1
|
Dan Q, Li X, Zhang F, Du R, Li J, Wang T, Zhang Q, Peng Y. Saturated dissolved oxygen-driven high-rate and ultrastable partial nitrification in municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131470. [PMID: 39260729 DOI: 10.1016/j.biortech.2024.131470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Achieving stable and high-rate partial nitrification (PN) remains a worldwide technical conundrum in low-strength mainstream conditions. This study successfully achieved ultrarapid mainstream PN within 8 days under a saturated dissolved oxygen (DO) supply strategy, reaching a record-breaking PN rate of over 1.0 kg N m-3 d-1 treating municipal wastewater. Stable PN was maintained for over 200 days with an ultrahigh nitrite accumulation ratio of 98.5 ± 0.9 %, resilient to seasonal fluctuations in temperature (16.0-25.6 °C) and load (NH4+-N, 40-80 mg N/L). Kinetics revealed a remarkable 159.1-fold increase in the maximum activity ratio of ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB). The faster response of AOB to saturated DO stimulated its highest activity difference with NOB, contributing to the AOB (Nitrosomonas oligotropha) boom and the elimination of NOB groups (-99.9 %). Our results highlight the importance of promoting AOB rather than solely focusing on NOB suppression for initiating and stabilizing high-rate mainstream PN.
Collapse
Affiliation(s)
- Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Hou Z, Dong W, Wang H, Zhao Z, Li Y, Liu H, Shi K, Liang Q, Peng Y. Rapid start-up of mainstream partial denitrification /anammox and enhanced nitrogen removal through inoculation of precultured biofilm for treating low-strength municipal sewage. BIORESOURCE TECHNOLOGY 2024; 411:131320. [PMID: 39173960 DOI: 10.1016/j.biortech.2024.131320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study investigated the rapid start-up of mainstream partial denitrification coupled with anammox (PD/A) and nitrogen removal performance by inoculating precultured PD/A biofilm. The results showed mainstream PD/A in the anaerobic-anoxic-aerobic (A2O) process was rapidly established within 30 days. Nitrogen removal efficiency (NRE) improved by 23.8 % contrasted to the traditional A2O process. The mass balance showed that anammox contribution to total nitrogen (TN) removal were maintained at 37.9 %∼55.7 %, and reducing hydraulic retention time (HRT) strengthened simultaneously denitrification and anammox activity. The microbial community showed that the dominant bacteria such as denitrifying bacteria (DNBs) and glycogen accumulating organisms (GAOs) both in biofilm and flocculent sludge (floc), integrating with anammox bacteria (AnAOB) in biofilm might lead to enhanced nitrogen removal. Overall, this study offered a fast start-up strategy of mainstream PD/A with enhanced nitrogen removal, which are valuable for upgradation and renovation of existed municipal wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaiyuan Shi
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiyuan Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Zhang B, Zhang N, Sui H, Xue R, Qiao S. Unique ecology of biofilms and flocs: Bacterial composition, assembly, interaction, and nitrogen metabolism within deteriorated bioreactor inoculated with mature partial nitrification-anammox sludge. BIORESOURCE TECHNOLOGY 2024; 414:131643. [PMID: 39414169 DOI: 10.1016/j.biortech.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This work unraveled discrepant ecological patterns between biofilms and flocs in a deteriorated bioreactor inoculated with mature partial nitrification-anammox (PN/A) sludge. Based on 16S rRNA analysis, a comprehensive evaluation of neutral and null models, along with niche width, delineated that the bacterial community assembly in biofilms and flocs was dominantly driven by the stochastic process, and dispersal limitation critically shaped the community assembly. Co-occurrence network analysis revealed that environmental stress caused decentralized and fragmented bacterial colonies, and anammox bacteria were mainly peripheral in biofilms network and less involved in interspecific interactions. Simultaneous PN/A and partial denitrification-anammox (PD/A) processes were identified, whereas PN and PD process primarily occurred in the biofilms and flocs, respectively, as evidenced by metagenomics. Collectively, these outcomes are expected to deepen the basic understanding of complex microbial community and nitrogen metabolism under environmental disturbance, thereby better characterizing and serving the artificial ecosystems.
Collapse
Affiliation(s)
- Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Nianbo Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiying Sui
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Wang P, Lu B, Chai X. Novel insights into self-defense function of anammox sludge under magnesium ions (Mg 2+) stress based on Mg 2+ transport system. BIORESOURCE TECHNOLOGY 2024; 414:131615. [PMID: 39395603 DOI: 10.1016/j.biortech.2024.131615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Magnesium ion (Mg2+) plays an important role in the accumulation and stability of anaerobic ammonium-oxidizing bacteria (AnAOB). In this study, the response of anammox sludge to Mg2+ was comprehensively investigated by performance evaluation and metagenomics analysis. Appropriate Mg2+ (0.8 mmol/L) could improve the nitrogen removal performance, AnAOB activity, and the synthesis potential of some hydrophobic substances, while high Mg2+ (>1.6 mmol/L) has a negative effect. Meanwhile, Mg2+ transmembrane transport theory was introduced to reveal the response principle of AnAOB to Mg2+ from a novel insight. AnAOB may have a self-defense function based on the PhoQ/PhoP-MgtAB system. Low extracellular Mg2+ will activate this function to enhance Mg2+ influx, thereby improving the intracellular metabolism of AnAOB. Excessive Mg2+, however, dormant this function and induces Mg2+ efflux, which may decrease the intracellular Mg2+ and thus affect AnAOB metabolism. These findings provide valuable references for the Mg2+ regulation of anammox-based process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Tang M, Du R, Han X, Peng Y. Enhancing collaboration of anammox with heterotrophic microbes mediated selectively by iron of different valences: Activities balance, metabolic mechanism, and functional genes regulation. CHEMOSPHERE 2024; 364:143226. [PMID: 39218260 DOI: 10.1016/j.chemosphere.2024.143226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The partial denitrification/anammox (PD/A) process is receiving increasing attention due to its cost-effectiveness advantages. However, effective strategies to alleviate organic matter inhibition and promote anammox activity have been proven to be a big challenge. This study investigated the effects of three types of iron (nano zero-valent iron (nZVI), Fe(II), and Fe(III)) on the PD/A process. It is worth noting that nZVI of 5-50 mg/L and Fe(III) of 5-120 mg/L promoted both PD and anammox activity. Long-term intermittent addition of nZVI (50 mg/L) resulted in a nitrogen removal efficiency of 98.2% in the mixotrophic PD/A system driven by iron and organic matter. The contribution of anammox for nitrogen removal reached as high as 93.8%. The organic carbon demand decreased due to the external electron donor provided by nZVI for PD. Multiple Fe-N metabolic pathways, primarily involving ammonia oxidation by Fe(III) and nitrate reduction by nZVI, play a crucial role in facilitating nitrogen transformation. Conversely, the direct addition of 30-120 mg/L Fe (II) resulted in a significant decrease in pH to below 5.0 and severe inhibition of PD and anammox activity. Following prolonged operation in the presence of nZVI, it was demonstrated that there is an enhancing effect on robust nitrite production for anammox. This was accompanied by a remarkable up-regulation of genes encoding nitrate reductase and iron-transporting proteins dominated by Thauera. Overall, this study has provided an efficient approach for advanced nitrogen removal through organic- and iron-driven anammox processes.
Collapse
Affiliation(s)
- Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Li J, Chen Y, Qi J, Zuo X, Meng F. Characterization of EPS subfractions from a mixed culture predominated by partial-denitrification functional bacteria. WATER RESEARCH X 2024; 24:100250. [PMID: 39281024 PMCID: PMC11402163 DOI: 10.1016/j.wroa.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Extracellular polymeric substances (EPS) play a crucial role in the aggregation of partial denitrification (PD) consortia, as EPS is closely linked to bioreactor performance. However, the structural and compositional properties of EPS from PD consortia have not yet been investigated. In this study, photometric measurements indicated that PD consortia contained significantly more EPS (168.81 ± 2.10 mg/g VSS) compared to conventional activated sludge (79.79 mg/g VSS). The EPS of PD consortia exhibited a significant predominance of proteins over polysaccharides, with a protein/polysaccharide ratio of 1.43 ± 0.10. FTIR analysis revealed that the EPS of PD consortia contained fewer hydrophilic functional groups, particularly carboxyl and carbonyl groups, indicating a high aggregation potential. The content comparison of EPS and functional groups across three stratified EPS subfractions from PD consortia consistently followed the sequence: TB-EPS > LB-EPS > S-EPS. XPS results corroborated the FTIR findings and the protein/polysaccharide ratio determined by photometric measurements, all of which suggested that the EPS of PD consortia exhibited a higher abundance of hydrophobic functional groups. However, the higher α-helix/(β-sheet + random coil) ratio (0.99) suggested that the proteins in PD consortia had a compact structure, making inner hydrophobic groups difficult to expose. This compact protein structure could limit aggregation among bacterial cells, indicating the need for process optimization to enhance sludge aggregation in PD-related processes. Overall, understanding the aggregation characteristics of PD consortia could improve the application of PD-based processes.
Collapse
Affiliation(s)
- Jiapeng Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaotian Zuo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
7
|
Han X, Liu J, Zhu Z, Lin Y, Peng Y. Strengthening the enrichment of anaerobic ammonia oxidizing bacteria in biofilms through sludge concentration control. ENVIRONMENTAL RESEARCH 2024; 262:119784. [PMID: 39142456 DOI: 10.1016/j.envres.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
8
|
Qian F, Liu Y, He L, Dong Z, Chen M, Liu W. Metagenomic insights into microbial metabolic mechanisms of a combined solid-phase denitrification and anammox process for nitrogen removal in mainstream wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121797. [PMID: 38996605 DOI: 10.1016/j.jenvman.2024.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
To overcome the significant challenges associated with nitrite supply and nitrate residues in mainstream anaerobic ammonium oxidation (anammox)-based processes, this study developed a combined solid-phase denitrification (SPD) and anammox process for low-strength nitrogen removal without the addition of nitrite. The SPD step was performed in a packed-bed reactor containing poly-3-hydroxybutyrate-co-3-hyroxyvelate (PHBV) prior to employing the anammox granular sludge reactor in the continuous-flow mode. The removal efficiency of total inorganic nitrogen reached 95.7 ± 1.2% under a nitrogen loading rate of 0.18 ± 0.01 kg N·m3·d-1, and it required 1.02 mol of nitrate to remove 1 mol of ammonium nitrogen. The PHBV particles not only served as biofilm carriers for the symbiosis of hydrolytic bacteria (HB) and denitrifying bacteria (DB), but also carbon sources that facilitated the coupling of partial denitrification and anammox in the granules. Metagenomic sequencing analysis indicated that Burkholderiales was the most abundant HB genus in SPD. The metabolic correlations between DB (Betaproteobacteria, Rhodocyclaceae, and Anaerolineae) and anammox bacteria (Candidatus Brocadiac and Kuenenia) in the granules were confirmed through microbial co-occurrence networks analysis and functional gene annotations. Additionally, the genes encoding nitrate reductase (Nap) and nitrite reductase (Nir) in DB primarily facilitated nitrate reduction, thereby supplying nitric oxide to anammox bacteria for subsequent nitrogen removal with hydrazine synthase (Hzs) and hydrazine dehydrogenase (Hdh). The findings provide insights into microbial metabolism within combined SPD and anammox processes, thus advancing the development of mainstream anammox-based processes in engineering applications.
Collapse
Affiliation(s)
- Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China; School of Environment and Safety Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China.
| | - Yaru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Lingli He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Zangyuan Dong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Maolin Chen
- Suzhou N&P Environmental Technology, Co., LTD, No. 6 Taishan Road, Suzhou, 215129, People's Republic of China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| |
Collapse
|
9
|
Hao Q, Lyu X, Qin D, Du N, Wu S, Bai S, Chen Z, Wang P, Zhao X. Synergistic mechanisms of denitrification in FeS 2-based constructed wetlands: Effects of organic carbon availability under day-night alterations. BIORESOURCE TECHNOLOGY 2024; 406:131066. [PMID: 38969240 DOI: 10.1016/j.biortech.2024.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.
Collapse
Affiliation(s)
- Qirui Hao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Lyu
- Beijing Aquatic Technology Extension Station, Beijing 100021, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ningning Du
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shuyan Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Dan Q, Wang T, Li J, Zhang Q, Peng Y. Enhanced anammox performance under lower nitrite accumulation in modified partial nitritation-anammox (PN/A) process. BIORESOURCE TECHNOLOGY 2024; 406:131018. [PMID: 38908763 DOI: 10.1016/j.biortech.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Higher nitrite accumulation, which is challenging to achieve reliably, is always sought to obtain better nitrogen removal performance in traditional partial nitritation-anammox (PN/A) process. This study developed a modified PN/A process by introducing nitrite-oxidizing bacteria and endogenous metabolism. Advanced nitrogen removal performance of 95.5 % was achieved at a low C/N ratio of 2.7 under nitrite accumulation ratio (NAR) fluctuations. Higher nitrate accumulation at lower NAR (70 ∼ 40 %) resulted in superior anammox contribution (60 ∼ 75 %) and nitrogen removal performance (93 ∼ 98 %). This was attributed to the higher nitrogen removal efficiency of the post-anoxic endogenous partial denitrification coupling anammox process, although the PN/A process occurring first possessed a faster anammox rate of 2.0 mg NH4+-N /(g VSS⋅h). The introduction of nitrate allowed more nitrite flow to anammox, promoting a high enrichment of anammox bacteria (Ca. Brocadia, 0.3 % to 2.8 %). This study provides new insights into the practical application of the PN/A process.
Collapse
Affiliation(s)
- Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Li Y, Dong W, Hou Z, Zhao Z, Xie J, Wang H, Huang X, Peng Y. Intermittent hydroxylamine dosing to strengthen stability of partial nitrification and nitrogen removal efficiency through continuous-flow anaerobic-aerobic-anoxic reactor treating municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 406:130947. [PMID: 38897548 DOI: 10.1016/j.biortech.2024.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.
Collapse
Affiliation(s)
- Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Xiao Huang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Li Y, Chai Z, Song C, Chen J, Gu A, Mu G, Ge R, Zheng M. The superiority of hydrophilic polyurethane in comammox-dominant ammonia oxidation during low-strength wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173017. [PMID: 38719054 DOI: 10.1016/j.scitotenv.2024.173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Carriers have been extensively employed to enhance nitrification performance during low-strength wastewater treatment by retaining slow-growing ammonia oxidizing microorganisms (AOMs). Still, there is a dearth of systematic understanding of biofilm properties and microbial community structure formed on different carriers. In this study, hydrophilic polyurethane foam (PUF) carriers were prepared and compared with five widely used commercial carriers, namely Kaldness 3, Biochip, activated carbon, volcanic rock, and zeolite. The results indicated that the biofilms formed on carriers enhanced microbial ammonia oxidation activity. Additionally, the biofilm developed on the PUF demonstrated the most superior performance among all selected carriers, not only exhibiting the highest abundant and the most active AOMs, with amoA gene abundance of 1.41 × 1013 copies/m3 and specific ammonia oxidation rate of 9.84 g NH4+-N/(m3 × h), but also possessing a compact structure, with 3.41 kg VSS/m3 and 46.83 mg extracellular polymeric substances/g VSS. The high-throughput sequencing analysis revealed that the comammox (CMX) Nitrospira dominated on biofilm due to the intrinsically low apparent half-saturation constant for substrate. A unique ecological community structure was established on PUF, characterized by low species diversity and high homogeneity in alignment with community characteristics of CMX. The biofilms on PUF contributed to the proliferation of CMX Nitrospira dominated by Nitrospira nitrosa, achieving the highest proportion among colonial three AOMs at 86.58 %. The appropriate average pore size, superior hydrophilicity, and large specific surface area of PUF carriers provided a robust foundation for the exceptional ammonia oxidation performance of the formed biofilms.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chao Song
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jin Chen
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ailu Gu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Guangli Mu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ruxin Ge
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
13
|
Wen X, Cui L, Lin H, Zhu W, Shao Z, Wang Y. Comparison of nitrification performance in SBR and SBBR with response to NaCl salinity shock: Microbial structure and functional genes. ENVIRONMENTAL RESEARCH 2024; 252:118917. [PMID: 38636642 DOI: 10.1016/j.envres.2024.118917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Ammonia removal by nitrifiers at the extremely high salinity poses a great challenge for saline wastewater treatment. Sequencing batch reactor (SBR) was conducted with a stepwise increase of salinity from 10 to 40 g-NaCl·L-1, while sequencing batch biofilm reactor (SBBR) with one-step salinity enhancement, their nitrification performance, microbial structure and interaction were evaluated. Both SBR and SBBR can achieve high-efficiency nitrification (98% ammonia removal) at 40 g-NaCl·L-1. However, SBBR showed more stable nitrification performance than SBR at 40 g-NaCl·L-1 after a shorter adaptation period of 4-15 d compared to previous studies. High-throughput sequencing and metagenomic analysis demonstrated that the abundance and capability of conventional ammonia-oxidizing bacteria (Nitrosomonas) were suppressed in SBBR relative to SBR. Gelidibacter, Anaerolineales were the predominant genus in SBBR, which were not found in SBR. NorB and nosZ responsible for reducing NO to N2O and reducing N2O to N2 respectively had s strong synergistic effect in SBBR. This study will provide a valuable reference for the startup of nitrification process within a short period of time under the extremely high NaCl salinity.
Collapse
Affiliation(s)
- Xuezhe Wen
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, Fujian, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Liang Cui
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Huali Lin
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, Fujian, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Wenqiang Zhu
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, Fujian, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Zongze Shao
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, Fujian, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Yong Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Chen Y, Zhang C, Chen Z, Yang Y, Lin Z, Deng Z, Wang X. Fe(II)-driven spatiotemporal assembly of heterotrophic and anammox bacteria enhances simultaneous nitrogen and phosphorus removal for low-strength municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 401:130713. [PMID: 38641305 DOI: 10.1016/j.biortech.2024.130713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.
Collapse
Affiliation(s)
- Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Chuchu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiman Lin
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zexi Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| |
Collapse
|
15
|
Wang L, Zhao Q, Zhang L, Wu D, Zhou J, Peng Y. S 0-driven partial denitrification coupled with anammox (S 0PDA) enables highly efficient autotrophic nitrogen removal from wastewater. WATER RESEARCH 2024; 255:121418. [PMID: 38492314 DOI: 10.1016/j.watres.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This study proposed a novel strategy that integrates S0 particles (diameter: 2-3 mm) and granular sludge to establish S0-driven partial denitrification coupled with anammox (S0PDA) process for autotrophic nitrogen removal from NH4+- and NO3--containing wastewaters. This process was evaluated using an up-flow anoxic sludge bed bioreactor, operating continuously for 240 days. The influent concentrations of NH4+ and NO3- were 29.9 ± 2.7 and 50.2 ± 2.7 mg-N/L, respectively. Throughout the operation, the hydraulic retention time was shortened from 4.0 h to 2.0 h, while the effluent concentrations of NH4+ and NO3- were maintained at a desirable level of 1.45-1.51 mg-N/L and 4.46-6.52 mg-N/L, respectively. Despite an autotrophic process, the nitrogen removal efficiency and rate reached up to 88.5 ± 2.0 % and 1.75 ± 0.07 kg-N/(m3·d), respectively, indicating the remarkable robustness of the S0PDA process. Autotrophic anammox and sulfur-oxidizing bacteria (Candidatus Brocadia and Thiobacillus) were the predominant bacterial genera involved in the S0PDA process. Candidatus Brocadia was primarily enriched in the granular sludge, with a relative abundance of 6.70 %. Thiobacillus occupied a unique niche on the S0 particles, with a relative abundance as high as 57.6 %, of which Thiobacillus thioparus with partial denitrification function (reducing NO3- to NO2- without further reduction to N2) accounted for 78.0 %. These findings challenge the stereotype of low efficiency in autotrophic nitrogen removal from wastewater, shedding fresh light on the applications of autotrophic processes.
Collapse
Affiliation(s)
- Luyao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Di Wu
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Jiazhong Zhou
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
16
|
Yang S, Peng Y, Hou F, Pang H, Jiang L, Sun S, Li J, Zhang L. Rapid establishment of municipal sewage partial denitrification-anammox for nitrogen removal through inoculation with side-stream anammox biofilm without domestication. BIORESOURCE TECHNOLOGY 2024; 400:130679. [PMID: 38588781 DOI: 10.1016/j.biortech.2024.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by ∼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Feng Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Hongtao Pang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Leyong Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Gu C, Li X, Zhang S, Li J, Gao X, Chen G, Wang Z, Peng Y. Advanced nitrogen and phosphorus removal in pilot-scale anaerobic/aerobic/anoxic system for municipal wastewater in Northern China. BIORESOURCE TECHNOLOGY 2024; 399:130616. [PMID: 38513924 DOI: 10.1016/j.biortech.2024.130616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Removing nitrogen and phosphorus from low ratio of chemical oxygen demand to total nitrogen and temperature municipal wastewater stays a challenge. In this study, a pilot-scale anaerobic/aerobic/anoxic sequencing batch reactor (A/O/A-SBR) system first treated 15 m3/d actual municipal wastewater at 8.1-26.4 °C for 224 days. At the temperature of 15.7 °C, total nitrogen in influent and effluent were 45.5 and 10.9 mg/L, and phosphorus in influent and effluent were 3.9 and 0.1 mg/L. 16 s RNA sequencing results showed the relative abundance of Competibacter and Tetrasphaera raised to 1.25 % and 1.52 %. The strategy of excessive, no and normal sludge discharge enriched and balanced the functional bacteria, achieving an endogenous denitrification ratio more than 43.3 %. Sludge reduction and short aerobic time were beneficial to energy saving contrast with a Beijing municipal wastewater treatment. This study has significant implications for the practical application of the AOA-SBR process.
Collapse
Affiliation(s)
- Changkun Gu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Jianwei Li
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Xiaoyu Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Guo Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhibin Wang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Su X, Li J, Peng Y, Yuan Y, Wu L, Peng Y. An overlooked effect of hydroxylamine on anammox granular sludge: Promoting granulation and boosting activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171176. [PMID: 38395175 DOI: 10.1016/j.scitotenv.2024.171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The exogenous hydroxylamine dosing has been proven to enhance nitrite supply for anammox bacteria. In this study, exogenous hydroxylamine was fed into a sequencing batch reactor to investigate its long-term effect on anammox granular sludge. The results showed that hydroxylamine enhanced the reactor's performance with an increase in total nitrogen removal rate from 0.23 to 0.52 kg N/m3/d and an increase in bacterial activity from 11.65 to 78.24 mg N/g VSS/h. Meanwhile, hydroxylamine promoted granulation by eluting flocs. And higher anammox activity and granulation were supported by extracellular polymeric substances (EPS) characteristics. Moreover, Candidatus Brocadia's abundance increased from 1.10 % to 3.03 %, and its symbiosis with heterotrophic bacteria was intensified. Additionally, molecular docking detailed the mechanism of the hydroxylamine effect. Overall, this study would provide new insights into the hydroxylamine dosing strategy application.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environmental Investment Co., Ltd., Beijing 101101, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Han B, Xing W, Hu Z, Tian Q, Zhang J, Han X, Mei N, Zhao X, Yao H. Microbial community evolution and individual-based model validation of biofilms in single-stage partial nitrification/anammox system. BIORESOURCE TECHNOLOGY 2024; 397:130463. [PMID: 38373502 DOI: 10.1016/j.biortech.2024.130463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
In this study, matrix degradation, microbial community development, and distribution using an individual-based model during biofilm formation on carriers at varying depths within a single-stage partial nitrification/anammox system were simulated. The findings from the application of individual-based model fitting, fluorescence in situ hybridization, and high-throughput sequencing reveal the presence of aerobic bacteria, specifically ammonia-oxidizing bacteria, as discrete particles within the outer layer of the carrier. Facultative anaerobic bacteria exemplified by anaerobic ammonia-oxidizing bacteria, are observed as aggregates within the middle layer. Conversely, anaerobic bacteria, represented by denitrifiers, are enveloped by extracellular polymeric substances within the inner layer. The present study extends the application of individual-based model to the formation of polyurethane-supported biofilms and presents valuable avenues for the design and advancement of pragmatic engineering carriers.
Collapse
Affiliation(s)
- Baohong Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Wei Xing
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Zhifeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Qianqian Tian
- The High School Affiliated to Beijing JiaoTong University, Beijing 100080, China
| | - Jingjing Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Xiangyu Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Ning Mei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Xingcheng Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, Beijing 100080, China.
| |
Collapse
|
20
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
21
|
Tian G, Kong Z, Zhang Y, Qiu L, Wang H, Yan Q. Simultaneous ammonia and nitrate removal by novel integrated partial denitrification-anaerobic ammonium oxidation-bioelectrochemical system. BIORESOURCE TECHNOLOGY 2024; 396:130428. [PMID: 38341044 DOI: 10.1016/j.biortech.2024.130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The current study explored the performance of an integrated partial denitrification-anaerobic ammonium oxidation (anammox)-bioelectrochemical system on simultaneous removal of ammonia nitrogen and nitrate nitrogen. Different operational conditions were selected to optimize critical parameters of the process for improving nitrogen removal. The results indicated that more than 90 % of total inorganic nitrogen removal efficiency was achieved under the optimal conditions: ammonia nitrogen/nitrate nitrogen ratio of 1:2, external resistance of 200 Ω and inoculation volume ratio of anammox bacteria/denitrifying at 2:1. Improved nitrogen removal under the optimal conditions were confirmed by microbial community changes (Candidatus Brocadia and Thiobacillus) and enhanced of nitrogen metabolism-related genes (hao, hzsA/C and hdh). Increases of Limnobacter indicated an enhanced electron transfer efficiency. Overall, high-efficiency and stable nitrogen removal efficiency without nitrite nitrogen accumulation could be achieved by the integrated system under the optimal conditions, providing novel insights for simultaneous treatment of domestic wastewater and groundwater.
Collapse
Affiliation(s)
- Gengxu Tian
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China
| |
Collapse
|
22
|
Ji J, Zhao Y, Bai Z, Qin J, Yang H, Hu F, Peng Z, Jin B, Yang X. Robustness of the synergistic partial-denitrification, anammox, and fermentation process for treating domestic and nitrate wastewaters under fluctuating C/N ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120547. [PMID: 38452621 DOI: 10.1016/j.jenvman.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The synergistic partial-denitrification, anammox, and fermentation (SPDAF) process presents a promising solution to treat domestic and nitrate wastewaters. However, its capability to handle fluctuating C/N ratios (the ratios of COD to total inorganic nitrogen) in practical applications remains uncertain. In this study, the SPDAF process was operated for 236 days with C/N ratios of 0.7-3.5, and a high and stable efficiency of nitrogen removal (84.9 ± 7.8%) was achieved. The denitrification and anammox contributions were 6.1 ± 7.1% and 93.9 ± 7.1%, respectively. Batch tests highlighted the pivotal role of in situ fermentation at low biodegradable chemical oxygen demand (BCOD)/NO3- ratios. As the BCOD/NO3- ratios increased from 0 to 6, the NH4+ and NO3- removal rates increased, while the anammox contribution decreased from 100% to 80.1% but remained the primary pathway of nitrogen removal. The cooperation and balanced growth of denitrifying bacteria, anammox bacteria, and fermentation bacteria contributed to the system's robustness under fluctuating C/N ratios.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Qin
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaoxu Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaoxuan Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
23
|
Li M, Duan L, Li S, Wang D, Gao Q, Yu H, Zhang J, Jia Y. Differences in greenhouse gas emissions and microbial communities between underground and conventionally constructed wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 396:130421. [PMID: 38320713 DOI: 10.1016/j.biortech.2024.130421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dawei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
24
|
Xiong L, Li X, Li J, Zhang Q, Zhang L, Wu Y, Peng Y. Efficient nitrogen removal from real municipal wastewater and mature landfill leachate using partial nitrification-simultaneous anammox and partial denitrification process. WATER RESEARCH 2024; 251:121088. [PMID: 38198976 DOI: 10.1016/j.watres.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Anaerobic ammonia oxidation (anammox) of municipal wastewater is a research focus, especially the combined treatment with mature landfill leachate is a current research hotspot. In this study, municipal wastewater was treated by partial nitrification via sequencing batch reactor (SBR), and its effluent and mature landfill leachate were then mixed into an up-flow anaerobic sludge blanket (UASB) for simultaneous anammox and partial denitrification reaction. Through partial nitrification, a high nitrite accumulation rate (93.0 ± 3.8 %) was achieved by low dissolved oxygen (0.5-1.6 mg/L) and controlled aerobic time (3.5 h) in SBR. The UASB system was responsible for 78.8 ± 2.1 % nitrogen removal of the entire system with a hydraulic reaction time (HRT) of 3.8 h, accompanied by the anammox contribution up to 89.4 ± 6.0 %. The overall partial nitrification-simultaneous anammox and partial denitrification (PN-SAPD) system was controlled at a total COD/TIN of 2.8 ± 0.3 and a total HRT of only 10.2 h, achieving the nitrogen removal efficiency and effluent TIN were 95.2 ± 2.2 % and 3.4 ± 1.5 mg/L, respectively. The qPCR results showed functional genes (hzsA(B), hdh) associated with anaerobic ammonia-oxidizing bacteria (AnAOB), whose high gene copy abundance and transcription expression ensured the removal of major nitrogen from municipal wastewater and mature landfill leachate. 16S amplicon sequencing showed that the Ca. Brocadia (9.72-12.6 %) was further enrichment after sodium acetate was added, and the transcription expression of Thauera (0.5-7.0 %) caused nitrate to nitrite. The high abundance of related enzymes (hao, hzs, hdh, narGHI) involved in anammox and partial denitrification processes were found in the macrogenomic sequencing, and only Ca. Brocadia was involved in multi-pathway nitrogen metabolism in AnAOB. Based on the efficient nitrogen removal by AnAOB and denitrifying bacteria, this modified PN-SAPD process provides a new option for the co-treatment of mature landfill leachate in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Lulu Xiong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
25
|
Li W, Li X, Zhang Q, Kao C, Hou X, Peng Y. Recent advances of partial anammox by controlling nitrite supply in mainstream wastewater treatment through step-feed mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168965. [PMID: 38030009 DOI: 10.1016/j.scitotenv.2023.168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
At present, the step-feed process is a very active branch in practical application of mainstream wastewater treatment, and the anammox technology empowers the sustainable development and in-depth research of step-feed process. This review provides a systematically inspection of the realization and application of partial anammox process through step-feed mode, with a particular focus on controlling nitrite supply for anammox. The characteristics and advantages of step-feed mode in traditional management are reviewed. The unique organics utilization strategy by step-feed and indispensable intermittent aeration mode creates advantages for achieving nitritation (NH4+ → NO2-) and denitratation (NO3- → NO2-), providing flexible combination possibility with anammox. Additionally, the lab- or pilot-scale control strategies with different forms of anammox, including nitritation/anammox, denitratation/anammox, and double-anammox (combined nitritation/anammox and denitratation/anammox), are summarized. Finally, future directions and application perspectives on leveraging the relationship between flocs and biofilm, nitritation and denitratation, and different strains to maximize the anammox proportion in N-removal are proposed.
Collapse
Affiliation(s)
- Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
26
|
Gong Q, Zeng W, Ma B, Hao X, Zhan M, Peng Y. Ultra-stable mixotrophic denitrification coupled with anammox under organic stress for mainstream municipal wastewater treatment. WATER RESEARCH 2024; 249:120932. [PMID: 38043349 DOI: 10.1016/j.watres.2023.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Sulfur-based autotrophic denitrification (SAD) coupled with anammox is a promising process for autotrophic nitrogen removal in view of the stable nitrite accumulation during SAD. In this study, a mixotrophic nitrogen removal system integrating SAD, anammox and heterotrophic denitrification was established in a single-stage reactor. The long-term nitrogen removal performance was investigated under the intervention of organic carbon sources in real municipal wastewater. With the shortening of hydraulic retention time, the nitrogen removal rate of the mixotrophic system dominated by the autotrophic subsystem reached 0.46 Kg N/m³/d at an organic loading rate of 0.57 Kg COD/m³/d, with COD and total nitrogen removal efficiencies of 82.5 % and 94 %, respectively, realizing an ideal combination of autotrophic and heterotrophic systems. The 15NO3--N isotope labeling experiments indicated that thiosulfate-driven autotrophic denitrification was the main pathway for nitrite supply accounting for 80.6 %, while anammox exhibited strong competitiveness for nitrite under the dual electron supply of sulfur and organic carbon sources and contributed to 65.1 % of nitrogen removal. Sludge granulation created differential functional distributions in different forms of sludge, with SAD showing faster reaction rate as well as higher nitrite accumulation rate in floc sludge, while anammox was more active in granular sludge. Real-time quantitative PCR, RT-PCR and high-throughput sequencing results revealed a dynamically changing community composition at the gene and transcription levels. The decrease in heterotrophic denitrification bacteria abundance indicated the effectiveness of the operational strategy for introduction of thiosulfate and maintaining the dominance of SAD in denitrification process in suppressing the excessive growth of heterotrophic bacteria in the mixotrophic system. The high transcriptional expression of sulfur-oxidizing bacteria (SOB) (Thiobacillus and Sulfurimonas) and anammox bacteria (Candaditus_Brocadia and Candidatus_Kuenenia) played a crucial role in the stable nitrogen removal.
Collapse
Affiliation(s)
- Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Biao Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiaojing Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
27
|
Zhang W, Zhang J, Yu D, Zhu Z, Miao Y. Increasing carbon to nitrogen ratio promoted anaerobic ammonia-oxidizing bacterial enrichment and advanced nitrogen removal in mainstream anammox system. BIORESOURCE TECHNOLOGY 2024; 393:130169. [PMID: 38072077 DOI: 10.1016/j.biortech.2023.130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The effects of fluctuating organic carbon to nitrogen (C/N) ratios on mainstream simultaneous partial nitrification, anammox, and denitrification (SNAD) process were studied over 376-day period. The nitrogen removal efficiency decreased from 85.0 ± 6.6 % to 75.8 ± 2.8 % as C/N ratio decreased (3.4 → 1.7), but increased to 82.0 ± 1.9 % when C/N ratio raised to 2.9 and to 78.4 ± 3.0 % when C/N ratio decreased again (2.9 → 2.1), indicating that high C/N ratios promoted nitrogen removal. As C/N ratio raised (1.7 → 2.9), anaerobic ammonia-oxidizing bacteria (AnAOB) abundance increased from 1.3 × 109 to 2.0 × 109 copies/L, which explained the improved nitrogen removal. With an elevated C/N ratio, partial nitrification and endogenous partial denitrification reactions were enhanced, providing more nitrite for AnAOB. Additionally, the aerobic_chemoheterotrophy function and particle sizes increased, forming more stable anoxic microenvironment for AnAOB. Overall, increasing C/N ratio promoted the stability of mainstream SNAD.
Collapse
Affiliation(s)
- Wenke Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Shandong Academy of Environmental Sciences Co., Ltd., Jinan 250013, PR China
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ze Zhu
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Yuanyuan Miao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
28
|
Zhang Y, Zhang J, Yu D, Li J, Zhao X, Ma G, Zhi J, Dong G, Miao Y. Migration of microorganisms between nitrification-denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. BIORESOURCE TECHNOLOGY 2024; 393:130129. [PMID: 38040314 DOI: 10.1016/j.biortech.2023.130129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
To solve the shortage of inoculum, the feasibility of establishing simultaneous partial nitrification, anammox, and denitrification (SNAD) reactor through inoculating nitrification-denitrification sludge, anammox biofilm and blank carriers was investigated. Advanced nitrogen removal efficiency of 91.2 ± 3.6 % was achieved. Bacteria related to nitrogen removal and fermentation were enriched in anammox biofilm, blank carriers and flocs, and the abundance of dominant anaerobic ammonia oxidizing bacteria (AnAOB), Candidatus Brocadia, reached 3.4 %, 0.5 % and 0.3 %, respectively. Candidatus Competibacter and Calorithrix became the dominant denitrifying bacteria (DNB) and fermentative bacteria (FB), respectively. The SNAD system was successfully established, and new mature biofilms formed in blank carriers, which could provide inoculum for other anammox processes. Partial nitrification, partial denitrification and aerobic_chemoheterotrophy were existed and facilitated AnAOB enrichment. Microbial correlation networks revealed the cooperation between DNB, FB and AnAOB that promoted nitrogen removal. Overall, the SNAD process was started up through inoculating more accessible inoculum.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yuanyuan Miao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
29
|
Wan J, Zhang Z, Li P, Ma Y, Li H, Guo Q, Wang Y, Dagot C. Simultaneous nitrogen and phosphorus removal through an integrated partial-denitrification/anammox process in a single UAFB system. CHEMOSPHERE 2024; 350:141040. [PMID: 38145846 DOI: 10.1016/j.chemosphere.2023.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
With the aim of obtaining enhanced nitrogen removal and phosphate recovery in mainstream sewage, we examined an integrated partial-denitrification/anaerobic ammonia oxidation (PD/A) process over a period of 189 days to accomplish this goal. An up-flow anaerobic fixed-bed reactor (UAFB) used in the integrated PD/A process was started up with anammox sludge inoculated and the influent composition controlled. Results showed that the system achieved a phosphorus removal efficiency of 82% when the influent concentration reached 12.0 mg/L. Batch tests demonstrated that stable and efficient removal of chemical oxygen demand (COD), nitrogen, and phosphorus was achieved at a COD/NO3--N ratio of 3.5. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis indicated that hydroxyapatite was the main crystal in the biofilm. Furthermore, substrate variation along the axial length of UAFB indicated that partial denitrification and anammox primarily took place near the reactor's bottom. According to a microbiological examination, 0.4% of the PD/A process's microorganisms were anaerobic ammonia oxidizing bacteria (AnAOB). Ca. Brocadia, Ca. Kuenenia, and Ca. Jettenia served as the principal AnAOB generals in the system. Thauera, Candidatus Accumulibacter, Pseudomonas, and Acinetobacter, which together accounted for 27% of the denitrifying and phosphorus-accumulating bacteria, were helpful in advanced nutrient removal. Therefore, the combined PD/A process can be a different option in the future for sewage treatment to achieve contemporaneous nutrient removal.
Collapse
Affiliation(s)
- Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Zixuan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pei Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Christophe Dagot
- GRESE EA 4330, Université de Limoges, 123 Avenue Albert Thomas, F-87060, Limoges, Cedex, France; INSERM, U1092, Limoges, France
| |
Collapse
|
30
|
Tang M, Du R, Cao S, Berry M, Peng Y. Tracing and utilizing nitrogen loss in wastewater treatment: The trade-off between performance improvement, energy saving, and carbon footprint reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119525. [PMID: 37948961 DOI: 10.1016/j.jenvman.2023.119525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Biological nitrogen removal is widely applied to reduce the discharge of inorganic nitrogen and mitigate the eutrophication of receiving water. However, nitrogen loss is frequently observed in wastewater treatment systems, yet the underlying principle and potential enlightenment is still lacking a comprehensive discussion. With the development and application of novel biological technologies, there are increasing achievement in the deep understanding and mechanisms of nitrogen loss processes. This article reviews the potential and novel pathways of nitrogen loss, occurrence mechanisms, influential factors, and control strategies. A survey of recent literature showed that 3%∼73% of nitrogen loss beyond the nitrogen budget can be ascribed to the unintentional presence of simultaneous nitrification/denitrification, partial nitrification/anammox, and endogenous denitrification processes, under low dissolved oxygen (DO) and limited available organic carbon source at aerobic conditions. Key influential parameters, including DO, aeration strategies, solid retention time (SRT), hydraulic retention time (HRT), temperature and pH, significantly affect both the potential pathways of nitrogen loss and its quantitative contribution. Notably, the widespread and spontaneous growth of anammox bacteria is an important reason for ammonia escape at anaerobic/anoxic conditions, leading to 7%∼78% of nitrogen loss through anammox pathway. Moreover, the unwanted nitrous oxide (N2O) emission should also be considered as a key pathway in nitrogen loss. Future development of new nitrogen removal technologies is proposed to suppress the generation of harmful nitrogen losses and reduce the carbon footprint of wastewater treatment by controlling key influential parameters. Transforming "unintentional observation" to "intentional action" as high-efficiency and energy-efficient nitrogen removal process provides a new approach for the development of wastewater treatment.
Collapse
Affiliation(s)
- Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire, 44603, France
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
31
|
Hou X, Li X, Zhu X, Li W, Kao C, Peng Y. Advanced nitrogen removal from municipal wastewater through partial nitrification-denitrification coupled with anammox in step-feed continuous system. BIORESOURCE TECHNOLOGY 2024; 391:129967. [PMID: 37923230 DOI: 10.1016/j.biortech.2023.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Combined partial nitrification-denitrification/anammox (PN-PD/A) processes have attracted great attention from researchers in recent years to achieve high nitrogen removal from low carbon /nitrogen (C/N) municipal wastewater. In this context, a step-feed anoxic/oxic (A/O) process was conducted in this study through the combination of the partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) to remove N from municipal wastewater with low C/N. The enhancement of the PN-PD/A process resulted in N removal efficiency of 85.6% at C/N of 2.8. The contributions of the anammox reached 36.4 and 8.8% in the anoxic and oxic chambers, respectively. The biocarriers added to the anoxic and oxic chambers increased the relative abundance of the anammox bacteria in biofilms from 0.61% to 1.51% and 1.02%, respectively. This study demonstrated that employing the step-feed A/O process can create optimal conditions for the anammox bacteria growth, thereby ensuring advanced N removal from low C/N municipal wastewater.
Collapse
Affiliation(s)
- Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiaorong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, China; Beijing Diabetes Institute, Beijing 100730, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
32
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
33
|
Wang H, Gong H, Dai X, Yang M. Metagenomics reveals the microbial community and functional metabolism variation in the partial nitritation-anammox process: From collapse to recovery. J Environ Sci (China) 2024; 135:210-221. [PMID: 37778796 DOI: 10.1016/j.jes.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 10/03/2023]
Abstract
Mainstream partial nitritation-anammox (PNA) process easily suffers from performance instability and even reactor collapse in application. Thus, it is of great significance to unveil the characteristic of performance recovery, understand the intrinsic mechanism and then propose operational strategy. In this study, we combined long-term reactor operation, batch tests, and metagenomics to reveal the succession of microbial community and functional metabolism variation from system collapse to recovery. Proper aeration control (0.10-0.25 mg O2/L) was critical for performance recovery. It was also found that Candidatus Brocadia became the dominant flora and its abundance increased from 3.5% to 11.0%. Significant enhancements in carbon metabolism and phospholipid biosynthesis were observed during system recovery, and the genes abundance related to signal transduction was dramatically increased. The up-regulation of sdh and suc genes showed the processes of succinate dehydrogenation and succinyl-CoA synthesis might stimulate the production of amino acids and the synthesis of proteins, thereby possibly improving the activity and abundance of AnAOB, which was conducive to the performance recovery. Moreover, the increase in abundance of hzs and hdh genes suggested the enhancement of the anammox process. Changes in the abundance of key genes involved in nitrogen metabolism indicated that nitrogen removal pathway was more diverse after system recovery. The achievement of performance recovery was driven by anammox, nitrification and denitrification coupled with dissimilatory nitrate reduction to ammonium. These results provide deeper insights into the recovery mechanism of PNA system and also provide a potential regulation strategy for the stable operation of the mainstream PNA process.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Gong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Yang
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
34
|
Song Z, Hao S, Zhang L, Fan X, Peng Y. High-rate nitrogen removal by partial nitritation/anammox with a single-stage membrane-aerated biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119581. [PMID: 37976648 DOI: 10.1016/j.jenvman.2023.119581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
In this study, a membrane aerated biofilm reactor (MABR) coupled partial nitritation/anammox (PN/A) system was established for high-rate nitrogen removal. Results showed that the nitrogen removal efficiency of 90.34% was finally obtained when influent ammonia increased from 150 mg L-1 to 300 mg L-1. Based on the fluorescence spectroscopy technology, the raised hydrophobicity tryptophan in extracellular polymeric substances (EPS) promoted biofilm formation and bacteria aggregation. 16S rRNA gene amplicon sequencing revealed that the relative abundance of AOB and AnAOB was also enhanced by ammonia (Nitrosomonas and Candidatus Brocadia increased by 6.02 % and 10.06 % in biofilm, respectively), which further facilitated nitrogen removal efficiency. Furthermore, the key functional genes involved in partial nitritation and anammox, especially hao and nirK, up-regulated by 1.31 and 1.26 times, respectively, accelerating the electron generation and consumption. Therefore, raising influent ammonia content intensified microbial electron transfer behavior and high-rate nitrogen metabolism.
Collapse
Affiliation(s)
- Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
35
|
Hu J, Wang J, Li X, Zhao J, Liu W, Zhu C. Efficient nitrogen removal and substrate usage in integrated fixed-film activated sludge-anammox system under seasonal temperature variation. BIORESOURCE TECHNOLOGY 2024; 391:129946. [PMID: 37907120 DOI: 10.1016/j.biortech.2023.129946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
To elucidate how integrated fixed-film activated sludge (IFAS) system favors nitrogen removal performance under seasonal temperature variations, two push-flow reactors were operated with and without carriers under the same operating conditions. The results show that the IFAS system had significant advantages in shock response and low temperature adaptation, with a nitrogen removal rate of 0.37-0.53 kg-N(m3·d)-1 at the temperature of 8-12 °C. Anammox bacteria on carriers were almost unaffected by temperature variation, and its nitrogen removal contribution rate stabilized at 55 % in the IFAS system. The Haldane model reveals that the specific anammox activity in the IFAS system was 28 % to 49 % higher than that in the control system at 13 °C. Candidatus_Jettenia, with the highest abundance of 45 %, was the dominant species in the IFAS system and preferred to attach to the carriers. This study provides a feasible scheme for the application of anammox process.
Collapse
Affiliation(s)
- Juntong Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China; Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Xingran Li
- Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junjie Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wanting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
36
|
Zhao Q, Zhang L, Li J, Jia T, Deng L, Liu Q, Sui J, Zhang Q, Peng Y. Carbon-Restricted Anoxic Zone as an Overlooked Anammox Hotspot in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21767-21778. [PMID: 38096549 DOI: 10.1021/acs.est.3c07017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The anoxic zone serves as the core functional unit in municipal wastewater treatment plants (MWWTPs). Unfortunately, in most cases, the downstream range of the anoxic zone is severely lacking in available organic carbon and thus contributes little to the removal of nutrients. This undesirable range is termed the "carbon-restricted anoxic zone", representing an insurmountable drawback for traditional MWWTPs. This study uncovers a previously overlooked role for the carbon-restricted anoxic zone: a hotspot for anaerobic ammonium oxidation (anammox). In a continuous-flow pilot-scale plant treating municipal wastewater (55 m3/d), virgin biocarriers were introduced into the carbon-restricted anoxic zone (downstream 25% of the anoxic zone with BOD5 of 5.9 ± 2.3 mg/L). During the 517-day monitoring, anammox bacteria highly self-enriched within the biofilms, with absolute and relative abundance reaching up to (9.4 ± 0.1) × 109 copies/g-VSS and 6.17% (Candidatus Brocadia), respectively. 15N isotopic tracing confirmed that anammox overwhelmingly dominated nitrogen metabolism, responsible for 92.5% of nitrogen removal. Following this upgrade, the contribution ratio of the carbon-restricted anoxic zone to total nitrogen removal increased from 9.2 ± 4.1% to 19.2 ± 4.2% (P < 0.001), while its N2O emission flux decreased by 84.5% (P < 0.001). These findings challenge stereotypes about the carbon-restricted anoxic zone and highlight the multiple environmental implications of this newfound anammox hotspot.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
37
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
38
|
Fan X, Zhang L, Lan S, Wang B, Qi W, Wu Y, Peng Y. A pilot study of situ sludge fermentation-driven multiple biological nitrogen removal pathways (SFBNR): Revealing microbial synergy mechanism based on co-occurrence network analysis. WATER RESEARCH 2023; 247:120796. [PMID: 37918198 DOI: 10.1016/j.watres.2023.120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
The sludge fermentation-driven biological nitrogen removal (SFBNR) has garnered increasing attention due to its efficient carbon resource utilization from waste activated sludge (WAS). This study successfully extended the application of this technique to a 38 m3 reactor, facilitating a daily ultra-low carbon to nitrogen ratio (<1) wastewater treatment capacity of 16 tons and a WAS capacity of 500 L. After 185-days operation, the system demonstrated commendable performance with a denitrification efficiency (DNE) of 93.22 % and a sludge reduction efficiency (SRE) of 72.07 %. To better understand the potential mechanisms, various functional bacteria interactions were revealed by co-occurrence network analysis. The results unveiled module hubs (e.g., Anaerolineaceae, Denitratisoma, and Candidatus Brocadia) and connectors (e.g., Tuaera and Candidatus Alysiosphaera) in the network exhibited synergistic relationships facilitated by carbon metabolism and nitrogen cycling. Furthermore, the interaction between biofilm sludge (BS) and suspended sludge (SS) contributed to the in-situ enrichment of anaerobic ammonium oxidizing bacteria (AnAOB), whose abundance in BS reached 1.8 % (200-times higher than in SS) after six months, and the suspend-biofilm interface served as a hotspot for anammox activity.
Collapse
Affiliation(s)
- Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Weikang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yuchao Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
39
|
Zheng J, Zhang Q, Ding Y, Liu W, Chen L, Cai T, Ji XM. Microbial interactions play a keystone role in rapid anaerobic ammonium oxidation sludge proliferation and biofilm formation. BIORESOURCE TECHNOLOGY 2023; 387:129612. [PMID: 37541550 DOI: 10.1016/j.biortech.2023.129612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Two mature anaerobic ammonium oxidation (anammox) consortia with high/low relative abundance of anammox bacteria were inoculated for the rapid sludge proliferation and biofilm formation in this study, named up-flow anaerobic sludge blanket reactor (UASB1) (high) and UASB2 (low), respectively. Results showed that the nitrogen removal efficiency of UASB2 reached 90.94% after the 120-day operation, which was 13% higher than that of UASB1. Moreover, its biomass amounts were 22.18% (biofilm) and 40.96% (flocs) higher than that of UASB1, respectively. Ca. Kuenenia possessed relative abundances of 29.32% (flocs), 27.42% (biofilm) and 31.56% (flocs), 35.20% (biofilm) in the UASB1 and UASB2, respectively. The relative abundances of genes involved in anammox transformation (hzs, nir) and carbon metabolism (fdh, lgA/B/C, acs) were higher in the UASB2, indicating that Ca. Kuenenia might produce acetate and glycogen to enhance microbial interactions. These findings emphasized the importance of microbial interactions in anammox sludge proliferation and biofilm formation.
Collapse
Affiliation(s)
- Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
41
|
Su X, Zhu XR, Li J, Wu L, Li X, Zhang Q, Peng Y. Determination of partial denitrification kinetic model parameters based on batch tests and metagenomic sequencing. BIORESOURCE TECHNOLOGY 2023; 379:128977. [PMID: 36990333 DOI: 10.1016/j.biortech.2023.128977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
In this study, a model was developed to investigate the partial denitrification(PD) process. The heterotrophic biomass (XH) proportion in the sludge was determined to be 66.4% based on metagenomic sequencing. The kinetic parameters were first calibrated, then validated using the batch tests results. The results showed rapid decreases in the chemical oxygen demand (COD) and nitrate concentrations and gradual increases in the nitrite concentrations in the first four hours, then remained constant from 4 to 8 h. Anoxic reduction factor (ηNO3 and ηNO2) and half saturation constant (KS1 and KS2) were calibrated at 0.097, 0.13, 89.28 mg COD/L, and 102.29 mg COD/L, respectively. Whereas the simulation results demonstrated that the increase in carbon-to-nitrogen (C/N) ratios and the reduction in XH contributed to the increase in the nitrite transformation rate. This model provides potential strategies for optimizing the PD/A process.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Rong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
42
|
Shang T, Zhu X, Gong X, Guo J, Li X, Zhang Q, Peng Y. Efficient nitrogen removal in a total floc sludge system from domestic wastewater with low C/N: High anammox nitrogen removal contribution driven by endogenous partial denitrification. BIORESOURCE TECHNOLOGY 2023; 378:128995. [PMID: 37011851 DOI: 10.1016/j.biortech.2023.128995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Since unsustainable partial nitrification prone to unstable nitrogen removal rates, cultivation and enrichment of AnAOB, further improve autotrophic nitrogen removal contribution have been challenges in the mainstream anammox process. This study proposed a new strategy to enrich AnAOB motivated by endogenous partial denitrification (EPD) in total floc sludge system through the AOA process with sustainable nitrification. The results showed that in the presence of NH4+ and NO3- at the anoxic stage of N-EPDA, Ca. Brocadia was enriched (0.005%→0.92%) in floc sludge via internal carbon source metabolism of EPD. The C/N and temperature of N-EPDA were also optimized to achieve higher activities of EPD and anammox. The N-EPDA was operated at low C/N ratio (3.1) with anammox nitrogen removal contribution of 78% during the anoxic stage, Eff.TIN of 8.3 mg/L and NRE of 83.5% during phase III, achieved efficient autotrophic nitrogen removal and AnAOB enrichment in the absence of partial nitrification.
Collapse
Affiliation(s)
- Taotao Shang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiaorong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Diabetes Institute, Beijing 100730, China
| | - Xiaofei Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jingwen Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
43
|
Zhao Q, Li J, Deng L, Jia T, Zhao Y, Li X, Peng Y. From hybrid process to pure biofilm anammox process: Suspended sludge biomass management contributing to high-level anammox enrichment in biofilms. WATER RESEARCH 2023; 236:119959. [PMID: 37058918 DOI: 10.1016/j.watres.2023.119959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The application of mainstream anammox is highly desirable for municipal wastewater treatment. However, enrichment of anammox bacteria (AnAOB) is challenging, particularly given the vicious competition from denitrifying bacteria (DB). Here, suspended sludge biomass management, a novel operational strategy for hybrid process (suspended sludge/biofilm), was investigated for 570 days based on a modified anaerobic-anoxic-oxic system treating municipal wastewater. By successively decreasing the suspended sludge concentration, the traditional hybrid process was successfully upgraded to a pure biofilm anammox process. During this process, both the nitrogen removal efficiency (NRE) and rate (NRR) were significantly improved (P < 0.001), from 62.1 ± 4.5% to 79.2 ± 3.9% and from 48.7 ± 9.7 to 62.3 ± 9.0 g N/(m3·d), respectively. Mainstream anammox was improved in the following: Candidatus Brocadia was enriched from 0.70% to 5.99% in anoxic biofilms [from (9.94 ± 0.99) × 108 to (1.16 ± 0.01) × 1010 copies/g VSS, P < 0.001]; the in situ anammox reaction rate increased from 8.8 ± 1.9 to 45.5 ± 3.2 g N/(m3·d) (P < 0.001); the anammox contribution to nitrogen removal rose from 9.2 ± 2.8% to 67.1 ± 8.3% (P < 0.001). Core bacterial microbiome analysis, functional gene quantification, and a series of ex situ batch experiments demonstrated that the stepwise decreases in suspended sludge concentration effectively mitigated the vicious competition of DB against AnAOB, enabling high-level AnAOB enrichment. This study presents a straightforward and effective strategy for enriching AnAOB in municipal wastewater, shedding fresh light on the application and upgradation of mainstream anammox.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
44
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
45
|
Zheng M, Li H, Duan H, Liu T, Wang Z, Zhao J, Hu Z, Watts S, Meng J, Liu P, Rattier M, Larsen E, Guo J, Dwyer J, Akker BVD, Lloyd J, Hu S, Yuan Z. One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application. WATER RESEARCH X 2023; 19:100166. [PMID: 36685722 PMCID: PMC9845764 DOI: 10.1016/j.wroa.2023.100166] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/05/2023]
Abstract
Mainstream nitrogen removal via anammox is widely recognized as a promising wastewater treatment process. However, its application is challenging at large scale due to unstable suppression of nitrite-oxidizing bacteria (NOB). In this study, a pilot-scale mainstream anammox process was implemented in an Integrated Fixed-film Activated Sludge (IFAS) configuration. Stable operation with robust NOB suppression was maintained for over one year. This was achieved through integration of three key control strategies: i) low dissolved oxygen (DO = 0.4 ± 0.2 mg O2/L), ii) regular free nitrous acid (FNA)-based sludge treatment, and iii) residual ammonium concentration control (NH4 + with a setpoint of ∼8 mg N/L). Activity tests and FISH demonstrated that NOB barely survived in sludge flocs and were inhibited in biofilms. Despite receiving organic-deficient wastewater from a pilot-scale High-Rate Activated Sludge (HRAS) system as the feed, the system maintained a stable effluent total nitrogen concentration mostly below 10 mg N/L, which was attributed to the successful retention of anammox bacteria. This study successfully demonstrated large-scale long-term mainstream anammox application and generated new practical knowledge for NOB control and anammox retention.
Collapse
Affiliation(s)
- Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| | - Huijuan Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shane Watts
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peng Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Maxime Rattier
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Eloise Larsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jason Dwyer
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Ben Van Den Akker
- South Australian Water Corporation, 250 Victoria Square, Adelaide SA 5000, Australia
| | - James Lloyd
- Melbourne Water, 990 La Trobe St, Docklands, VIC, 3000, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| |
Collapse
|
46
|
Hu Z, Hu S, Ye L, Duan H, Wu Z, Hong PY, Yuan Z, Zheng M. Novel Use of a Ferric Salt to Enhance Mainstream Nitrogen Removal from Anaerobically Pretreated Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6712-6722. [PMID: 37038903 DOI: 10.1021/acs.est.2c08325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ziping Wu
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
47
|
Yang Y, Jiang Y, Long Y, Xu J, Liu C, Zhang L, Peng Y. Insights into the mechanism of the deterioration of mainstream partial nitritation/anammox under low residual ammonium. J Environ Sci (China) 2023; 126:29-39. [PMID: 36503757 DOI: 10.1016/j.jes.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox (PN/A), but the underlying mechanism remains unclear. In this study, mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria (AOB) in the outer layer. Second, the complete ammonia oxidizer (comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations, nitrite-oxidizing bacteria (NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation (0.15-0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Yiming Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
48
|
Liu J, Zhang Q, Wang S, Li X, Wang R, Peng Y. Superior nitrogen removal and efficient sludge reduction via partial nitrification-anammox driven by addition of sludge fermentation products for real sewage treatment. BIORESOURCE TECHNOLOGY 2023; 372:128689. [PMID: 36717060 DOI: 10.1016/j.biortech.2023.128689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Efficient retention and enrichment of anammox bacteria (AnAOB) are essential for the application of municipal wastewater anammox. Herein, an innovative process for highly enriching AnAOB within suspended carrier was developed in a single-stage anaerobic/oxic/anoxic reactor with 5.5 % carrier filling ratio for real sewage. Addition of sludge fermentation products promoted stable maintenance of partial nitrification (nitrite accumulation rate > 90.0 %) and achieved efficient external sludge reduction (27.6-37.9 %). Continuous nitrite supply and carrier addition promoted AnAOB enrichment (2.4 × 1011 gene copies/g dry sludge). Candidatus Brocadia was the predominant bacteria in carriers (18.6 %). The average effluents of total inorganic nitrogen (TIN) and NH4+-N were 1.9 and 0.8 mg/L with removal rates of 97.0 % and 98.7 %. In the anoxic stage, TIN removal rate reached 71.5 %, and the proportion of anammox to nitrogen removal accounted for 82.7 %. This study broadens the application of mainstream sewage anammox and the resource utilization of waste activated sludge.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
49
|
Zhang B, Zhang N, He A, Wang C, Li Z, Zhang G, Xue R. Carrier type affects anammox community assembly, species interactions and nitrogen conversion. BIORESOURCE TECHNOLOGY 2023; 369:128422. [PMID: 36462768 DOI: 10.1016/j.biortech.2022.128422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The impacts of carrier type on anammox community assembly, species interactions and nitrogen conversion were studied in this work. It was found that in addition to shared species with higher abundance, different carrier types recruited rare species by imposing selection pressure. Results from co-occurrence networks revealed that carrier type strongly influenced interactions between keystone species inhabiting within anammox biofilm through potentially inducing niche differences. Overall, elastic cubic sponges would lead to closer cooperation between different populations, whereas plastic hollow cylinders would trigger fiercer competition. Meanwhile, the results based on metagenomics sequencing showed carrier type significantly affected nitrogen conversion related genes abundances, and higher reads number was detected on the elastic cubic sponges. The information obtained in this work could provide some valuable information for the selection and optimization of carrier type in the anammox process.
Collapse
Affiliation(s)
- Baoyong Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianbo Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ao He
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhen Li
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, 256500, China
| | - Guanjun Zhang
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, 256500, China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
50
|
Yu L, Zhang Q, Li R, Qiao B, Wang Z, Zheng L, Peng D. Extracellular polymeric substances trigger microbial immigration from partial denitrification (PD) to anammox biofilms in a long-term operated PD/anammox process in low-strength wastewater. WATER RESEARCH 2023; 229:119382. [PMID: 36446177 DOI: 10.1016/j.watres.2022.119382] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The immigration of microbial communities in a synergistic partial denitrification/anammox (SPDA) system was investigated in a moving bed biofilm reactor (MBBR) inoculated with partial denitrification (PD) and anaerobic ammonium oxidation (anammox) biofilms. The SPDA system was operated at 25 ± 1 °C over 260 days. The total nitrogen (TN) of the effluent was only 3.71 ± 0.92 mg·L-1 in the stable phase with a TN removal efficiency of 95.23%. The anammox process was the dominant nitrogen removal pathway with an average contribution of 74.31% to TN removal. The results of the in situ activity and key enzymatic activity revealed that the nitrate-reducing bacteria tended to immigrate to anammox biofilms. Correspondingly, the abundance of the genus Thauera, the second most dominant bacteria in anammox biofilms, quickly increased from 0.78 to 10.69% on day 50 and eventually to 16.45% on day 221 according to the Illumina MiSeq sequencing data. The microbial immigration might be caused by different extracellular polymeric substance (EPS)-mediated mechanisms in PD and anammox biofilms. For fast-growing denitrifiers, PD biofilms tend to increase the ability of mass transfer by excreting more polysaccharides to form loosely-bound EPS at the expense of the ability to harbor the nitrate-reducing bacteria. However, for the slow-growing anaerobic ammonium oxidizing bacteria (AnAOB), the anammox biofilms tend to increase the retention of AnAOB by excreting more proteins to form enhanced tightly-bound EPS at the expense of the mass transfer ability, thereby causing the detached nitrate-reducing bacteria to immigrate into anammox biofilms.
Collapse
Affiliation(s)
- Lifang Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China.
| | - Qiong Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Ren Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Bingchuang Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Ze Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| | - Lanxiang Zheng
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China; China Wine Industry Technology Institute, Yinchuan 750021, China
| | - Dangcong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13#, Yanta Road, Xi'an 710055, China
| |
Collapse
|