1
|
Song Y, Zhang Z, Liu Y, Peng F, Feng Y. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135514. [PMID: 39243542 DOI: 10.1016/j.jhazmat.2024.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
2
|
Zhu J, Li M, Yu H, Zheng Y, Yuan L, Cao Y, Liu X, Sun F, Chen C. Magnetic biochar enhanced microbial electrolysis cell with anaerobic digestion for complex organic matter degradation in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175013. [PMID: 39069178 DOI: 10.1016/j.scitotenv.2024.175013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Combining microbial electrolytic cells with anaerobic digestion (MEC-AD) was considered as an important method for enhancing complex organic matter degradation. However, the magnetic biochar (MBC) addition would be an effective approach for enhancing biodegradation in MEC-AD. By designing orthogonal experiments, the optimal parameters of MBC-enhanced MEC-AD system for landfill leachate treatment were determined. The results indicated that the optimal conditions were identified as HRT of 72 h, electrode spacing of 2.5 cm, and applied voltage of 0.8 V. Under these conditions, the COD removal efficiency reached a maximum of 54.7 %. Additionally, the UV-vis, 3D-EEM, and GC-MS indicated the macromolecules 13-Docosenamide (Z), Bis(2-ethylhexyl) benzene-1,4-dicarboxylate and bis(2-ethylhexyl) phthalate were degraded. 13-Docosenamide (Z) was almost completely removed under the conditions of 0.8 V applied voltage, 2.5 cm electrode spacing and 24 h HRT, with a removal efficiency of 99.91 %. Significant differences were observed in the microbial core genera among the MEC-AD systems. The core genera in the anodic and cathodic biofilms were primarily fermentative and electroactive bacteria, including Soehngenia (2.2 % - 32.1 %, 3.2 % - 26.4 %) and Desulfomicrobium (1.1 % - 10.2 %, 2.0 % - 29.3 %). Fermentative bacteria, norank_f__Bacteroidetes_vadinHA17, established cooperative relationships with electroactive bacteria Acinetobacter. The enrichment of electrochemically active bacteria optimized microbial interactions, thereby synergistically enhancing the biotransformation of complex organic matter in landfill leachate.
Collapse
Affiliation(s)
- Jiachen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mengmeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hang Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yi Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Luqi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yanxiao Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Zhang M, Wang T, Han Y, Yan X, Zhu X, Sun Y, Jiang X, Wang X. Anode potential regulates gas composition and microbiome in anaerobic electrochemical digestion. BIORESOURCE TECHNOLOGY 2024; 412:131414. [PMID: 39226941 DOI: 10.1016/j.biortech.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Anaerobic electrochemical digestion (AED) is an effective system for recovering biogas from organic wastes. However, the effects of different anode potentials on anaerobic activated sludge remain unclear. This study confirmed that biofilms exhibited the best electroactivity at -0.2 V (vs. Ag/AgCl) compared to -0.4 V and 0 V. Gas was further regulated, with the highest hydrogen content (47 ± 7 %) observed at -0.2 V. The 0 V system produced the largest amount of methane (70 ± 8 %) and exhibited the greatest presence of hydrogen-utilizing microorganisms. The gas yield at -0.4 V was the lowest, with no hydrogen detected. Excess bioelectrohydrogen at -0.2 V and 0 V caused the co-enrichment of Methanobacterium and Acetoanaerobium, establishing a thermodynamically feasible current-acetate-hydrogen electron cycle to improve electrogenesis. These results provide insights into the regulatory strategies of MEC technology during anaerobic digestion, which play a decisive role in determining the composition of biogas.
Collapse
Affiliation(s)
- Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Wang XT, Zhao L, Zhang Q, Wang B, Xing D, Nan J, Ren NQ, Lee DJ, Chen C. Linking performance to dynamic migration of biofilm ecosystem reveals the role of voltage in the start-up of hybrid microbial electrolysis cell-anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 411:131242. [PMID: 39122126 DOI: 10.1016/j.biortech.2024.131242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Applied voltage is a crucial parameter in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) systems for enhancing methane production from waste activated sludge (WAS). This study explored the impact of applied voltage on the initial biofilm formation on electrodes during the MEC-AD startup using raw WAS (Rr) and heat-pretreated WAS (Rh). The findings indicated that the maximum methane productivity for Rr and Rh were 3.4 ± 0.5 and 3.4 ± 0.2 mL/gVSS/d, respectively, increasing 1.5 times and 2.6 times over the productivity at 0 V. The biomass on electrode biofilms for Rr and Rh at 0.8 V increased by 70 % and 100 % compared to 0 V. The core functional microorganisms in the cathode biofilm were Methanobacterium and Syntrophomonas, and Geobacter in the anode biofilm, enhancing methane production through syntrophism and direct interspecies electron transfer, respectively. These results offer academic insights into optimizing AD functional electrode biofilms by applying voltage.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Bo Wang
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
5
|
Ma S, Zhang Y, Tu L, Li X, Chen X, Lin S, Luo H, Zhan X, Liu G. Efficient hydrogen production from food waste leachate using single-chamber microbial electrolysis cell. ENVIRONMENTAL RESEARCH 2024; 263:120159. [PMID: 39414112 DOI: 10.1016/j.envres.2024.120159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The aim of this study was to develop an efficient strategy for enhancing H2 production in the single-chamber microbial electrolysis cell (MEC) using food waste leachate as a substrate. Different pH (8.5, 9.5, 10.5, and 11.2), applied voltage (0.8, 1.2, 1.5, 1.8, 2.0, 2.2, 2.3, and 2.4 V) and negative pressure control (-50 kPa) were tested in the single-chamber MEC. Suitable pH adjustment could greatly promote electricity generation and H2 production rather than negative pressure control. Under pH of 11.5 and 2.4 V, the maximum current density reached 121.9 ± 10.9 A/m³ with an average H2 concentration of 91.9 ± 3.2% in a 1.2-L single-chamber MEC within 30 continuous cycles of operation (∼607 h), which was constructed with carbon brushes as the anode and stainless steel brushes as the cathode. The maximum H2 production rate reached 853.2 ± 70.3 L/m³•d with an H2 yield of 26.3 mmol•H2/g•COD. The COD removal of 68.3 ± 6.8% and three-dimensional excitation-emission matrix spectra of the effluent in the MEC within 21 ± 3h indicated efficient organics degradation in the leachate. Our results should provide a promising way to enhance the H2 production of MEC during leachate treatment.
Collapse
Affiliation(s)
- Shuyue Ma
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yifan Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lingli Tu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xindi Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Songwei Lin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Han Y, Li W, Gao Y, Cai T, Wang J, Liu Z, Yin J, Lu X, Zhen G. Biogas upgrading and membrane anti-fouling mechanisms in electrochemical anaerobic membrane bioreactor (EC-AnMBR): Focusing on spatio-temporal distribution of metabolic functionality of microorganisms. WATER RESEARCH 2024; 256:121557. [PMID: 38581982 DOI: 10.1016/j.watres.2024.121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Electrochemical anaerobic membrane bioreactor (EC-AnMBR) by integrating a composite anodic membrane (CAM), represents an effective method for promoting methanogenic performance and mitigating membrane fouling. However, the development and formation of electroactive biofilm on CAM, and the spatio-temporal distribution of key functional microorganisms, especially the degradation mechanism of organic pollutants in metabolic pathways were not well documented. In this work, two AnMBR systems (EC-AnMBR and traditional AnMBR) were constructed and operated to identify the role of CAM in metabolic pathway on biogas upgrading and mitigation of membrane fouling. The methane yield of EC-AnMBR at HRT of 20 days was 217.1 ± 25.6 mL-CH4/g COD, about 32.1 % higher compared to the traditional AnMBR. The 16S rRNA analysis revealed that the EC-AnMBR significantly promoted the growth of hydrolysis bacteria (Lactobacillus and SJA-15) and methanogenic archaea (Methanosaeta and Methanobacterium). Metagenomic analysis revealed that the EC-AnMBR promotes the upregulation of functional genes involved in carbohydrate metabolism (gap and kor) and methane metabolism (mtr, mcr, and hdr), improving the degradation of soluble microbial products (SMPs)/extracellular polymeric substances (EPS) on the CAM and enhancing the methanogens activity on the cathode. Moreover, CAM biofilm exhibits heterogeneity in the degradation of organic pollutants along its vertical depth. The bacteria with high hydrolyzing ability accumulated in the upper part, driving the feedstock degradation for higher starch, sucrose and galactose metabolism. A three-dimensional mesh-like cake structure with larger pores was formed as a biofilter in the middle and lower part of CAM, where the electroactive Geobacter sulfurreducens had high capabilities to directly store and transfer electrons for the degradation of organic pollutants. This outcome will further contribute to the comprehension of the metabolic mechanisms of CAM module on membrane fouling control and organic solid waste treatment and disposal.
Collapse
Affiliation(s)
- Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, PR China.
| |
Collapse
|
7
|
Guo M, Wei S, Guo M, Li M, Qi X, Wang Y, Jia X. Potential mechanisms of propionate degradation and methanogenesis in anaerobic digestion coupled with microbial electrolysis cell system: Importance of biocathode. BIORESOURCE TECHNOLOGY 2024; 400:130695. [PMID: 38614147 DOI: 10.1016/j.biortech.2024.130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Microbial electrolysis cells (MEC) have the potential for enhancing the efficiency of anaerobic digestion (AD). In this study, microbiological and metabolic pathways in the biocathode of anaerobic digestion coupled with microbial electrolysis cells system (AD-MEC) were revealed to separate bioanode. The biocathode efficiently degraded 90 % propionate within 48 h, leading to a methane production rate of 3222 mL·m-2·d-1. The protein and heme-rich cathodic biofilm enhanced redox capacity and facilitated interspecies electron transfer. Key acid-degrading bacteria, including Dechloromonas agitata, Ignavibacteriales bacterium UTCHB2, and Syntrophobacter fumaroxidans, along with functional proteins such as cytochrome c and e-pili, established mutualistic relationships with Methanothrix soehngenii. This synergy facilitated a multi-pathway metabolic process that converted acetate and CO2 into methane. The study sheds light on the intricate microbial dynamics within the biocathode, suggesting promising prospects for the scalable integration of AD-MEC and its potential in sustainable energy production.
Collapse
Affiliation(s)
- Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - MeiXin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Wei Y, Chen W, Hou J, Qi X, Ye M, Jiang N, Meng F, Xi B, Li M. Biogas upgrading performance and underlying mechanism in microbial electrolysis cell and anaerobic digestion integrated system. BIORESOURCE TECHNOLOGY 2024; 400:130683. [PMID: 38599352 DOI: 10.1016/j.biortech.2024.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The productivity and efficiency of two-chamber microbial electrolysis cell and anaerobic digestion integrated system (MEC-AD) were promoted by a complex of anaerobic granular sludge and iron oxides (Fe-AnGS) as inoculum. Results showed that MEC-AD with Fe-AnGS achieved biogas upgrading with a 23%-29% increase in the energy recovery rate of external circuit current and a 26%-31% decrease in volatile fatty acids. The energy recovery rate of MEC-AD remained at 52%-57%, indicating a stable operation performance. The selectively enriched methanogens and electroactive bacteria resulted in dominant hydrogenotrophic and acetoclastic methanogenesis in the cathode and anode chambers. Mechanistic analysis revealed that MEC-AD with Fe-AnGS led to specifically upregulated enzymes related to energy metabolism and electron transfer. Fe-AnGS as inoculum could improve the long-term operation performance of MEC-AD. Consequently, this study provides an efficient strategy for biogas upgrading in MEC-AD.
Collapse
Affiliation(s)
- Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wangmi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xuejiao Qi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ning Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
9
|
Jadhav DA, Yu Z, Hussien M, Kim JH, Liu W, Eisa T, Sharma M, Vinayak V, Jang JK, Wilberforce Awotwe T, Wang A, Chae KJ. Paradigm shift in Nutrient-Energy-Water centered sustainable wastewater treatment system through synergy of bioelectrochemical system and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 396:130404. [PMID: 38336215 DOI: 10.1016/j.biortech.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Zhe Yu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Mohammed Hussien
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ju-Hyeong Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Jae-Kyoung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Tabbi Wilberforce Awotwe
- Department of Engineering, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, United Kingdom
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
10
|
Herrera-Jordan K, Pennington P, Zea L. Reduced Pseudomonas aeruginosa Cell Size Observed on Planktonic Cultures Grown in the International Space Station. Microorganisms 2024; 12:393. [PMID: 38399797 PMCID: PMC10892763 DOI: 10.3390/microorganisms12020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bacterial growth and behavior have been studied in microgravity in the past, but little focus has been directed to cell size despite its impact on a myriad of processes, including biofilm formation, which is impactful regarding crew health. To interrogate this characteristic, supernatant aliquots of P. aeruginosa cultured on different materials and media on board the International Space Station (ISS) as part of the Space Biofilms Project were analyzed. For that experiment, P. aeruginosa was grown in microgravity-with matching Earth controls-in modified artificial urine medium (mAUMg-high Pi) or LB Lennox supplemented with KNO3, and its formation of biofilms on six different materials was assessed. After one, two, and three days of incubation, the ISS crew terminated subsets of the experiment by fixation in paraformaldehyde, and aliquots of the supernatant were used for the planktonic cell size study presented here. The measurements were obtained post-flight through the use of phase contrast microscopy under oil immersion, a Moticam 10+ digital camera, and the FIJI image analysis program. Statistical comparisons were conducted to identify which treatments caused significant differences in cell dimensions using the Kruskal-Wallis and Dunn tests. There were statistically significant differences as a function of material present in the culture in both LBK and mAUMg-high Pi. Along with this, the data were also grouped by gravitational condition, media, and days of incubation. Comparison of planktonic cells cultured in microgravity showed reduced cell length (from 4% to 10% depending on the material) and diameter (from 1% to 10% depending on the material) with respect to their matching Earth controls, with the caveat that the cultures may have been at different points in their growth curve at a given time. In conclusion, smaller cells were observed on the cultures grown in microgravity, and cell size changed as a function of incubation time and the material upon which the culture grew. We describe these changes here and possible implications for human space travel in terms of crew health and potential applications.
Collapse
Affiliation(s)
- Katherinne Herrera-Jordan
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Pamela Pennington
- Research Institute, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Luis Zea
- Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Zheng T, Bian C, Xiao B, Chen X, Wang J, Li L. Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages. BIORESOURCE TECHNOLOGY 2023; 386:129562. [PMID: 37506942 DOI: 10.1016/j.biortech.2023.129562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effects of microbial electrolysis cell (MEC) integration stage on two-stage anaerobic digestion (TSAD) of food waste (FW) were studied via semi-continuous experiments. The results showed that both MEC (with 1.2 V) integrations enhanced the performances of the TSADs, with the enhancement of electro-two stages being higher. The methane production of TSAD increased from 1.36 ± 0.04 L/L/d to 1.53 ± 0.05 L/L/d (electro-methanogenic stage) and 1.54 ± 0.04 L/L/d (electro-two stages) during the steady period. Electro-acidogenesis decreased propionic acid production and enhanced hydrogen production, while electro-methanogenesis promoted the conversion of volatile fatty acids to methane. The MEC integration improved energy recovery from the organic matter in FW by 11.65-16.15% and reduced the mass loss, with those of the electro-two stages being higher and the electro-methanogenic stage being dominant in the electro-two stages. The integration of MEC enhanced anaerobic fermentation by enriching Olsenella, norank_f__ST-12K33 and Proteiniphilum and improved methanogenesis by enriching Methanobacterium and Candidatus_Methanofastidiosum.
Collapse
Affiliation(s)
- Tianlong Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang N, Yang Y, Xu K, Long X, Zhang Y, Liu H, Chen T, Li J. Distinguishing anaerobic digestion from electrochemical anaerobic digestion: Metabolic pathways and the role of the microbial community. CHEMOSPHERE 2023; 326:138492. [PMID: 36963582 DOI: 10.1016/j.chemosphere.2023.138492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, we explored why electrochemical anaerobic digestion (EAD) results in higher methane conversion and lower CO2 emissions than anaerobic digestion (AD). Single-chamber AD and EAD reactors were used in this experiment, and the temperature was set as the disturbance factor. Current, pH, electrode potential, gas content, and microbial community were used as indicators for our analysis. Flux balance analysis (FBA) and high-pass next-generation sequencing (NGS) were used to explore the relationships between AD and EAD methane-producing metabolic fluxes and microorganisms. The results showed that the average methane fluxes were 22.27 (AD) and 29.65 (EAD). Compared with AD, EAD had improved hydrogen-dependent CO2 reduction pathway. Trichloromonas was the dominant electricity-producing microorganism on the EAD anode film, which was closely related to the H2 flux at the cathode. Oscillibacter and Syntrophomonas were the dominant bacteria in the fermentation broth, specific to EAD. The abundance of Oscillibacter was positively correlated with the H2 flux, and the presence of Oscillibacter enhanced CO2 reduction by hydrogen. Methanosaeta was the only dominant methanogenic bacterium in AD and EAD, and its abundance was higher in the experimental group with a greater methane flux.
Collapse
Affiliation(s)
- Nan Wang
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Yang
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Kunde Xu
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiangang Long
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yurui Zhang
- School of Economics & Management, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hongzhou Liu
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Tiezhu Chen
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Jianchang Li
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
13
|
Huang Q, Liu Y, Ranjan Dhar B. Boosting resilience of microbial electrolysis cell-assisted anaerobic digestion of blackwater with granular activated carbon amendment. BIORESOURCE TECHNOLOGY 2023; 381:129136. [PMID: 37169203 DOI: 10.1016/j.biortech.2023.129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Poor hydrolysis and methanogenesis efficiencies remain the main challenges for blackwater anaerobic digestion. This study investigated the performance of a granular activated carbon (GAC) amended microbial electrolysis cell-assisted anaerobic digester (MEC-AD) treating blackwater. Due to hydrolysis limitation, both MEC-AD and control reactors experienced performance declines as the organic loading rate increased from 3.0 to 4.5 g COD/L-d. Then, adding GAC without mixing formed GAC-sludge aggregates that improved methane yield to 38.3% and 32.3% in the MEC-AD and control reactor, respectively, and enhanced hydrolysis efficiency. The amended MEC-AD also successfully overcame the performance deterioration due to a temperature drop. Biomarker identification revealed the crucial roles of GAC biofilms and settled sludge in promoting methanogenesis and hydrolysis, respectively. This study demonstrated the GAC addition and the electrochemical environment could have a reciprocal influence, leading to more robust syntrophic microbial interactions, which could guide the future application of conductive materials in MEC-AD systems.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
14
|
Wu KK, Zhao L, Sun ZF, Wang ZH, Chen C, Ren HY, Yang SS, Ren NQ. Synergistic effect of hydrogen and nanoscale zero-valent iron on ex-situ biogas upgrading and acetate recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159100. [PMID: 36174700 DOI: 10.1016/j.scitotenv.2022.159100] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen (H2) assisted ex-situ biogas upgrading and liquid chemicals production can augment the fossil fuel-dominated energy market, and alleviate CO2-induced global warming. Recent investigations confirmed that nanoscale zero-valent iron (nZVI) enabled the enhancement of anaerobic digestion for biogas production. However, little is known about the effect of nZVI on the downstream ex-situ biogas upgrading. Herein, different levels (0 mg L-1, 100 mg L-1, 200 mg L-1, 500 mg L-1, 1000 mg L-1, 2000 mg L-1) of nZVI were added for H2-assisted ex-situ biogas upgrading, to study whether nZVI could impact the biomethane purity and acetate yield for the first time. Results showed that all tested nZVI levels were favorable for biogas upgrading in the presence of H2, the highest biomethane content (94.1 %, v/v), the CO2 utilization ratio (95.9 %), and acetate yield (19.4 mmol L-1) were achieved at 500 mg L-1 nZVI, respectively. Further analysis indicated that increased biogas upgrading efficiency was related to an increase in extracellular polymeric substances, which ensures the microbial activity and stability of the ex-situ biogas upgrading. Microbial community characterization showed that the Petrimonas, Romboutsia, Acidaminococcus, and Clostridium predominated the microbiome during biogas upgrading at 500 mg L-1 nZVI with H2 supply. These results suggested that nZVI and H2 contributed jointly to promoting the bioconversion of CO2 in biogas to acetate. The findings could be helpful for paving a new way for efficient simultaneous ex-situ biogas upgrading and liquid chemicals recovery.
Collapse
Affiliation(s)
- Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Su J, Lv W, Ren L, Kong X, Luo L, Awasthi MK, Yan B. Effect of water regime on the dynamics of free ammonia during high solid anaerobic digestion of pig manure. CHEMOSPHERE 2023; 312:137328. [PMID: 36410500 DOI: 10.1016/j.chemosphere.2022.137328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Free ammonia (FAN) inhibition is commonly encountered during high solid anaerobic digestion (HSAD) of pig manure. The performance of HSAD is highly related to its operational water regime; however, little information is available regarding the dynamics of free ammonia with varied water regimes. In this work, four treatments were set with equal amount of water supply but varied addition frequencies, i.e. add once but at different times in treatments T1 and T2, add twice in T3 while it was three times in treatment T4. Results showed that the whole methanogenic process ran smoothly with the average methane gas production rate maintaining at 191.1 LCH4/kgVSadded. Although a higher methane gas production rate of 217.4 LCH4/kgVSadded was achieved in T1, one time water addition triggered a higher ammonia inhibition potential. Cumulative FAN release was 6.03 mgFAN/kgVSadded in T1 while the balance between FAN and ammonia tended to the fraction of FAN. In T4, cumulative FAN of 5.07 mgFAN/kgVSadded was evolved, which was lower than that in T1 but similar to the situation in T2. The lowest FAN was observed in T3, indicating that a moderate frequency of dilution might be conducive to alleviate free ammonia inhibition.
Collapse
Affiliation(s)
- Jian Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Lv
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Artificial intelligence-based modeling and optimization of microbial electrolysis cell-assisted anaerobic digestion fed with alkaline-pretreated waste-activated sludge. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
18
|
Jiao Y, Yuan Y, He C, Liu L, Pan X, Li P. Enrichment culture combined with microbial electrochemical enhanced low-temperature anaerobic digestion of cow dung. BIORESOURCE TECHNOLOGY 2022; 360:127636. [PMID: 35853591 DOI: 10.1016/j.biortech.2022.127636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Enrichment culture combined with the microbial electrochemical system was used to co-enhance the low-temperature (20 °C) anaerobic digestion. The results showed that enrichment culture combined with microbial electrochemical system increased the cumulative methane production in low-temperature anaerobic digestion system by 39.64 % and 133.29 % compared to single and no enrichment culture, respectively. Enrichment culture combined with microbial electrochemical system increased the relative abundance of methanogenic archaea (Methanomassiliicoccus, Methanocorpusculum, unclassified Methanomicrobiaceae, Methanobacterium, Methanoculleus, Methanocalculus) and the relative abundance of cold-tolerant hydrolytic acidifying bacteria (unclassified Bacteroidetes, Treponema). The expressions of specific enzyme genes in the methanogenesis pathway were enhanced, including acetyl-CoA synthetase, formylmethanofuran dehydrogenase, methanol cobalamin methyltransferase, etc. These results indicated that enrichment culture combined with microbial electrochemical system enhanced low-temperature anaerobic digestion methanogenesis by altering microbial communities and stimulating enzyme gene expression to affect volatile fatty acids, pH, redox potential, and reducing sugar parameters.
Collapse
Affiliation(s)
- Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongkang Yuan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
19
|
Wang S, Wang X, Fessler M, Jin B, Su Y, Zhang Y. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion. WATER RESEARCH 2022; 221:118844. [PMID: 35949067 DOI: 10.1016/j.watres.2022.118844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical anaerobic digestion (BEAD) is a promising next-generation technology for simultaneous wastewater treatment and bioenergy recovery. While knowledge on the inhibitory effect of emerging pollutants, such as microplastics, on the conventional wastewater anaerobic digestion processes is increasing, the impact of microplastics on the BEAD process remains unknown. This study shows that methane production decreased by 30.71% when adding 10 mg/L polyethylene microplastics (PE-MP) to the BEAD systems. The morphology of anaerobic granular sludge, which was the biocatalysts in the BEAD, changed with microbes shedding and granule crack when PE-MP existed. Additionally, the presence of PE-MP shifted the microbial communities, leading to a lower diversity but higher richness and tight clustering. Moreover, fewer fermentative bacteria, acetogens, and hydrogenotrophic methanogens (BEAD enhanced) grew under PE-MP stress, suggesting that PE-MP had an inhibitory effect on the methanogenic pathways. Furthermore, the abundance of genes relevant to extracellular electron transfer (omcB and mtrC) and methanogens (hupL and mcrA) decreased. The electron transfer efficiency reduced with extracellular cytochrome c down and a lower electron transfer system activity. Finally, phylogenetic investigation of communities by reconstruction of unobserved states analysis predicted the decrease of key methanogenic enzymes, including EC 1.1.1.1 (Alcohol dehydrogenase), EC 1.2.99.5 (Formylmethanofuran dehydrogenase), and EC 2.8.4.1 (Coenzyme-B sulfoethylthiotransferase). Altogether, these results provide insight into the inhibition mechanism of microplastics in wastewater methane recovery and further optimisation of the BEAD process.
Collapse
Affiliation(s)
- Song Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Xueting Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
20
|
Zhao ZJ, Wang YR, Wang YX, Zhang W, Li ZH, Mu Y. Electrical stimulation enhancing anaerobic digestion under ammonia inhibition: A comprehensive investigation including proteomic analysis. ENVIRONMENTAL RESEARCH 2022; 211:113006. [PMID: 35227674 DOI: 10.1016/j.envres.2022.113006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cell (MEC) coupled anaerobic digestion (AD), named as MEC-AD system, can effectively promote methane production under ammonia inhibition, but the inherent mechanism is still poorly understood. This study comprehensively explored the MEC-AD performance and mechanism under high-concentration ammonia stress including using proteomic analysis. It was found that the methane generation rates in MEC-AD systems were 2.0-2.7 times that of AD ones under 5.0 g/L ammonia stress. Additionally, the experimental conditions for methane generation in MEC-AD systems were optimized using response surface methodology. Further analysis indicates that the activities of acetate kinase and F420 were improved, and particularly the direct interspecies electron transfer (DIET) was promoted in MEC-AD systems, as indicated by increased electroactive extracellular polymeric substance, decreased charge transfer resistance, and enrichment of electroactive microbes such as Geobacter on the bioelectrodes. Moreover, proteomic analysis reveals that the DIET associated proteins such as Cytochrome C was up-regulated, and ammonia transfer-related proteins were down-regulated and ammonium detoxification-related proteins were up-regulated in MEC-AD systems. This work provides us a better understanding on the MEC-AD performance especially for the treatment of wastewater containing high-concentration ammonia.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yi-Ran Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Wei Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
21
|
Wang XT, Zhang YF, Wang B, Wang S, Xing X, Xu XJ, Liu WZ, Ren NQ, Lee DJ, Chen C. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process - A review. BIORESOURCE TECHNOLOGY 2022; 346:126641. [PMID: 34973405 DOI: 10.1016/j.biortech.2021.126641] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) was proved to increase methane productivity and methane yield of waste activated sludge (WAS) by establishing direct interspecies electron transfer method and enriching functional microorganisms. This review first summarized the pretreatment methods of WAS for MEC-AD and then reviewed the reactor configurations, operation parameters, and the economic benefit of MEC-AD. Furthermore, the enhancement mechanisms of MEC-AD were reviewed based on the analysis of thermodynamics and microbial community. It was found that the decrease of hydrogen partial pressure due to the hydrogenotrophic methanogens enriched in cathodic biofilm and direct interspecies electron transfer between exoelectrogens and anode were the core mechanisms for improving acidogenesis, acetogenesis, and methanogenesis. Finally, the potentially technological issues that need to be addressed to increase energy efficiency in large-scale MEC-AD processes were discussed.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yi-Feng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bo Wang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Song Wang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Xue Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
22
|
Ning X, Lin R, O'Shea R, Wall D, Deng C, Wu B, Murphy JD. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. iScience 2021; 24:102998. [PMID: 34522851 PMCID: PMC8426204 DOI: 10.1016/j.isci.2021.102998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.
Collapse
Affiliation(s)
- Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
- Corresponding author
| | - Richard O'Shea
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - David Wall
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Benteng Wu
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Jerry D. Murphy
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| |
Collapse
|