1
|
Xiao H, Jiang B, Zhang Z, Zhu C, Chen J, Wang Y, Dong Y, Hao Y, Liu Y, Li Y, Xiao X, He G, Zhou Y, Luo X. New insight of electrogenerated H 2O 2 into oxychlorides inhibition and decontamination promotion: From radical to nonradical pathway during anodic oxidation of high Cl --laden wastewater process. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136948. [PMID: 39721481 DOI: 10.1016/j.jhazmat.2024.136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClOx-) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl--laden effluents. Herein, we shed new light on the roles of H2O2 high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClOx- production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClOx- in phenol simulated wastewater containing 30 mM Cl- was dropped from 25 mM and 24.3 mM to only 0.26 mM and 0.23 mM within 120 min after treating by 3D H2O2-involing systems with Ti/Ru-IrO2 and BDD anode, respectively. Meanwhile, the COD removal of 3D Ti/Ru-IrO2-based system was increased by 57 % (85 % removal at 0.011 kWh g-1 COD), comparable to that of 3D BDD-based system (90 % removal at 0.008 kWh g-1 COD), the energy consumption of which were far less than those of conventional 2D and 3D electro-Fenton systems (0.08-0.2 kWh g-1 COD). During degradation process of Cl--bearing phenol by 3D AO-H2O2 systems, the anodically produced species (Cl•, Cl2•-, ClO-) were rapidly quenched by the in-situ electrogenerated H2O2 and then successfully transformed into 1O2. The radical pathway of reaction between H2O2 and Cl•/Cl2•- had a more obviously thermodynamical advantage (∆G = 11.5 kJ mol-1) than nonradical pathway between H2O2 and ClO- (∆G = 171 kJ mol-1) based on DFT analysis. And the steady-state concentration of 1O2 was 8.8 × 10-9 M and 4.2 × 10-10 M in 3D Ti/Ru-IrO2 and BDD-based system, respectively, which collectively took responsibility for the termination of ClOx- production and promotion of organic pollutant degradation. This work provides a technical feasibility in the practical utilization of AO technology to wastewater treatment without toxic oxychloride by-products.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhitong Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Chenxi Zhu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Jing Chen
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghong Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghao Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoyu Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yanbo Zhou
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
2
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Liu X, Li J, Guo X, Wu J, Wang Y. Multi-win situation of wastewater purification, carbon emission reduction and resource utilization: Conversion of refractory organics and nitrate to urea and ammonia in a flow-through electrochemical integrated system. WATER RESEARCH 2024; 266:122317. [PMID: 39260192 DOI: 10.1016/j.watres.2024.122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
The advanced oxidation process is an efficient technology for the degradation and detoxification of refractory organics to ensure water safety. However, most researches focus on improving pollutant degradation but overlook carbon emission and resource utilization. In this study, a flow-through electrochemical integrated system was constructed to simultaneously realize bisphenol A (BPA) oxidation into small non-toxic organics and CO2, and generated CO2 coupled with nitrate-containing wastewater conversion to urea and ammonia on a porous cathode (Zr-Fe/CN). The synergistic effect between anodic BPA oxidation with cathodic CO2 and NO3-reduction improves the electron utilization efficiency and thus increasing the BPA degradation, urea yield rate (UYR) and NH3 yield rate (NYR) by 13.4 % 18.4 % and 8.3 %, respectively. Furthermore, the flow-through operation mode significantly increased the mass transfer efficiency and quickly carried generated CO2 from the anode into the cathode to improve CO2 utilization efficiency. Compared to the parallel plate electrode reactor, the BPA degradation efficiency, UYR and NYR in the flow-through reactor increased from 59.46 % to 84.49 % (the initial concentration of BPA was 40 mg/L), 9.94 mmol h-1g-1 to 19.55 mmol h-1g-1, and 80.31 mmol h-1g-1 to 106.06 mmol h-1g-1 within 60 min, respectively. Moreover, the total carbon conversion efficiency (from BPA to urea) increased from 20.2 % to 42.4 % and the total Faraday efficiency (FE) increased from 78.6 % to 96.3 %. This work provides a multi-win strategy of harmless, resource-based and carbon emission reduction for wastewater treatment.
Collapse
Affiliation(s)
- Xianjing Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jiayu Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xinrui Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jintao Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
4
|
Shao Y, Li S, Li T, Wei X, Tian Y, Yang Z, Li X. Degradation of emerging contaminants in synthetic hydrolyzed urine by UV/peracetic acid: Free radical chemistry, and toxicity analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124557. [PMID: 39019306 DOI: 10.1016/j.envpol.2024.124557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The ecological impact of emerging contaminants (ECs) in aquatic environments has raised concerns, particularly with regards to urine as a significant source of such contaminants in wastewater. The current investigation used the UV/Peracetic Acid (UV/PAA) processes, an innovative advanced oxidation technology, to effectively separate two emerging pollutants from urine at its source, namely, ciprofloxacin (CIP) and bisphenol A(BPA). The research findings demonstrate that the presence of the majority of characteristic ions has minimal impact on the degradation of ECs. However, in synthetic hydrolyzed urine, only NH4+ inhibits the degradation of two types of ECs, with a more pronounced effect observed on CIP degradation compared to BPA.The impact of halogen ions, specifically Cl- and I-, on the degradation of CIP in synthetic hydrolyzed urine was a complex phenomenon. When these two halogen ions are present individually, the generation of reactive halogen species (RHS) within the system enhances the degradation of CIP. However, when both types of ions coexist, the formation of diatomic radical species partially inhibits degradation. In terms of BPA degradation, while the production of reactive chlorine species (RCS) to some extent hinders the reaction rate, the generation of reactive iodine species (RIS) promotes the overall process. CIP undergoes fragmentation of the piperazine and quinoline rings, decarboxylation, defluorination reactions, as well as substitution reactions, leading to the formation of products with simplified structures. The degradation of BPA occurs gradually through hydroxyl and halogen substitution as well as isopropyl cleavage. The preliminary toxicity analysis confirmed that the presence of halogen ions in urine resulted in the formation of halogenated products in two types of ECs, albeit with an overall reduction in toxicity. The UV/PAA processes was considered to be an effective and relatively safe approach for the separation of ECs in urine.
Collapse
Affiliation(s)
- Yanan Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ting Li
- Environment Affairs Office of National Wangcheng Economic and Technological Development Zone, Changsha, 410299, PR China
| | - Xue Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Yang Tian
- Hunan Hongsheng Environmental Protection Technology Research Institute Co., Ltd, Changsh, 410021, PR China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
5
|
Fu H, Gutierrez L, Shewfelt S, Xiong Y, Gray KA. A robust self-regenerating graphene-based adsorbent for pharmaceutical removal in various water environments. WATER RESEARCH 2024; 261:121998. [PMID: 38996735 DOI: 10.1016/j.watres.2024.121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
The presence of active pharmaceutical ingredients (APIs) in wastewater effluents and natural aquatic systems threatens ecological and human health. While activated carbon-based adsorbents, such as GAC and PAC, are widely used for API removal, they exhibit certain deficiencies, including reduced performance due to the presence of natural organic macromolecules (NOMs) and high regeneration costs. There is growing demand for a robust, stable, and self-regenerative adsorbent designed for API removal in various environments. In this study, we synthesized a self-generating metal oxide nano-composite (S-MGC) containing titanium dioxide (TiO2) and silicon dioxide (SiO2) combined with 3D graphene oxide (GO) to adsorb APIs and undergo regeneration via light illumination. We determined optimal TiO2:SiO2:GO compositions for the S-MGCs through experiments using a model contaminant, methylene blue. The physical and chemical properties of S-MGCs were characterized, and their adsorption and photodegradation capabilities were studied using five model APIs, including sulfamethoxazole, carbamazepine, ketoprofen, valsartan, and diclofenac, both in single-component and multi-component mixtures. In the absence of TiO2/SiO2, 3D graphene oxide (CGB) displayed better adsorption performance compared to GAC, and S-MGCs further improve CGB's adsorption capacity. This performance remained consistent in two complex water environments: aqueous solutions at varying NOM levels and artificial urine. TiO2 supported on the GO surface exhibits similar photocatalytic activity to suspended TiO2. In a continuous fixed-bed column test, S-MGCs demonstrated robust API adsorption performance that is maintained in the presence of NOM or urine, and can be regenerated through multiple cycles of adsorption and light illumination.
Collapse
Affiliation(s)
- Han Fu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Laura Gutierrez
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sofia Shewfelt
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yingqian Xiong
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
6
|
Zhang Y, Li B, Zhang W, Guo X, Zhu L, Cao L, Yang J. Electro-oxidation of ammonia nitrogen using W, Ti-doped IrO 2 DSA as a treatment method for mariculture and livestock wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44385-44400. [PMID: 38954330 DOI: 10.1007/s11356-024-34160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.
Collapse
Affiliation(s)
- Yiheng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Wenjing Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xin Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.
| |
Collapse
|
7
|
Gao X, Zhang S, Wang P, Jaroniec M, Zheng Y, Qiao SZ. Urea catalytic oxidation for energy and environmental applications. Chem Soc Rev 2024; 53:1552-1591. [PMID: 38168798 DOI: 10.1039/d3cs00963g] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Xie Y, Guan D, Deng Y, Sato Y, Luo Y, Chen G. Factors hindering the degradation of pharmaceuticals from human urine in an iron-activated persulfate system. J Environ Sci (China) 2024; 135:130-148. [PMID: 37778790 DOI: 10.1016/j.jes.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 10/03/2023]
Abstract
This study investigated the degradation of clofibric acid (CFA), bezafibrate (BZF), and sulfamethoxazole (SMX) in synthetic human urine using a novel mesoporous iron powder-activated persulfate system (mFe-PS system), and identified the factors limiting their degradation in synthetic human urine. A kinetic model was established to expose the radical production in various reaction conditions, and experiments were conducted to verify the modeling results. In the phosphate-containing mFe-PS system, the 120 min removal efficiency of CFA decreased from 95.1% to 76.6% as the phosphate concentration increased from 0.32 to 6.45 mmol/L, but recovered to 90.5% when phosphate concentration increased to 16.10 mmol/L. Meanwhile, the increased concentration of phosphate from 0.32 to 16.10 mmol/L reduced the BZF degradation efficacy from 91.5% to 79.0%, whereas SMX removal improved from 37.3% to 62.9%. The mFe-PS system containing (bi)carbonate, from 4.20 to 166.70 mmol/L, reduced CFA and BZF removal efficiencies from 100% to 76.8% and 80.4%, respectively, and SMX from 83.5% to 56.7% within a 120-min reaction time. In addition, alkaline conditions (pH ≥ 8.0) inhibited CFA and BZF degradations, while nonacidic pH (pH ≥ 7.0) remarkably inhibited SMX degradation. Results of the kinetic model indicated the formation of phosphate (H2PO4·/HPO4·-) and/or carbonate radicals (CO3·-) could limit pharmaceutical removal. The transformation products (TPs) of the pharmaceuticals revealed more incompletely oxidized TPs occurred in the phosphate- and (bi)carbonate-containing mFe-PS systems, and indicated that H2PO4·/HPO4·- mainly degraded pharmaceuticals via a benzene ring-opening reaction while CO3·- preferentially oxidized pharmaceuticals via a hydroxylation reaction.
Collapse
Affiliation(s)
- Yiruiwen Xie
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Dao Guan
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China.
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Yugo Sato
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Yu Luo
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China.
| |
Collapse
|
9
|
Wei R, Pei S, Yu Y, Zhang J, Liu Y, You S. Water Flow-Driven Coupling Process of Anodic Oxygen Evolution and Cathodic Oxygen Activation for Water Decontamination and Prevention of Chlorinated Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17404-17414. [PMID: 37920955 DOI: 10.1021/acs.est.3c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Electrochemical advanced oxidation process (EAOP) is a promising technology for decentralized water decontamination but is subject to parasitic anodic oxygen evolution and formation of toxic chlorinated byproducts in the presence of Cl-. To address this issue, we developed a novel electrolytic process by water flow-driven coupling of anodic oxygen evolution reaction (OER) and cathodic molecular oxygen activation (MOA). When water flows from anode to cathode, O2 produced from OER is carried by water through convection, followed by being activated by atomic hydrogen (H*) on Pd cathode to produce •OH. The water flow-driven OER/MOA process enables the anode to be polarized at low potential (1.7 V vs SHE) that is lower than that of conventional EAOP whose •OH is produced from direct water oxidation (>2.3 V vs SHE). At a flow rate of 30 mL min-1, the process could achieve 94.8% removal of 2,4-dichlorophenol (2,4-DCP) and 71.5% removal of chemical oxygen demand (COD) within 45 min at an anode potential of 1.7 V vs SHE and cathode potential of -0.5 V vs SHE. To achieve the comparable 2,4-DCP removal performance, 4.3-fold higher energy consumption was needed for the conventional EAOP with titanium suboxide anode (anode potential of 2.9 V vs SHE), but current efficiency declined by 3.5 folds. Unlike conventional EAOP, chlorate and perchlorate were not detected in the OER/MOA process, because low anode potential <2.0 V vs SHE was thermodynamically unfavorable for the formation of chlorinated byproducts by anodic oxidation, indicated by theoretical calculations and experimental data. This study provides a proof-in-concept demonstration of water flow-driven OER/MOA process, representing a paradigm shift of electrochemical technology for water decontamination and prevention of chlorinated byproducts, making electrochemical water decontamination more efficient, more economic, and more sustainable.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Sharma M, Rajput D, Kumar V, Jatain I, Aminabhavi TM, Mohanakrishna G, Kumar R, Dubey KK. Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. ENVIRONMENTAL RESEARCH 2023; 231:116132. [PMID: 37207734 DOI: 10.1016/j.envres.2023.116132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 μg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 μg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Jatain
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
11
|
Xiao H, Xu F, Chen J, Hao Y, Guo Y, Zhu C, Luo S, Jiang B. Electrogenerated oxychlorides induced overlooked negative effects on electro-oxidation wastewater treatment in terms of over-evaluated COD removal efficiency and biotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131667. [PMID: 37236107 DOI: 10.1016/j.jhazmat.2023.131667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The high-efficiency and environmentally-friendly electro-oxidation (EO) would lose its competitive edge because of the production of oxychloride by-products (ClOx-), which has not yet drawn significant attention in academic and engineering communities. In this study, the negative effects of the electrogenerated ClOx- were compared among four commonly used anode materials (BDD, Ti4O7, PbO2 and Ru-IrO2) in terms of ClOx- interference on the evaluation of electrochemical COD removal performance and biotoxicity. Apparently, the COD removal performance of various EO systems were highly enhanced with increasing current density in the presence of Cl-, e.g., the amounts of COD removed by various EO systems from the phenol solution with an initial COD content of 280 mg L-1 at 40 mA cm-2 within 120 min decreased in the order: Ti4O7 of 265 mg L-1 > BDD of 257 mg L-1 > PbO2 of 202 mg L-1 > Ru-IrO2 of 118 mg L-1, which was different from the case with the absence of Cl- (BDD of 200 mg L-1 > Ti4O7 of 112 mg L-1 > PbO2 of 108 mg L-1 > Ru-IrO2 of 80 mg L-1) and the results after removing ClOx- by anoxic sulfite-based method (BDD of 205 mg L-1 > Ti4O7 of 160 mg L-1 > PbO2 of 153 mg L-1 > Ru-IrO2 of 99 mg L-1). These results can be ascribed to the ClOx- interference on COD evaluation, the extent of which decreased in the order: ClO3- > ClO- (where ClO4- cannot impact COD test). The highest overrated electrochemical COD removal performance of Ti4O7 may be associated with its relatively high production of ClO3- and the low mineralization extent. The chlorella inhibition ratio of ClOx- decreased in the order: ClO- > ClO3- >> ClO4-, which accounted for the biotoxicity increasement of the treated water (PbO2 68%, Ti4O7 56%, BDD 53%, Ru-IrO2 25%). Generally, the inevitable problems of overrated electrochemical COD removal performance and biotoxicity increasement induced by ClOx- should deserve significant attention and effective countermeasures should be also developed when employing EO process for wastewater treatment.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Fengqi Xu
- SunRui Marine Environment Engineering Company Ltd, Qingdao 266033, PR China
| | - Jinghua Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yu Guo
- SunRui Marine Environment Engineering Company Ltd, Qingdao 266033, PR China
| | - Chaosheng Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466000, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
12
|
Wei R, Tong H, Zhang J, Sun B, You S. Flow electrochemical inactivation of waterborne bacterial endospores. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130505. [PMID: 36463735 DOI: 10.1016/j.jhazmat.2022.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Waterborne pathogens have the risk of spreading waterborne diseases and even pandemics. Some Gram-positive bacteria can form endospores, the hardiest known life form that can withstand heat, radiation, and chemicals. Electrochemical inactivation may offer a promising solution, but is hindered by low inactivation efficiencies resulting from limitation of electrode/endospores interaction in terms of electrochemical reaction selectivity and mass transfer. Herein, these issues were addressed through modifying selectivity of active species formation using electroactive ceramic membrane with high oxygen evolution potential, improving mass transfer property by flow-through operation. In this way, inactivation (6.0-log) of Bacillus atrophaeus endospores was achieved. Theoretical and experimental results demonstrated synergistic inactivation to occur through fragmentation of coat via interfacial electron transfer and electro-produced transient radicals (•OH primarily, •Cl and Cl2•- secondarily), thereby increasing cell permeability to facilitate penetration of electro-produced persistent active chlorine for subsequent rupture of intracellular structures. Numbering-up electrode module strategy was proposed to scale up the system, achieving average 5.3-log inactivation of pathogenic Bacillus anthracis endospores for 30 days. This study demonstrates a proof-of-concept manner for effective inactivation of waterborne bacterial endospores, which may provide an appealing strategy for wide-range applications like water disinfection, bio-safety control and defense against biological warfare.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baiming Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
13
|
Zhang K, Duan Y, Graham N, Yu W. Efficient electrochemical generation of active chlorine to mediate urea and ammonia oxidation in a hierarchically porous-Ru/RuO 2-based flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130327. [PMID: 36434919 DOI: 10.1016/j.jhazmat.2022.130327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500 mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanxiao Duan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
14
|
Yan W, Chen J, Wu J, Li Y, Liu Y, Yang Q, Tang Y, Jiang B. Investigation on the adverse impacts of electrochemically produced ClO x- on assessing the treatment performance of dimensionally stable anode (DSA) for Cl --containing wastewater. CHEMOSPHERE 2023; 310:136848. [PMID: 36243090 DOI: 10.1016/j.chemosphere.2022.136848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The presence of chloride ions can facilitate the COD removal efficiency due to the involvement of active chlorine species in the electro-oxidation process, but few attentions have been paid to the negative effect of the electro-generated oxychlorides on electro-oxidation performance. In this study, the effects of oxychlorides were investigated as functions of current density and phenol concentration using DSA anodes in terms of the evaluation of the COD removal performance and the biological toxicity. The results show that oxychlorides formed in the electro-oxidation system could result in the over-evaluation of the COD removal performance. Increasing current density (15-50 mA cm-2) aggravated the over-evaluation of COD removal (4%-18%), owing to the enhancement in the electrochemical generation of oxychlorides. The increase of phenol concentration inhibited the production of oxychlorides, but the effect of oxychlorides on COD values at phenol concentration of 200 mg L-1 (82 mg L-1) was higher than that at 100 mg L-1 (51 mg L-1). The ClO3- was predominantly responsible for over-evaluation of the COD removal. In addition, bioassays with chlorella indicated that the electro-generated oxychlorides significantly increased the biological toxicity of the treated Cl--containing wastewater. This work provides new guidance for the correct evaluation of COD treatment performance and highlight the importance of minimizing toxic inorganic chlorinated byproducts during electro-oxidation of Cl--containing wastewater.
Collapse
Affiliation(s)
- Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jinghua Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingli Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
15
|
Yan J, Gong L, Chai S, Guo C, Zhang W, Wan H. Insights into a newly discovered mechanism for 1O2 formation in a chlorine ion-mediated sulfate radical-advanced oxidation process system for levofloxacin degradation in an aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhu J, Ba X, Guo X, Zhang Q, Qi Y, Li Y, Wang J, Sun H, Jiang B. Oxychlorides induced over-evaluation of electrochemical COD removal performance over dimensionally stable anode (DSA): The roles of cathode materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sun W, Zhang M, Li J, Peng C. Solar-Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. CHEMSUSCHEM 2022; 15:e202201263. [PMID: 35972075 DOI: 10.1002/cssc.202201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The water-energy nexus is highly related to sustainable societal development. As one of the most abundant biowastes discharged into the environment, mild abatements and green conversions of urea wastewater have been widely investigated. Due to abundant sources, global distribution, and easy control, light-based catalytic strategies have become alternative on-site treatment approaches. After comprehensively surveying the recent progress, recent achievements of urea oxidation under light irradiation are reviewed herein. Several typical light-promoted systems employed in urea conversion, including photocatalysis, photo-electrocatalysis, photo-biocatalysis, and photocatalytic fuel cells, are meticulously introduced and discussed, from catalyst designs and medium conditions to established mechanisms. To realize the goal of sustainability, the chemical energy in urea-rich water could be utilized for the value-added production of hydrogen fuel and electricity. Finally, based on current developments, existing challenges are enumerated and developmental prospects in the future of light-driven urea conversion technologies are proposed.
Collapse
Affiliation(s)
- Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jianan Li
- National Engineering Research Centre of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chong Peng
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Sharma M, Mandal MK, Pandey S, Kumar R, Dubey KK. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu 2O-TiO 2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS OMEGA 2022; 7:33572-33586. [PMID: 36157782 PMCID: PMC9494644 DOI: 10.1021/acsomega.2c04576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
This study first reports on the tetracycline photodegradation with the synthesized heterostructured titanium oxide nanotubes coupled with cuprous oxide photocatalyst. The large surface area and more active sites on TiO2 nanotubes with a reduced band gap (coupling of Cu2O) provide faster photodegradation of tetracycline under visible light conditions. Cytotoxicity experiments performed on the RAW 264.7 (mouse macrophage) and THP-1 (human monocytes) cell lines of tetracycline and the photodegraded products of tetracycline as well as quenching experiments were also performed. The effects of different parameters like pH, photocatalyst loading concentration, cuprous oxide concentration, and tetracycline load on the photodegradation rate were investigated. With an enhanced surface area of nanotubes and a reduced band gap of 2.58 eV, 1.5 g/L concentration of 10% C-TAC showed the highest efficiency of visible-light-driven photodegradation (∼100% photodegradation rate in 60 min) of tetracycline at pH 5, 7, and 9. The photodegradation efficiency is not depleted up to five consecutive batch cycles. Quenching experiments confirmed that superoxide radicals and hydroxyl radicals are the most involved reactive species in the photodegradation of tetracycline, while valance band electrons are the least involved reactive species. The cytotoxicity percentage of tetracycline and its degraded products on RAW 264.7 (-0.932) as well as THP-1 (-0.931) showed a negative correlation with the degradation percentage with a p-value of 0.01. The toxicity-free effluent of photodegradation suggests the application of the synthesized photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Manisha Sharma
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Mrinal Kanti Mandal
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Shailesh Pandey
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Ravi Kumar
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess
Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New
Delhi 110067, India
| |
Collapse
|
19
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Xiao H, Yan W, Zhao Z, Tang Y, Li Y, Yang Q, Luo S, Jiang B. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. WATER RESEARCH 2022; 221:118732. [PMID: 35716411 DOI: 10.1016/j.watres.2022.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Deliberate addition of mildly oxidative chlorate (ClO3-), so-called "chemical oxygen demand (COD) remover", into wastewater in China or electrochemical production of ClO3- from Cl- induces the false COD reduction, which would bring about false appearance of effluents meeting the COD discharge standards. In this study, an easy sulfite-based reduction method was developed for the first time to remove ClO3- from the water samples before COD determination to eliminate this interference of ClO3-. In this reaction system, keeping the reaction temperature of sulfite reducing ClO3- at 60 °C was crucial for fast ClO3- removal rate, fixed molar [sulfite]ini/[chlorate]ini ratio value and the synchronous exhaustion of sulfite and ClO3-, which were of great significance for the real application of this improved COD determination method. The ClO3- interference on COD determination could be successfully eliminated after 20 min reduction of ClO3- by sulfite at pHini 4.0∼6.0 with the molar [sulfite]ini/[chlorate]ini ratio value in the range of 5∼6 when concentration of ClO3- was below 5 mM. Despite of the involvement of SO4·- in the sulfite reducing ClO3- system, the degradation of organic matters by SO4·- could be greatly impeded due to the lessened dissolved oxygen for SO4·- production at high reaction temperature and the scavenging of SO4·- by sulfite. In this reaction system, ClO2, ClO2- and ClO- were also generated and could be further reduced by sulfite stoichiometrically via oxygen transfer process with Cl- as the final product. In general, this study pioneered an effective, fast and convenient method for COD determination of the ClO3--laden wastewaters and evaluating the real electrochemical wastewater treatment performance in terms of COD removal.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zekun Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
21
|
Yang Y, Ramos NC, Clark JA, Hillhouse HW. Electrochemical oxidation of pharmaceuticals in synthetic fresh human urine: Using selective radical quenchers to reveal the dominant degradation pathways and the scavenging effects of individual urine constituents. WATER RESEARCH 2022; 221:118722. [PMID: 35728493 DOI: 10.1016/j.watres.2022.118722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical oxidation of fresh human urine is a promising method to prevent pharmaceuticals from being discharged into the environment. Here, we evaluate the importance of electro-generated oxidants and direct anodic oxidation for degradation of four pharmaceutical (cyclophosphamide (CP), carbamazepine (CBZ), sulfamethoxazole (SMX) and ibuprofen (IBP)) accounting for the scavenging effect of urine constituents using boron-doped diamond (BDD) and IrO2 electrodes. Allyl alcohol and tert-butanol were used as selective quenchers for adsorbed and dissolved radicals, respectively. In electrolyte containing only chloride and pharmaceuticals, we found that CBZ and SMX are primarily oxidized by electro-generated Cl2 in the fluid boundary layer , and CP and IBP are primarily oxidized by physisorbed •OH or chemisorbed chlorine (IrO3-Cl). Regarding the effects of other fresh urine constituents, urea, creatinine, and uric acid quench the dissolved reactive chlorine species (Cl•/Cl2•‒, HOCl, Cl2, etc.). However, SO42‒ shows no effect on pharmaceutical degradation while H2PO4‒ and citrate ions quench IrO3-Cl resulting in a mixed kinetic and mass-transfer limiting oxidation of pharmaceuticals on IrO2. Citrate ions only quench the dissolved oxidants (surface adsorbed radicals are the dominant oxidants) leading to the pharmaceutical degradation limited by the mass transfer of pharmaceutical to BDD surface. This work provides an understanding of the significance of various pathways for pharmaceutical degradation, scavenging effect of urine constituents, and strategies for rapid pharmaceutical degradation in human urine.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
| | - Nathanael C Ramos
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1750
| | - James A Clark
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1750
| | - Hugh W Hillhouse
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1750.
| |
Collapse
|
22
|
Wang X, Li J, Duan Y, Li J, Wang H, Yang X, Gong M. Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem 2022. [DOI: 10.1002/cctc.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Wang
- East China University of Science and Technology School of Mechanical and Power Engineering CHINA
| | - Jianping Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Yanghua Duan
- University of California Berkeley Civil and Environmental Engineering UNITED STATES
| | - Jianan Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Hualin Wang
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Xuejing Yang
- East China University of Science and Technology National Engineering Laboratory for Industrial Wastewater Treatment 130 Meilong Road 200237 Shanghai CHINA
| | - Ming Gong
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
23
|
Courtney C, Randall DG. Concentrating stabilized urine with reverse osmosis: How does stabilization method and pre-treatment affect nutrient recovery, flux, and scaling? WATER RESEARCH 2022; 209:117970. [PMID: 34936975 DOI: 10.1016/j.watres.2021.117970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Human urine can be used as a fertilizer, however, due to the high water content (97%), concentration is required to make transportation economically feasible. Reverse osmosis (RO) has been identified as an energy efficient concentration method. Furthermore, to maximize nitrogen recovery from source-separated urine it should be stabilized with an acid or base to prevent urea hydrolysis. However, the method of stabilization will have an impact on the downstream RO process. Calcium hydroxide is often used as a base stabilization method for human urine but would require pre-treatment to remove excess calcium and subsequent membrane scaling. Three pre-treatment methods such as air bubbling, NaHCO3 addition, and NH4HCO3 addition, were investigated in this study. Each method successfully reduced the scaling potential and air bubbling was determined to be the most effective method as it resulted in the highest nutrient recovery during concentration and did not require the addition of any chemicals. Base stabilization with air bubbling pre-treatment was then compared to urine stabilized with citric acid. Acid stabilized urine had a higher nitrogen recovery (7.6% higher). However, solids formed in the real acidified urine and during concentration a brown organic compound formed on the membrane surface. The crystals were identified as uric acid dihydrate and the brown organic fouling resulted in a significant decrease in permeate flux as compared to the base stabilized urine with air bubbling pre-treatment. At a 60% water recovery, 85.5% of the urea and 99.2% of the potassium was recovered in the brine stream and more than 99.9% of the phosphorus was recovered as a separate solid calcium phosphate fertilizer. Whilst nutrient recovery was higher with acid stabilization, the membrane fouling that occurred with this stabilization method meant that base stabilization with air bubbling pre-treatment was the preferred treatment option. It is recommended that acid stabilized urine be concentrated using evaporation processes instead.
Collapse
Affiliation(s)
- Caitlin Courtney
- Civil Engineering Department & Future Water Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Dyllon G Randall
- Civil Engineering Department & Future Water Institute, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|