These findings increase our knowledge about HMs pollution characteristics of traditional industrial parks and provide a protocol for HMs pollution scrutinizing in large zones.
Collapse
Affiliation(s)
- Zijing Xiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijin Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
11
|
Li Y, Gao B, Xu D. Influence of anti-seasonal inundation on geochemical processes of arsenic speciation in the water-level-fluctuation zone soil of the Three Gorges Reservoir, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134895. [PMID: 38885587 DOI: 10.1016/j.jhazmat.2024.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Since the completion of Three Gorges Dam, the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) experiences the periodic anti-seasonal inundation. However, knowledge for mechanisms of mobilization and transformation of arsenic (As) in WLFZ soils of the TGR remains scarce. To address this gap, a combination of field observation and simulated flooding experiments attempts to illustrate the As mobilization, the transformation between As(V) and As(III), and the factors driving these processes. The study revealed that anti-seasonal inundation (with a temperature at 13 ℃) mitigated As release from submerged soils. Interestingly, the total As and ratio of As(III) (the more toxic form of As) concentrations in porewater at 13 ℃ was lower, and the prevalence of As(III) occurred later than those at 32 °C (imitate the seasonal inundation condition). The results indicated that the As reduction and the corresponding toxic risks in submerged soils were alleviated under anti-seasonal inundation. The study proposes the reduction of As-bearing manganese (Mn) mineral assemblages and competitive adsorption of dissolved organic carbon (DOC) as primary mechanisms for As mobilization. Furthermore, microorganism-mediated detoxification/reduction processes involving DOC, nitrogen, and Mn (oxyhydr)oxides were identified as central pathways for As(III) enrichment under anti-seasonal inundation. This study enhances understandings of the biogeochemical processes and fate of As in WLFZ soils influenced by artificial regulation of the reservoir.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
12
|
Lin J, Chen X, Liu Y, Wang Y, Shuai J, Chen M. Fe/Mn (oxyhydr)oxides reductive dissolution promoted by cyanobacterial algal bloom-derived dissolved organic matter caused sediment W release during an algal bloom in Taihu Lake. WATER RESEARCH 2024; 260:121899. [PMID: 38908314 DOI: 10.1016/j.watres.2024.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Tungsten (W) can be toxic to aquatic organisms. However, the spatiotemporal characteristics and controlling factors of W mobility during harmful algal blooms (HABs) have rarely been investigated. In this study, simultaneous changes in soluble W, iron (Fe), manganese (Mn), and ultraviolet absorbance (UV254) in the sediment-water interface (SWI) were measured monthly using high-resolution peeper (HR-Peeper) devices. Laboratory experiments were conducted to verify the effects of environmental factors on W release. From May 2021 to October 2021, the concentration and flux of soluble W were higher than in other months. In addition, from May to October, DMAX (the depth at which the maximum concentration occurs on each profile) was 30-50 mm below the SWI, rather than the maximum depth. Principal component analysis (PCA) also divided the year into two periods, designated W-stable (December 2020, January, March, April and November 2021 with low soluble W concentration) and W-active periods (from May 2021 to October 2021 with high soluble W concentration). Laboratory experiments showed that both warming and anoxic conditions caused simultaneous release of soluble W, Fe(II), Mn, and dissolved organic matter (DOM), with strong correlations among soluble W, Fe(II), Mn. Partial least squares path modeling (PLS-PM) and random forest model showed that DOM directly affected W release or indirectly affected W release through promoting ferromanganese (oxyhydr)oxides reduction under warming and anaerobic conditions. The results of the field investigation showed that, in the W-stable period with low T, high DO, and an oxic SWI, the concentrations of soluble W, Fe, Mn, and DOM were low. The redundancy analysis (RDA) showed that these months were mainly affected by water DO. The significant and strong positive correlation among soluble W, Fe and Mn indicated that soluble W was probably scavenged by Fe/Mn (oxyhydr)oxides in the oxic water during the W-stable period. The W-active period corresponded to the cyanobacterial HABs (cyanoHABs) outbreak, with higher T, lower DO, and a more anoxic SWI. During this period, the concentrations of soluble W, Fe, Mn, and DOM were high and their correlations were stronger. RDA showed that these months were mainly affected by T, UV254, soluble Fe and Mn. These results indicated that reductive dissolution of Fe/Mn (oxyhydr)oxides driven by DOM generated in W-active period, especially cyanoHAB-derived DOM, mainly caused soluble W release. These results reveal the coupling relationship between cyanoHABs and W release and emphasize the need for prevention and control of heavy metal release in eutrophic lakes.
Collapse
Affiliation(s)
- Juan Lin
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210010, China
| | - Yvlu Liu
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Yibo Wang
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Jinxia Shuai
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
13
|
He K, Han R, Wang Z, Xiao Z, Hao Y, Dong Z, Xu Q, Li G. Soil source, not the degree of urbanization determines soil physicochemical properties and bacterial composition in Ningbo urban green spaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172550. [PMID: 38643872 DOI: 10.1016/j.scitotenv.2024.172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Urban green spaces provide multiple ecosystem services and have great influences on human health. However, the compositions and properties of urban soil are not well understood yet. In this study, soil samples were collected from 45 parks in Ningbo to investigate the relationships among soil physicochemical properties, heavy metals and bacterial communities. The results showed that soil dissolved organic matter (DOM) was of high molecular weight, high aromaticity, and low degree of humification. The contents of heavy metals were all below the China's national standard safety limit (GB 3660-2018). The bioavailability of heavy metals highly correlated with soil pH, the content of DOC, the fluorescent component, the degree of humification and the source of DOM. The most abundant genera were Gemmatimonadaceae_uncultured, Xanthobacteraceae_uncultured, and Acidothermus in all samples, which were related to nitrogen cycle and bioavailability of heavy metals. Soil pH, bioavailability of Zn, Cd, and Pb (CaCl2 extracted) were the main edaphic factors influencing bacterial community composition. It should be noted that there was no significant impact of urbanization on soil physicochemical properties and bacterial composition, but they were determined by the source of soil in urban green spaces. However, with the passage of time, the effect of urbanization on urban green spaces cannot be ignored. Overall, this study provided new insight for understanding the linkage among soil physicochemical properties, heavy metals, and bacterial communities in urban green spaces.
Collapse
Affiliation(s)
- Kaiwen He
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuozhen Dong
- Agricultural Technology Management and Service Station of Haishu District in Ningbo, Ningbo 315012, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Yang Y, Tang X, Hu H, Zhan X, Zhang X, Zhang X. Molecular insight into the binding properties of marine algogenic dissolved organic matter for polybrominated diphenyl ethers and their combined effect on marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171131. [PMID: 38387578 DOI: 10.1016/j.scitotenv.2024.171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread in marine ecosystems, despite the limits placed on several congeners, and pose a threat to marine organisms. Many coexisting factors, especially dissolved organic matter (DOM), affect the environmental behavior and ecological risk of PBDEs. Since blooms frequently occur in coastal waters, we used algogenic DOM (A-DOM) from the diatom Skeletonem costatum and examined the interaction of A-DOM with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Moreover, their combined effect on the rotifer Brachionus plicatilis was analyzed. During the stationary period, A-DOM had more proteins than polysaccharides, and 7 extracellular proteins were identified. A-DOM fluorescence was statically quenched by BDE-47, and amide, carbonyl, and hydroxyl groups in A-DOM were involved. Molecular docking analysis showed that all 5 selected proteins of A-DOM could spontaneously bind with BDE-47 and that hydrophobic interactions, van der Waals forces and pi-bond interactions existed. The reproductive damage, oxidative stress and inhibition of mitochondrial activity induced by BDE-47 in rotifers were relieved by A-DOM addition. Transcriptomic analysis further showed that A-DOM could activate energy metabolic pathways in rotifers and upregulate genes encoding metabolic detoxification proteins and DNA repair. Moreover, A-DOM alleviated the interference effect of BDE-47 on lysosomes, the extracellular matrix pathway and the calcium signaling system. Alcian blue staining and scanning electron microscopy showed that A-DOM aggregates were mainly stuck to the corona and cuticular surface of the rotifers; this mechanism, rather than a real increase in uptake, was the reason for enhanced bioconcentration. This study reveals the complex role of marine A-DOM in PBDEs bioavailability and enhances the knowledge related to risk assessments of PBDE-like contaminants in marine environments.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hanwen Hu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Zhan
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
15
|
Yan W, He X, Chen M, Qian B, Li M, Yan Y, Lin C, Mao Z. High arsenic pollution of the eutrophic Lake Taihu and its relationship with iron, manganese, and dissolved organic matter: High-resolution synchronous analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133644. [PMID: 38330646 DOI: 10.1016/j.jhazmat.2024.133644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Arsenic (As) is a metalloid that can accumulate in eutrophic lakes and cause adverse health effects to people worldwide. However, the seasonal process and dynamic mechanism for As mobilization in eutrophic lake remains effectively unknown. Here we innovatively used the planar optodes (PO), high-resolution dialysis (HR-Peeper) combined with fluorescence excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis technologies. We synchronously investigate monthly O2, As, iron (Fe), manganese (Mn), and naturally occurring dissolved organic matter (DOM) changes in sediments of Lake Taihu at high resolution in field conditions. We find high As contamination from sediments with 61.88-327.07 μg m-2 d-1 release As fluxes during the algal bloom seasons from May to October 2021. Our results show that an increase in DOM, mainly for humic-like components, resulting in high electron transfer capacity (ETC), promoted the reductive dissolution of Fe and Mn oxides to release As. Partial least square-path modeling (PLS-PM) and random forest modeling analysis identified that Mn oxide reductive dissolution directly accelerated sediments As contamination, which is the crucial factor. Understanding crucial factor controlling As release is especially essential in areas of eutrophic lakes developing effective strategies to manage As-rich eutrophic lake sediments worldwide.
Collapse
Affiliation(s)
- Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Bao Qian
- Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Yulin Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Chen Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
16
|
Chen X, Liu L, Wang Y, Zhou L, Xiao J, Yan W, Li M, Li Q, He X, Zhang L, You X, Zhu D, Yan J, Wang B, Hang X. The combined effects of lanthanum-modified bentonite and Vallisneria spiralis on phosphorus, dissolved organic matter, and heavy metal(loid)s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170502. [PMID: 38301791 DOI: 10.1016/j.scitotenv.2024.170502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Wang
- Zhongyifeng Construction Group Co., Ltd., Suzhou 215131, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
17
|
Jin C, Li Z, Huang M, Ding X, Chen J, Li B. Mechanisms of cadmium release from manganese-rich sediments driven by exogenous DOM and the role of microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116237. [PMID: 38503104 DOI: 10.1016/j.ecoenv.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response. The results demonstrated that different DOM drive microbial community shifts and enhance microbially mediated Mn oxide (MnO) reduction and Cd release. The amendment of terrestrial- and anthropogenic-derived DOM (FA and SDBS) mainly contributed to enriching Mn-reducing bacteria phylum Proteobacteria, and its abundance increased by 38.16-74.47 % and 56.41-73.98 %, respectively. Meanwhile, microbial-derived DOM (BSA and SA) mainly stimulated the abundances of metal(loid)-resistant bacteria phylum Firmicutes. Accompanied by microbial community structure, diversity, and co-occurrence network shifts, the DOM concentration and oxidation-reduction potential changed, resulting in enhanced Cd mobilization. Importantly, FA stimulated Cd release most remarkably, probably because of the decreased cooperative interactions between bacterial populations, stronger reduction of MnOs, and higher aromaticity and hydrophobicity of the sediment DOM after amendment. This study linked DOM types to functional microbial communities, and explored the potential roles of different DOM types in Cd biotransformation in lake sediments.
Collapse
Affiliation(s)
- Changsheng Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Geography Science, Hunan Normal University, Changsha 410081, PR China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Hunan Normal University, Changsha 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
18
|
Xue SM, Jiang SQ, Li RZ, Jiao YY, Kang Q, Zhao LY, Li ZH, Chen M. The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167752. [PMID: 37838060 DOI: 10.1016/j.scitotenv.2023.167752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Heavy metal (HM) pollution is a major concern in freshwater ecosystem management. The different types of endogenous organic matter and the way their decomposition affects HM transformation in freshwater lakes is not well understood. An ex situ mesocosm study was conducted to compare HM transformation in sediments during anaerobic decomposition of cyanobacterial bloom biomass (CBB) and submerged cyanobacterial vegetation in Lake Taihu, known as Potamogeton malaianus (PM). Microbial community structures were examined through Illumina sequencing of 16S rDNA. Results indicate that Zn had a remarkably higher amount of potential mobile fraction than other heavy metals (Cr, Pb, Cu, Ni, and Cd) detected in sediments, especially in sediments collected from CBB-dominated areas (approximately 150 mg kg-1). CBB decomposition has caused a significant increase in exchangeable Zn content in sediments and a decrease in reducible Zn that was three times greater than PM decomposition. Additionally, oxidizable Zn content declined during CBB decomposition but increased during PM decomposition. Furthermore, the relative abundance of the main fermentative bacteria and some sulfate-reducing bacteria genera (e.g., Desulfomicrobium) were significantly associated with the HM content of exchangeable and reducible fractions during CBB decomposition. Overall, the findings indicate that Zn is more susceptible to endogenous organic matter decomposition than other metals in freshwater lakes, and the impacts of CBB decomposition on the transformation of heavy metals in sediment are greater than that of submerged macrophyte decomposition.
Collapse
Affiliation(s)
- Si-Min Xue
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Shu-Qi Jiang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Rui-Ze Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qun Kang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
19
|
Wang Y, Zhou L, Zhang L, You X, Li C, Kong M, Xiao J, Chen X, Zhu D, Hang X. Spatiotemporal characterization of vanadium at the sediment-water interface of a multi-ecological lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165715. [PMID: 37516179 DOI: 10.1016/j.scitotenv.2023.165715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
As an emerging environmentally harmful metal, vanadium (V) deserves significant research attention due to its hazardous concentrations in aquatic environments. However, the research on the characterization of V in sediment-water interface (SWI) remains limited. In this study, seasonal sampling was conducted in algal- and macrophyte-dominated zones via the method of in situ high-resolution diffusive gradients in thin films (DGT). The concentration of dissolved V in water in algal-dominated regions (12 sites) exceeded the long-term ecotoxicology limit of 1.2 μg⋅L-1. Seasonal variations of chemical speciation of V were observed in three ecological sites. DGT-labile V at the SWI exhibited two basic patterns associated with eutrophic status, one showing sharply decreasing gradients in the vicinity of the SWI and the other showing the absence of diffusion gradient. Positive correlations were observed between the water-dissolved V and the DGT-labile V, indicating DGT-labile V is a sensitive indicator for the release of V from sediment into water. Moreover, the mobility of V was influenced by the reduction of Fe(hydr)oxides and complexation with organic matter, in particular, during periods of algal blooms. It is suggested that V contamination at the SWI of algal-dominated zones deserves additional attention.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
20
|
Yao Y, Ma K, Li S, Zhang Y, Zhang Z, Fang F, Lin Y, Yin L, Sun L, Zhang C. Dissolved organic matter and Fe/Mn enhance the combination and transformation of As in Lake Chaohu Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119425. [PMID: 39492388 DOI: 10.1016/j.jenvman.2023.119425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The phenomenon of algal blooms resulting from lake eutrophication has the potential to increase the concentration of dissolved organic matter (DOM) and consequently influence the environmental behaviour of arsenic (As). In the subtropical region, the interplay between DOM, Fe/Mn and As becomes complex as Fe/Mn-rich substances from soils and sediments enter eutrophic lakes. The mechanisms by which DOM-Fe/Mn interactions affect the transformation of As species remain uncertain. Therefore, the Chaohu Lake Basin was selected as a representative case study site to investigate the levels of DOM, As, Fe and Mn in the water and to establish their associations. In addition, the interaction mechanism between DOM-Fe/Mn and As was investigated by elucidating the transformation behaviour of DOM-Fe/Mn on As species in a controlled laboratory environment. The results showed that in cases where the coexistence of Fe and Mn concentrations was relatively low (e.g. Fe < ∼0.5 mg/L and Mn < ∼0.6 mg/L), the concentration of As in water would increase proportionally with the simultaneous increase of both Fe and Mn concentrations (As < 5 μg/L). However, when the concentration of either Fe or Mn reached 10 mg/L, the proportion of As complexed by DOM increased significantly, reaching 99.73% and 99.66%, respectively. In the configuration of a metallic bridge, the elements Fe and Mn act as connectors between negatively charged DOM and As, thereby increasing the adsorption capacity of DOM for As. The alcohol and alkene functional groups present on the DOM-Fe/Mn surface show a preference for binding with free species of As in aqueous environments. In addition, the reductive groups on the surface of DOM not only directly convert As(V) to As(III), but also facilitate the reduction of Fe(III) to Fe(II), resulting in the indirect conversion of As(V) to As(III). Thus, this study provides a comprehensive understanding of the transport and transformation processes of arsenic in subtropical eutrophic lakes.
Collapse
Affiliation(s)
- Youru Yao
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Kang Ma
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Zhiming Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Fengman Fang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Yuesheng Lin
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lian Sun
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| | - Chonghong Zhang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui Province, 241002, China.
| |
Collapse
|
21
|
Tu X, Xu P, Zhu Y, Mi W, Bi Y. Molecular complexation properties of Cd 2+ by algal organic matter from Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115378. [PMID: 37598544 DOI: 10.1016/j.ecoenv.2023.115378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
A detailed understanding the metals binding with algal organic matter (AOM) is essential to gain a deeper insight into the toxicity and migration of metals in algae cell. However, the molecular complexation mechanism of the metals binding with AOM remains unclear. In this study, cadmium ion (Cd2+) binding properties of AOMs from Scenedesmus obliquus, which included extracellular organic matter (EOM) and intracellular organic matter (IOM), were screened. When Cd2+ < 0.5 mg/L, the accumulation of Cd2+ could reach 40%, while Cd2+ > 0.5 mg/L, the accumulation of Cd2+ was only about 10%. EOM decreased gradually (from 8.51 to 3.98 mg/L), while IOM increased gradually (from 9.62 to 21.00 mg/L). The spectral characteristics revealed that IOM was richer in peptides/proteins and had more hydrophilic than EOM. Both EOM and IOM contained three protein-like components (containing tryptophan and tyrosine) and one humic-like component, and their contents in IOM were higher than that in EOM. The tryptophan protein-like substances changed greatly during Cd2+ binding, and that the tryptophan protein-like substances complexed to Cd2+ before tyrosine protein-like substances in IOM was identified. Moreover, the functional groups of N-H, O-H, and CO in AOM played an important role, and the N-H group was priority to interacts with Cd2+ in the complexing process. More functional groups (such as C-O and C-N) were involved in the metals complexing in EOM than in IOM. It could be concluded that Cd2+ stress promoted the secretion of AOM in Scenedesmus obliquus, and proteins in AOM could complex Cd2+ and alleviate its toxicity to algal cell. These findings provided deep insights into the interaction mechanism of AOM with Cd2+ in aquatic environments.
Collapse
Affiliation(s)
- Xiaojie Tu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Yang F, Hu Y, Qiu G, Li Q, Wang G. Complexation of copper algaecide and algal organic matter in algae-laden water: Insights into complex metal-organic interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122032. [PMID: 37321314 DOI: 10.1016/j.envpol.2023.122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Copper-based algicides have been widely used to suppress algae blooms; however, the release of algal organic matter (AOM) on account of cell lysis may cause significant changes in the mitigation, transformation, and bioavailability of Cu(II). In the present work, the binding characteristics of Cu(II) with AOM were explored via combinative characterization methods, such as high-performance size exclusion chromatography, differential absorption spectra analysis, and joint applications of two-dimensional correlation spectroscopy (2D-COS), as well as heterospectral 2D-COS and moving window 2D-COS analyses of UV, synchronous fluorescence, and FTIR spectra. Carboxyl groups displayed a preferential interaction to Cu(II) binding, followed by polysaccharides. The spectral changes of C]O stretching occur after the change of chromophores in complexation with Cu(II). The AOM chromophores exhibit obvious conformations at Cu(II) concentrations higher than 120 μM, while AOM fluorophores and functional groups exhibit the greatest changes at Cu(II) concentrations lower than 20 μM. All these observations have verified the presence of binding heterogeneity and indicate that AOM could interact with Cu(II) through diverse functional moieties. Therefore, our study contributes to the better understanding of the fate of Cu(II)-AOM complexes in aquatic systems.
Collapse
Affiliation(s)
- Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Yun Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoyu Qiu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Qimeng Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| |
Collapse
|
23
|
Wang Y, Zhu D, Li C, You X, Zhou L, Zhang L, Xiao J, Chen M, Ding S, Hang X. Cyanobacterial blooms increase the release of vanadium through iron reduction and dissolved organic matter complexation in the sediment of eutrophic lakes. WATER RESEARCH 2023; 243:120377. [PMID: 37516083 DOI: 10.1016/j.watres.2023.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Vanadium (V), a hazardous environmental contaminant, can be highly toxic to aquatic or even human life. Nonetheless, knowledge of its redox geochemistry and mobility in sediments, especially those of eutrophic lakes, remains limited. In this study, we combined in situ high-resolution sampling and laboratory simulation experiments for monitoring soluble and labile V to reveal the mobilization mechanism of V in the sediment of Lake Taihu. The results showed that the concentration of soluble V (1.18-5.22 µg L-1) exceeded the long-term ecotoxicology limitation proposed by the government of the Netherlands. The highest value appeared in summer (July to September), with an average concentration of 3.87 µg L-1, which exceeded the short-term exposure limit. The remobilization of V in summer was caused by the combined effect of the reduction of Fe(hydr)oxides and dissolved organic matter (DOM) complexation, which accelerated the release of associated Fe-bound V and increased the solubility of DOM-V. Additionally, V showed high mobility in winter, owing to the species of V(Ⅲ)/V(Ⅳ) being oxidized to V(Ⅴ) with higher solubility. It is noteworthy that the elevated remobilization of V in sediments increases the risk of V release from sediments, which poses the threat of water V pollution in Lake Taihu.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
24
|
Jin C, Li Z, Huang M, Ding X, Zhou M, Chen J, Li B. Binding of Cd(II) to birnessite and fulvic acid organo-mineral composites and controls on Cd(II) availability. CHEMOSPHERE 2023; 329:138624. [PMID: 37030351 DOI: 10.1016/j.chemosphere.2023.138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Manganese oxide minerals (MnOs) are major controls on cadmium (Cd) mobility and fate in the environment. However, MnOs are commonly coated with natural organic matter (OM), and the role of this coating in the retention and availability of harmful metals remains unclear. Herein, organo-mineral composites were synthesized using birnessite (BS) and fulvic acid (FA), during coprecipitation with BS and adsorption to preformed BS with two organic carbon (OC) loadings. The performance and underlying mechanism of Cd(II) adsorption by resulting BS-FA composites were explored. Consequently, FA interactions with BS at environmentally representative (5 wt% OC) increase Cd(II) adsorption capacity by 15.05-37.39% (qm = 156.5-186.9 mg g-1), attributing to the enhanced dispersion of BS particles by coexisting FA led to significant increases in specific surface area (219.1-254.8 m2 g-1). Nevertheless, Cd(II) adsorption was notably inhibited at a high OC level (15 wt%). This might have derived from the supplementation of FA decreased pore diffusion rate and generated Mn(II/III) competition for vacancy sites. The dominant Cd(II) adsorption mechanism was precipitation with minerals (Cd(OH)2), and complexation with Mn-O groups and acid oxygen-containing functional groups of FA. In organic ligand extractions, the exchange Cd content decreased by 5.63-7.93% with low OC coating (5 wt%), but increased to 33.13-38.97% at a high OC level (15 wt%). These findings help better understand the environmental behavior of Cd under the interactions of OM and Mn minerals, and provide a theoretical basis for organo-mineral composite remediation of Cd-contaminated water and soil.
Collapse
Affiliation(s)
- Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mi Zhou
- College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
25
|
Sun F, Yu G, Han X, Chi Z, Lang Y, Liu C. Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. J Environ Sci (China) 2023; 129:202-212. [PMID: 36804236 DOI: 10.1016/j.jes.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
The excessive accumulation of potentially toxic metals (Pb and Cd) in coastal wetlands is among the main factors threatening wetland ecosystems. However, the effects of water table depth (WTD) on the risk and binding mechanisms of potentially toxic metals in sediments remain unclear. Here, sediments from different WTD obtained from a typical coastal wetland were evaluated using a newly developed strategy based on chemical extraction methods coupled with high-resolution spectroscopy. Our findings indicated that the WTD of the coastal wetland fluctuates frequently and the average enrichment factor for Pb was categorized as minor, whereas Cd enrichment was categorized as moderate. High-resolution spectroscopy techniques also demonstrated that organic functional groups and partly inorganic compounds (e.g., Fe-O/Si-O) played a vital role in the binding of Pb and Cd to surface sediments. Additionally, mineral components rather than organic groups were mainly bound to these metals in the bottom sediments. Collectively, our findings provide key insights into the potential health effects and binding characteristics of potentially toxic metals in sediments, as well as their dynamic behavior under varying sediment depths at a microscale.
Collapse
Affiliation(s)
- Fusheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Guanghui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Zhilai Chi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Congqiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Ouyang S, Zhou Q, Bi Z, Sun J, Hu X. Effect of natural soil nanocolloids on the fate and toxicity of cadmium to rice (Oryza sativa L.) roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162887. [PMID: 36934947 DOI: 10.1016/j.scitotenv.2023.162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Toxic heavy metals are common contaminants and will most likely interact with ubiquitous natural nanocolloids (Ncs) in the soil environment. However, the effect of soil Ncs on the fate and health risk of cadmium (Cd) have not been well addressed. Here, the interaction between Ncs and Cd is investigated using two-dimensional correlation spectroscopy (2DCOS) combined with synchronous fluorescence and Fourier transform infrared spectroscopy. Our results reveal that Cd binding to the soil Ncs surface is mainly driven through strong hydrophilic effects and π - π interactions, which contribute to a high adsorption capacity (366-612 mg/g) and strong affinity (KL = 4.3-9.7 L/mg) of Cd to soil Ncs. Interestingly, soil Ncs and Cd coexposure can significantly mediate the phytotoxicity (e.g., uptake, root growth, and oxidative stress) of Cd to rice (Oryza sativa L.) roots after 7 days of exposure. At the molecular level, metabolomic analysis reveals that the downregulated metabolic pathways (e.g., isoquinoline alkaloid and aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism) may contribute to the above adverse phytotoxicity. This study provides new insight into the effect of natural Ncs on the fate and health risks of toxic heavy metals in soil environments.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Li D, Chang F, Zhang Y, Duan L, Liu Q, Li H, Hu G, Zhang X, Gao Y, Zhang H. Arsenic migration at the sediment-water interface of anthropogenically polluted Lake Yangzong, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163205. [PMID: 37004769 DOI: 10.1016/j.scitotenv.2023.163205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The lability and controlling factors of arsenic (As) at the sediment-water interface (SWI) are crucial for understanding As behaviors and fates in As-contaminated areas. In this study, we combined high-resolution (5 mm) sampling using diffusive gradients in thin films (DGT) and equilibrium dialysis sampling (HR-Peeper), sequential extraction (BCR), fluorescence signatures, and fluorescence excitation-emission matrices (EEMs)-parallel factor analysis (PARAFAC) to explore the complex mechanisms of As migration in a typical artificially polluted lake, Lake Yangzong (YZ). The study results showed that a high proportion of the reactive As fractions in sediments can resupply pore water in soluble forms during the change from the dry season (winter, oxidizing period) to the rainy season (summer, reductive period). In dry season, the copresence of Fe oxide-As and organic matter (OM)-As complexes was related to the high dissolved As concentration in pore water and limited exchange between the pore water and overlying water. In the rainy season, with the change in redox conditions, the reduction of Fe-Mn oxides and OM degradation by microorganisms resulted in As deposition and exchange with the overlying water. Partial least squares path modelling (PLS-PM) indicated that OM affected the redox and As migration processes through degradation. Based on comprehensive analyses of the As, Fe, Mn, S and OM levels at the SWI, we suggest that the complexation and desorption of dissolved organic matter and Fe oxides play an important role in As cycling. Our findings shed new light on the cascading drivers of As migration and OM features in seasonal lakes and constitute a valuable reference for scenarios with similar conditions.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
28
|
Chen X, Liu L, Yan W, Li M, Li Q, He X, Zhao Z, Liu R, Zhang S, Huang Y, Jiang F. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments. ENVIRONMENTAL RESEARCH 2023; 231:116060. [PMID: 37149024 DOI: 10.1016/j.envres.2023.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In this study, CaO2 was used as a capping material to control the release of Phosphate (P) and tungsten (W) from the sediment due to its oxygen-releasing and oxidative properties. The results revealed significant decreases in SRP and soluble W concentrations after the addition of CaO2. The mechanisms of P and W adsorption by CaO2 were mainly chemisorption and ligand exchange mechanisms. In addition, the results showed significant increases in HCl-P and amorphous and poorly crystalline(oxyhydr)oxides bound W after the addition of CaO2. The highest reduction rates of sediment SRP and soluble W release were 37 and 43%, respectively. Furthermore, CaO2 can promote the redox of iron (Fe) and manganese (Mn). On the other hand, a significant positive correlation was observed between SRP/soluble W and soluble Fe (II) and between SRP/soluble W and soluble Mn, indicating that the effects of CaO2 on Fe and Mn redox play a crucial role in controlling P and W releases from sediments. However, the redox of Fe plays a key role in controlling sediment P and W release. Therefore, CaO2 addition can simultaneously inhibit sediment internal P and W release.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Inst Environm Sci, Minist Ecol & Environm, Nanjing, 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
29
|
Jin C, Li Z, Hursthouse AS, Ding X, Zhou M, Chen J, Li B. Manganese oxides mediated dissolve organic matter compositional changes in lake sediment and cadmium binding characteristics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114916. [PMID: 37060800 DOI: 10.1016/j.ecoenv.2023.114916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
In sediment environments, manganese (Mn) minerals have high dissolved organic matter (DOM) affinities, and could regulate the changes of DOM constituents and reactivity by fractionation. However, the effects of DOM fractionation by Mn minerals on the contaminant behaviors remain unclear. Herein, the transformations of mineral phases, DOM properties, and Cd(II) binding characteristics to sediment DOM before and after adsorption by four Mn oxides (δ-MnO2, β-MnO2, γ-MnOOH, and Mn3O4) were investigated using multi-spectroscopic tools. Results showed a subtle structural variation of Mn oxides in response to DOM reduction, and no phase transformations were observed. Two-dimensional correlation spectroscopy based on synchronous fluorescence spectra and Fourier transform infrared spectroscopy indicated that tryptophan-like substances and the amide (II) N-H groups could preferentially interact with Cd(II) for the original DOM. Nevertheless, preferential bonding of Cd(II) to tyrosine-like substances and phenolic OH groups was exhibited after fractionations by Mn oxides. Furthermore, the binding stability and capacity of each DOM fraction to Cd(II) were decreased after fractionation based on the modified Stern-Volmer equation. These differences may be attributed to DOM molecules with high aromaticity, hydrophobicity, molecular weight, and amounts of O/N-containing group were preferentially removed by Mn oxides. Overall, the environmental hazard of Cd will be more severe after DOM fractionation on Mn minerals. This study facilitates a better understanding of the Cd geochemical cycle in lake sediments under the DOM-mineral interactions, and recommends being careful with outbreaks of aquatic Cd pollution when sediments are rich in dissolved protein-like components and Mn minerals.
Collapse
Affiliation(s)
- Changsheng Jin
- College of Geography Science, Hunan Normal University, Changsha 410081, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan sUniversity), Ministry of Education, Changsha 410082, China.
| | - Zhongwu Li
- College of Geography Science, Hunan Normal University, Changsha 410081, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan sUniversity), Ministry of Education, Changsha 410082, China.
| | - Andrew S Hursthouse
- School of Computing Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan sUniversity), Ministry of Education, Changsha 410082, China.
| | - Mi Zhou
- College of Geography Science, Hunan Normal University, Changsha 410081, China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan sUniversity), Ministry of Education, Changsha 410082, China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan sUniversity), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
30
|
Wang Q, Wang J, Zhong Q, Su W, Ma Y, Du J, Xiao T. Trace elements accumulation over a century in sediment cores from a tectonic lake on the Qinghai-Tibet plateau: Source identification and risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117030. [PMID: 36584509 DOI: 10.1016/j.jenvman.2022.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
A record of trace elements in lake sediment can help in assessing the impact of anthropogenic activities on aquatic environments. In the present work, the trace elements profiles (Cu, Cr, Pb, Zn, As, and Cd) were determined in four sediment cores (QH01, QH02, QH07, and Z04) collected in 2012 and 2014 from Lake Qinghai to reconstruct the history of anthropogenic activity in the watershed and to evaluate the pollution status and eco-environmental risks of a typical Third Pole lake environment over the past century. The concentrations of Cu, Cr, Pb, Zn, As, and Cd in these studies ranged between 19.4 and 34.2 μg g-1, 35.6-53.6 μg g-1, 3.10-26.8 μg g-1, 56.4-93.5 μg g-1, 6.20-15.3 μg g-1, and 0.086-0.572 μg g-1, respectively. Statistical analyses indicated that the Pb, Zn, and Cd contents combination of coal, gasoline burning, and agricultural activities in the Lake Qinghai catchment and larger-scale atmospheric inputs during the past 60 years. The enrichment factors for Pb, Zn, and Cd in the sediments of Lake Qinghai are considered to be related to the region of the Qinghai-Tibet Plateau and national socioeconomic development. Enrich factor of Cd values was higher than 3.5 and maximum values of the geo-accumulation index of Pb and Cd were observed in the top layer of the sediment (0-2 cm), indicating moderate contamination. The RI values suggest that the risks to the ecological environment of Lake Qinghai are increasing since the 1950s. The results of this study illustrate that Lake Qinghai is still experiencing high trace elements pollution pressure due to the rapid environmental changes caused by anthropogenic activities on the remote and isolated Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Qiugui Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, China
| | - Jinlong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Qiangqiang Zhong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weigang Su
- Qinghai Earthquake Agency, Xining 810001, China
| | - Yujun Ma
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Ma X, Yang L, Liu E, Dai J. Evaluating the release risk of potentially toxic elements from sediments in the New Zhuzhao River Estuary of Nansi Lake, using high-resolution technology and sequential extraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:353. [PMID: 36725771 DOI: 10.1007/s10661-022-10832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/10/2022] [Indexed: 06/18/2023]
Abstract
Potentially toxic elements (PTEs) re-release from sediment is an essential process in the sediment-water interface (SWI), especially for the influent river estuary as an important accumulation site. In this study, the diffusive gradient in thin films (DGT), high-resolution dialysis (HR-peeper) technique, and BCR sequential extraction were employed to evaluate the release risk of PTEs (As, Cu, Pb, Zn, Cd) in the New Zhuzhao River Estuary of Nansi Lake. Results showed that Cd existed primarily in the non-residual fraction (accounting for 59.87%), and the residual fractions of As, Cu, Pb, and Zn accounted for a greater proportion (12.65 to 33.07%). The mobility of Cd was the highest with a risk assessment code of 33.53% reaching the medium risk category. The resupply capacity calculated by CDGT/CDis showed that As was the largest, with an average value of 0.43, indicating the strongest release capacity of As from the sediment to pore water. Furthermore, the diffusive fluxes using DGT and HR-peeper showed that As possesses a much higher potential to release upward overlying water than other elements.
Collapse
Affiliation(s)
- Xuan Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Jierui Dai
- Shandong Institute of Geological Survey, Jinan, 250013, China
| |
Collapse
|
32
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
33
|
Yan W, He X, Wu T, Chen M, Lin J, Chen X, Li Q, Li M, Yan Y, Yao Q. A combined study on Vallisneria spiralis and lanthanum modified bentonite to immobilize arsenic in sediments. ENVIRONMENTAL RESEARCH 2023; 216:114689. [PMID: 36323350 DOI: 10.1016/j.envres.2022.114689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Submerged plants and lanthanum-modified bentonite (LMB) have important applications for the remediation of contaminated sediments; however, their combined effect on arsenic (As) removal has not been comprehensively evaluated. In this study, the physicochemical properties and changes in soluble As in sediments treated with LMB, Vallisneria spiralis (V. spiralis), and LMB + V. spiralis were observed at three time points (days 15, 35, and 66), and the changes in microbial and As species in sediments on day 66 were analyzed. LMB + V. spiralis treatment was the most effective for As removal. On day 66, the average concentrations of soluble As at a depth of 0-100 mm decreased by 12.71%, 48.81%, and 59.73% following treatment with LMB, V. spiralis, and LMB + V. spiralis, respectively. Further analysis showed that LMB is more effective at removing As(V) than V. spiralis, while V. spiralis is more effective at removing As(III), and the combination of LMB + V. spiralis is more effective for removing both As(III) and As(V) than individual LMB and V. spiralis treatments. LMB + V. spiralis enhanced the transformation of mobile As to Fe2O3/oxyhydroxide-bound As in sediments and the activity of As-oxidizing microorganisms. LMB promoted the growth of V. spiralis and enhanced the removal of As. This study indicates that this combination is an effective method for removing mobile As from sediments, and could effectively inhibit the release of As from sediments to overlying water.
Collapse
Affiliation(s)
- Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Xiangyu He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Juan Lin
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Xiang Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Yulin Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Yao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
34
|
Min T, Luo T, He H, Qin J, Wang Y, Cheng L, Ru S, Li J. Dissolved organic matter-assisted phytoremediation potential of cotton for Cd-contaminated soil: a relationship between dosage and phytoremediation efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84640-84650. [PMID: 35781660 DOI: 10.1007/s11356-022-21485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) is a novel Cd-contaminated soils amendment for phytoremediation. However, the phytoremediation efficiency for different DOM doses has been insufficiently investigated. In this study, we investigated the effect of five DOM doses (v/w, 0%, 1%, 2%, 4% and 8%) on the phytoremediation efficiency of cotton in Cd-contaminated soil through pot experiment. The results showed that bioavailable Cd concentrations and organic matter in the soil increased with the increased of DOM dosage. The DOM dose increased the chlorophyll content, photosynthesis, and the total biomass of cotton. In addition, the DOM application increased the Cd content in cotton roots and changed the Cd uptake in cotton shoots, increasing shoot Cd extraction efficiency by 8.53-20%. Simultaneously, soil Cd phytoextraction efficiency significantly increased. Furthermore, applying a 1% DOM dose resulted in safeguarding fibre biomass and maximising the efficiency of shoot extraction. Redundancy analysis showed that the Mn content in leaves is critical for increasing cotton biomass, anti-oxidation competence and phytoremediation efficiency under 1% DOM dose. In conclusion, DOM enhanced cotton remediation in Cd-contaminated soils and applying DOM at 1% was a suitable choice for Cd-contaminated soils.
Collapse
Affiliation(s)
- Tao Min
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Tong Luo
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Hao He
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Jie Qin
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Yan Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Liyang Cheng
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Sibo Ru
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Junhua Li
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| |
Collapse
|
35
|
Wen L, Zhang L, Bai J, Wang Y, Wei Z, Liu H. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China. CHEMOSPHERE 2022; 309:136789. [PMID: 36223825 DOI: 10.1016/j.chemosphere.2022.136789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) pollution has been widely recognized in lake ecosystems. Although the accurate prediction of the spatial distributions of Cd in lakes is important for controlling Cd pollution, the traditional monitoring methods of setting discrete and limited sampling points cannot actually reflect the continuous spatial distribution characteristics of Cd. In this study, we set up 93 sampling points in Baiyangdian Lake (BYDL), and collected surface water, overlying water and sediment samples from each sampling point. Cd contents were measured to predict their spatial distributions in different environmental components by three interpolation methods, inverse distance weighted (IDW), radial basis function (RBF) and ordinary kriging (OK), and the effects of different sampling numbers on the interpolation accuracy were also assessed to optimize the interpolation method and sampling number. The results showed that the interpolation accuracy of IDW decreased with increasing power values. The best basis function for RBF was IMQ, and the best semivariogram models for OK were the spherical model and stable model. The best interpolation method for the waters and sediments was RBF-IMQ compared with OK and IDW. Within the sampling number range of 50-93, the interpolation accuracy for Cd in surface water increased with the increase in sampling number. Comparatively, the interpolation accuracy was the highest for overlying water and sediments when the sampling number was 60. The findings of this work provide a combined sampling and spatial interpolation method for monitoring the spatial distribution and pollution levels of Cd in the waters and sediments of shallow lakes.
Collapse
Affiliation(s)
- Lixiang Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yaqi Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haizhu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
36
|
Fang T, Yang K, Wang H, Fang H, Liang Y, Zhao X, Gao N, Li J, Lu W, Cui K. Trace metals in sediment from Chaohu Lake in China: Bioavailability and probabilistic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157862. [PMID: 35934044 DOI: 10.1016/j.scitotenv.2022.157862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bioavailability-based probabilistic risk assessment is an effective approach for risk characterization of trace metals towards aquatic species. However, it has not been routinely applied in lake management due to limited research. In this study, Chaohu Lake (Anhui Province, China) was selected as a case study, and total and bioavailable concentrations of trace metals in surface sediment were investigated using chemical extraction and diffusive gradients in thin films (DGT). Probabilistic risk assessment (PRA) was performed using Monte Carlo simulation. In addition, the species sensitivity distribution (SSD) was constructed using acute toxicity data to model the sensitivity of aquatic species towards metals. Three evaluation methods, namely, toxic units based on total content, modified potential ecological risk index (RI) based on chemical fractionation and DGT-SSD coupled PRA, were implemented and compared. Results showed that trace metals, especially Cd, were significantly affected by anthropogenic activities. Chemical fractionation analysis revealed that the majority of Cd was readily available to aquatic organisms, while Cr was stable under normal conditions. Toxic units based on the total content demonstrated that metals in sediment were at 91.6 % low and 8.4 % medium toxicity levels, while the modified RI based on chemical fractionation found toxicity levels of 84.1 % low and 15.9 % medium. Furthermore, the combined toxicity calculated from DGT-SSD coupled PRA showed that trace metals in sediment had a 24.8 % probability of toxic effects towards aquatic organisms, with Cu, Zn, Cd, and Ni being the main contributors. Comparative analysis suggested that the DGT-SSD coupled PRA could provide a more objective and scientific evidence for lake management with regard to metal contamination.
Collapse
Affiliation(s)
- Ting Fang
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Kun Yang
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Hui Wang
- Anhui Key Laboratory of Nutrient Recycling, Resources and Environment, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230001,China
| | - Hongyan Fang
- School of Mathematical Sciences, Anhui University, Hefei 230001, China
| | - Yangyang Liang
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Xiuxia Zhao
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Na Gao
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jing Li
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Wenxuan Lu
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Kai Cui
- Anhui Key Laboratory of Freshwater Aquaculture and Enhancement, Institute of Fisheries Research, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| |
Collapse
|
37
|
Water decontamination using CaCO3 nanostructure and its nanocomposites: current advances. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
38
|
Gao L, Li R, Liang Z, Wu Q, Hou L, Chen J, Zhao P. Dual diffusive gradients in the thin films (DGT) probes provide insights into speciation and mobility of sediment chromium (Cr) from the Xizhi River basin, South China. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129229. [PMID: 35739749 DOI: 10.1016/j.jhazmat.2022.129229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Investigation of the speciation and remobilization mechanisms of chromium (Cr) in sediment is essential for accurate estimation of its ecological risks in aquatic systems. In this work, a three-step chemical extraction procedure and diffusive gradient in thin films (DGT) technique were combined to investigate the geochemical speciation, mobility potentials, and release characteristics of sediment Cr. The geochemical speciation of sediment Cr decreased in the following order: oxidizable > reducible > residual > acid-soluble fraction. Dissociation of OM-bound Cr(III) and oxidation by Mn oxides contributed to higher labile Cr(III) and Cr(VI) levels in winter, with the labile Cr(III) being the dominant species and accounting for 48.1%65.5% of the total concentration of labile Cr; whereas, reductive dissolution of Mn oxides was responsible for the remobilization of labile Cr(VI) in summer, leading to a shift in dominant Cr species to Cr(VI) (48.9%65.7%) due to rapid precipitation of Cr(III). Sediment acted as a major sink for labile Cr(VI) in two sampling campaigns. For labile Cr(III), sediment converted from source in winter to sink in summer. The diffusive release of labile Cr(III) deserves preferential concern due to its potential to be re-oxidized to more toxic Cr(VI) under the oxic conditions of river water in winter.
Collapse
Affiliation(s)
- Lei Gao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Rui Li
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qirui Wu
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Hou
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ping Zhao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
39
|
Liu C, Lin J, Zhang Z, Zhan Y, Hu D. Effect of application mode (capping and amendment) on the control of cadmium release from sediment by apatite/calcite mixture and its phosphorus release risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59846-59861. [PMID: 35396681 DOI: 10.1007/s11356-022-20113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/02/2022] [Indexed: 05/09/2023]
Abstract
In this research, the influence of application mode (capping and amendment) on the control of cadmium (Cd) liberation from sediment by apatite/calcite mixture and its phosphorus release risk were investigated. The results showed that calcite addition had a limited effect on the speciation of Cd in sediment, but apatite addition had a significant impact on the fractionation of Cd in sediment. Apatite amendment could effectively immobilize the most readily mobilized Cd by transferring the acid-soluble fraction to the reducible and residual fractions. Apatite addition also could effectively reduce the concentration of toxicity characteristic leaching procedure (TCLP)-leachable Cd in sediment, and apatite had a much higher reduction efficiency of TCLP-leachable Cd than calcite. Apatite/calcite mixture capping could reduce the risk of Cd liberation from sediment into the overlying water, and the controlling efficiency of apatite/calcite mixture capping was higher than that of apatite/calcite mixture amendment. The effect of apatite/calcite mixture addition on the concentration of reactive soluble phosphorus (SRP) in the overlying water was limited. The introduction of calcite into the apatite capping layer could lower the risk of phosphorus release from apatite to the overlying water as compared to single apatite capping. However, the apatite/calcite mixture capping layer still had a relatively high risk of phosphorus liberation into the overlying water. Results of this work suggest that apatite/calcite mixture has a high potential to be used as a capping material to control Cd release from sediment from the perspective of controlling efficiency and application convenience.
Collapse
Affiliation(s)
- Chi Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Dazhu Hu
- Department of Civil Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| |
Collapse
|
40
|
Huang M, Zhou M, Li Z, Ding X, Wen J, Jin C, Wang L, Xiao L, Chen J. How do drying-wetting cycles influence availability of heavy metals in sediment? A perspective from DOM molecular composition. WATER RESEARCH 2022; 220:118671. [PMID: 35640502 DOI: 10.1016/j.watres.2022.118671] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Investigating the influence mechanism of drying-wetting cycles on the availability and mobility of heavy metals in sediment from the perspective of the molecular composition of dissolved organic matter (DOM) may gain a new understanding, but little current information exists. Here, we used spectral technologies, high-resolution mass spectrometry, and elemental stoichiometry method to trace the change rules of the molecular composition of DOM in the riparian sediment of the river. Results showed that the drying-wetting cycles could benefit the degradation of labile fractions (e.g., proteins, aliphatics, and lipids) of DOM and retain the fractions with high aromaticity and molecular size (e.g., lignin). The decrease in the availability of Cd after drying-wetting alternation processes was highly related to these changes in DOM composition. However, the availability of Zn and Cu remained almost unchanged, which probably resulted from the release and depletion of N and S in sediment-derived DOM under drying-wetting alternation conditions. As for Cr, its exchangeable fraction was unchanged during the drying-wetting alternation process, likely due to its high stability in the sediment. These results have implications on the environmental geochemical cycling of heavy metals in the riparian sediment with frequent drying-wetting alternation.
Collapse
Affiliation(s)
- Mei Huang
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mi Zhou
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Changsheng Jin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Lei Wang
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Jia Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
41
|
Du Y, An S, He H, Wen S, Xing P, Duan H. Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. WATER RESEARCH 2022; 219:118560. [PMID: 35576761 DOI: 10.1016/j.watres.2022.118560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The generation of organic matter (OM) occurs synchronously with phytoplankton growth. Characterization of the generated particulate and dissolved OM during algal blooms in eutrophic lakes is crucial for better understanding the carbon cycle but remains limited. We speculate that sediments play a critical role in the biogeochemical transformation of OM derived from algal blooms in shallow lakes. In this study, changes in OM quantity and quality and the concentrations of biogenic elements (nutrients and metals) during algal blooms, were studied in situ in a shallow eutrophic lake (Lake Chaohu, China). Two enclosure treatments in the presence and absence of sediments were compared, and the cause-effect relationships among sediment, nutrients, metals, phytoplankton, particulate OM (POM), and dissolved OM (DOM) were revealed by a partial least square-path model (PLS-PM). The results showed that the changes in nutrients and metals concentrations over time were consistent with that of chlorophyll a (Chl a), and at the end of the treatment, the concentrations of Chl a, nutrients, and metals in Treatment S (with sediments) were approximately 3-5 times of those in Treatment N (without sediments). The high concentration of Chl a in Treatment S resulted in a high quantity of POM, which showed low molecular weight, low humification, and was enriched in protein-like components (∼ 70%). For DOM, the quantity increased after the decrease in POM, and DOM quality showed a significantly higher abundance of humic-like components and a higher molecular weight than POM did. The PLS-PM results showed that the significant positive effects of sediment on nutrients, metals, phytoplankton, POM, and DOM were 0.28, 0.37, 0.28, 0.25, and 0.25, respectively, suggesting that sediment had an important role in the biogeochemical cycles of these substances. The significant negative relationship between POM and DOM (-0.62) and the distinct difference in POM and DOM quality implied the efficient transformation of the freshly generated OM to those with a higher molecular weight, higher humification, and potentially refractory. Our results depicted the quick biogeochemical transformation of nutrients, metals, and the potential formation of refractory organic carbon in water column, as driven by the couple of the algae pump with the microbial carbon pump.
Collapse
Affiliation(s)
- YingXun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - ShiLin An
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - ShuaiLong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - HongTao Duan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
42
|
Jin C, Li Z, Huang M, Ding X, Zhou M, Cai C, Chen J. Cadmium immobilization in lake sediment using different crystallographic manganese oxides: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114995. [PMID: 35413651 DOI: 10.1016/j.jenvman.2022.114995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Cd pollution in sediments poses severe threats to environmental safety and human health. Mn oxides have potential merit for the remediation of Cd pollution in sediment but have not received enough attention. Although Mn oxides have proven effective as adsorbents for removing heavy metals from water/wastewater, the performance and the underlying mechanism of Cd immobilization in sediments by Mn oxides remain unclear. Here, three crystallographic Mn oxides δ-MnO2, γ-MnOOH, and Mn3O4 were used as amendments to investigate their potential for the in situ immobilization of Cd in lake sediment. Experimental data showed that when the sediment samples were treated with synthesized Mn oxides at dosages of 2% and 6% (w/w) for 56 days, the TCLP (toxicity characteristic leaching procedure) leachable Cd in the sediment decreased by 43.9-66.81%, and the PBET (physiologically based extraction test) extractable Cd decreased by 45.16-99.40%. Additionally, the acid-soluble fraction of Cd was partially transformed to a residual fraction, resulting in a 27.55-35.49% decrease in acid-soluble Cd and a 25.16-30.36% increase in the residual Cd fraction. Sediment pH and oxidation-reduction potential were important factors affecting the bioavailability of Cd in the remediation process. Furthermore, scanning electron microscopy, X-ray diffractometer, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis illustrated that the interaction between the amendment and Cd mainly involved complexation with O-containing groups, ion-exchange as > OCd+, and precipitation with carbonate. The efficient remediation capacity and associated mechanism for Mn oxides provide insights for the improved restoration of heavy metal-contaminated sediment.
Collapse
Affiliation(s)
- Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mi Zhou
- College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Changqing Cai
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
43
|
Wang Z, Liu X, Liang X, Dai L, Li Z, Liu R, Zhao Y. Flooding-drainage regulate the availability and mobility process of Fe, Mn, Cd, and As at paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152898. [PMID: 35031365 DOI: 10.1016/j.scitotenv.2021.152898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Speciation changes in Fe and Mn during the soil flooding-drainage process strongly affect the Cd and As bioavailability in paddy soils. However, owing to a lack of in-situ dynamic monitoring technology, the regularity and mechanism of synergetic changes in Fe, Mn, Cd, and As in paddy soils have not been sufficiently studied. Diffusive gradients in thin films (DGT) were used to investigate the dissolution/transformation process of FeMn oxides and their effects on the bioavailability of Cd and As in three contaminated paddy fields that underwent incubated flooding for 40 d followed by a 20 d oxidation period. In-situ monitoring showed that the labile Cd concentrations decreased rapidly upon flooding but bioavailability of As increased significantly, with As and Cd concentrations largely depending upon Fe (II) content. We discovered that the transformation pathway of Iron Oxide-LDH (FeII-FeIII)-Goethite was the key process in reducing the activity of soil Cd. A higher Mn/Fe ratio and lower organic matter content delayed the Fe reduction process, which subsequently delayed Cd immobilization. Mobilization of Cd upon soil drainage was caused by a decrease in soil pH resulting in the release of Cd from secondary minerals.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lihong Dai
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Rongle Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
44
|
Zhang X, Li Y, Ye J, Chen Z, Ren D, Zhang S. The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118834. [PMID: 35031407 DOI: 10.1016/j.envpol.2022.118834] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 05/27/2023]
Abstract
The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85-5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA254) strongly correlated with SUVA260 (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK3 and logK4 values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Ya Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jun Ye
- Shiyan of Hubei Province Environmental Monitoring Center, Shiyan, Hubei, 442000, China.
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang, 453007, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
45
|
Yao Y, Yin L, He C, Li J, Ponprasit C, Zhang Y, Cheng X, He H, Yang S, Li S. Removal kinetics and mechanisms of tetrabromobisphenol A (TBBPA) by HA-n-FeS colloids in the absence and presence of oxygen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114885. [PMID: 35287078 DOI: 10.1016/j.jenvman.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The colloid of ferrous sulfide modified by humic acid (HA-n-FeS) shows good reduction and immobilization efficiency for variable-valence heavy metals in wastewater. The removal efficiency of HA-n-FeS for halogenated organic pollutants, however, remains unclear, especially in the absence and presence of oxygen. This study addressed this issue by exploring the effect and mechanism of dissolved oxygen on the degradation of tetrabromobisphenol A (TBBPA) by the HA-n-FeS colloid in water. The results showed that the removal efficiency of different concentrations of TBBPA (5,10, and 20 μm) by the HA-n-FeS colloid was 33.16%, 20.48%, and 22.37% in the absence of oxygen, respectively. When TBBPA reacted with the HA-n-FeS colloid, the concentration of Fe(II) and S(-II) remained stable. The adsorption of HA-n-FeS was the main mechanism of removing TBBPA in the absence of oxygen. In the presence of oxygen, the removal efficiency of TBBPA by the HA-n-FeS colloid was 82.37%, 56.80%, and 43.78% (for the above-mentioned TBBPA concentrations), respectively. In addition, the removal capacity of TBBPA by HA-n-FeS was 39.63, 52.21, and 89.75 mg/g, respectively. The concentration of Fe(II) and S(-II) decreased rapidly in time. Among them, the HA-n-FeS colloid removed part of the TBBPA through chemical adsorption. The main way of chemical adsorption was pore adsorption and functional group (olefin CC, phenolic hydroxyl group O-H, alcohol group C-O) combination. Besides, the HA-n-FeS colloid degraded part of the TBBPA into BPA through reduction, in which 17.72% of TBBPA was removed by the reduction of HA-n-FeS colloid. Fe(II) was the main contributor to the reductive degradation of TBBPA. Furthermore, active species (1O2 and •O2-) played a minor role in the removal of TBBPA by the HA-n-FeS colloids with oxygen, where 13% of TBBPA was removed by 1O2 and •O2-. Therefore, in practical applications, the aeration method can be used to significantly improve the removal efficiency of TBBPA by HA-n-FeS colloids in water.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Cheng He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200082, China.
| | - Jing Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Chaloemporn Ponprasit
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
46
|
Wen J, Li Z, Jin C, Chen J, Cai C. Fe oxides and fulvic acids together promoted the migration of Cd(II) to the root surface of Phragmites australis. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127998. [PMID: 34986567 DOI: 10.1016/j.jhazmat.2021.127998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) or iron/manganese (hydro)oxides were important factors in the migration of Cd in sediments of wetlands. DOM and Fe oxides simultaneously affect the longitudinal and transverse migration of Cd in wetlands sediments of plants was still unclear. In this study, a 14-day rhizobox experiment was conducted and the result showed that the rhizosphere effect of Cd migration was only limited to the upper layer of sediments (- 2 to - 4 cm). Fe with fulvic acid (FA) simultaneously existed can precipitate Cd(II) from supernatant to sediments downward. Fe oxides at sediment concentration could effectively prevent Cd(II) from migrating to root surface (0.21 vs 0.02 at%). While Fe oxides with FA together at sediment concentration could effectively promoted the migration of Cd(II) to root surface (0.07 vs 0.08 at%). The formation of organo-metallic complexes of Fe in the presence of FA profoundly proved this finding (increased by ~33.0%). And the polysaccharides and aromatics in organic matter were the chief functional groups participating in the incorporation of Cd and Fe oxides. The findings reveal the migration rules of Cd(II) in sediments by FA and Fe oxides and give an insight into the mechanisms of Cd(II) migration to the root surface around wetland plants.
Collapse
Affiliation(s)
- Jiajun Wen
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Changsheng Jin
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Changqing Cai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
47
|
Zhang J, Wang K, Yi Q, Zhang T, Shi W, Zhou X. Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118668. [PMID: 34896398 DOI: 10.1016/j.envpol.2021.118668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 μm), colloids (1 nm-0.7 μm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kp) showed differences among metal species, with higher values for Pb (354.3-649.0 L/g) and Cr (54.2-223.7 L/g) and lower values for Zn (2.5-25.2 L/g) and Cd (17.3-21.0 L/g). Metal concentrations in sediments increased by factors of 1.2-3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.
Collapse
Affiliation(s)
- Jin Zhang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Kun Wang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai, 264005, China.
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
48
|
Khan MFS, Akbar M, Wu J, Xu Z. A review on fluorescence spectroscopic analysis of water and wastewater. Methods Appl Fluoresc 2021; 10. [PMID: 34823232 DOI: 10.1088/2050-6120/ac3d79] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
In recent years, the application of fluorescence spectroscopy has been widely recognized in water environment studies. The sensitiveness, simplicity, and efficiency of fluorescence spectroscopy are proved to be a promising tool for effective monitoring of water and wastewater. The fluorescence excitation-emission matrix (EEMs) and synchronous fluorescence spectra have been widely used analysis techniques of fluorescence measurement. The presence of organic matter in water and wastewater defines the degree and type of pollution in water. The application of fluorescence spectroscopy to characterize dissolved organic matter (DOM) has made the water quality assessment simple and easy. With the recent advances in this technology, components of DOM are identified by employing parallel factor analysis (PARAFAC), a mathematical trilinear data modeling with EEMs. The majority of wastewater studies indicated that the fluorescence peak of EX/EM at 275 nm/340 nm is referred to tryptophan region (Peak T1). However, some researchers identified another fluorescence peak in the region of EX/EM at 225-237 nm/340-381 nm, which described the tryptophan region and labeled it as Peak T2. Generally, peak T is a protein-like component in the water sample, where T1 and T2 signals were derived from the <0.20μm fraction of pollution. Therefore, a more advanced approach, such as an online fluorescence spectrofluorometer, can be used for the online monitoring of water. The results of various waters studied by fluorescence spectroscopy indicate that changes in peak T intensity could be used for real-time wastewater quality assessment and process control of wastewater treatment works. Finally, due to its effective use in water quality assessment, the fluorescence technique is proved to be a surrogate online monitoring tool and early warning equipment.
Collapse
Affiliation(s)
- Muhammad Farooq Saleem Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Mona Akbar
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Zhou Xu
- International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Gao L, Li R, Liang Z, Hou L, Chen J. Seasonal variations of cadmium (Cd) speciation and mobility in sediments from the Xizhi River basin, South China, based on passive sampling techniques and a thermodynamic chemical equilibrium model. WATER RESEARCH 2021; 207:117751. [PMID: 34731658 DOI: 10.1016/j.watres.2021.117751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Understanding the speciation and mobilization mechanisms of potentially toxic metals in sediments is critical to aquatic ecosystem health and contamination remediation in urban rivers. In this study, chemical sequential extraction, a thermodynamic chemical equilibrium model (Visual MINTEQ ver. 3.1), diffusive gradient in thin films (DGT), and high-resolution dialysis (HR-Peeper) techniques were integrated to identify seasonal variations in cadmium (Cd) mobility in sulfidized sediments. Acid-soluble Cd was the dominant geochemical fraction in sediments, followed by residual, oxidizable, and reducible Cd. The DGT-labile Cd concentration was associated with various geochemical processes and was independent of the total concentration and geochemical fractionation of Cd in sediments. Sulfate reduction facilitated the formation of insoluble CdS and induced low Cd concentrations in sediment porewater. Sulfide oxidation was principally responsible for lowered porewater pH and elevated Cd concentrations in summer. Strongly acidic conditions promoted release of sediment Cd but might reduce the binding efficiency of Chelex resin gel for dissolved Cd, leading to underestimation of the mobility of sediment Cd. Sediments generally functioned as a sink for Cd in winter and shifted to acting as a source in summer, releasing Cd into the overlying water mainly as Cd-S complexes with high potential to migrate downstream.
Collapse
Affiliation(s)
- Lei Gao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Rui Li
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Hou
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Yang H, Wang Z, Wang J, Lv B, Wu Z, Tian J, Yang J. Cadmium-induced oxidative stress and transcriptome changes in the wolf spider Pirata subpiraticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147364. [PMID: 33957595 DOI: 10.1016/j.scitotenv.2021.147364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Spiders are believed to have enormous potential for indicating heavy metal pollution in ecosystems. The diversity of influencing factors caused significant differences in the toxicities of cadmium (Cd) on spiders. There is limited understanding of the underlying mechanism and response to acute Cd exposure at different concentrations and different poisoning times. We exposed adult female P. subpiraticus to 0.2 mM and 2 mM Cd for 6 and 12 h, respectively, to explore acute Cd toxicities by RNA-seq. We measured the bioaccumulation levels in P. subpiraticus and tested the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST). There were 187, 292, 101 and 155 differentially expressed genes (DEGs) after exposure to 0.2 mM and 2 mM Cd for 6 and 12 h, respectively. The results revealed that Cd accumulated in P. subpiraticus, changed the SOD and GST activities, and caused significant adverse effects at the molecular level on metabolism and immune and oxidative stress, with time- and concentration-dependent differences. Transcriptome analysis showed that acute Cd exposure depressed lipid metabolism and induced protein metabolism, especially serine metabolism. Genes encoding lipoproteins were depressed when exposed to 0.2 mM Cd, while fatty acid-related genes were downregulated under 2 mM Cd stress. In total, 46 cuticle-related genes were upregulated, and 6 cytoskeleton-related genes changed notably in the immune process. Peroxidase-related genes were further upregulated significantly. Meanwhile, the pathways related to metabolism, immunity and oxidative stress were significantly enriched. This report illustrated that acute Cd exposure exerts toxicities on P. subpiraticus and the spiders against acute Cd toxicities by selective differential expression of the genes associated with the physiological process of metabolism and immune and antioxidant stress. This study provides a comprehensive transcriptional basis for understanding the response of the P. sublimations to heavy metals at different concentrations and different treatment times.
Collapse
Affiliation(s)
- Huilin Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, Hunan, China.
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Bo Lv
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, Hunan, China
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jing Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, Hunan, China
| |
Collapse
|