1
|
Zhang S, Ji Y, Manoli K, Li Y, Chen Q, Lee Y, Yu X, Feng M. Halogenated bisphenol F compounds: Chlorination-mediated formation and photochemical fate in sunlit surface water. WATER RESEARCH 2025; 272:122966. [PMID: 39700836 DOI: 10.1016/j.watres.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Halogenated bisphenol compounds are prevalent in urban water systems and may pose greater environmental risks than their bisphenol precursors. This study explored the formation of halogenated bisphenol F (BPF) in water chlorination and their subsequent transformation behaviors in receiving waters. The kinetics and pathways of BPF halogenation with chlorine, bromine, and iodine were firstly investigated. BPF chlorination followed second-order kinetics, with pH-dependent second-order rate constants (kapp) ranging from 1.0 M-1s-1 at pH 5.0 to 50.4 M-1s-1 at pH 9.0. The kapp of BPF with bromine and iodine were 4 - 5 orders of magnitude higher than those of chlorine. The degradation potential of halogenated BPF products in sunlit surface waters was also evaluated, focusing on both direct and indirect photolysis. Indirect photolysis, involving reactions with excited triplet state of CDOM (3CDOM*), •OH and 1O2, emerged as the primary degradation pathway for BPF, while both direct photolysis and indirect photolysis with 3CDOM* predominated for mono- and dihalogenated BPF products. Compared with BPF, the photodegradation of halogenated products was significantly enhanced. Photolysis experiments in wastewater-receiving wetland water demonstrated effective degradation of halogenated BPF products, highlighting the pivotal role of sunlight in their environmental fate. Overall, this study advances understanding of the formation and fate of halogenated BPF products and provides valuable insights for managing the environmental impacts of these emerging contaminants.
Collapse
Affiliation(s)
- Shengqi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Yong Li
- Guangzhou Hexin Instrument Co. Ltd., Guangzhou 510530, China
| | - Qian Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Fang Y, Zhang X, Liu C, Wang K, Rong X, Zhu B. A highly specific colorimetric fluorescent probe for rapid detection of hypobromous acid and its application in the environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124822. [PMID: 39084019 DOI: 10.1016/j.saa.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
The highly reactive hypobromous acid (HOBr), which is generated after chlorination process of tap water, acts as a precursor of toxic brominated disinfection by-products (Br-DBPs) and further reacts with organic matter. In addition, HOBr produced from the oxidation of Br- during the degradation of pollutants by peroxymonosulfate (PMS, HSO5-) can be considered as the cause of the expedited degradation of pollutants. Therefore, it is particularly important to detect HOBr level in the water environment. Resazurin was selected as a fluorescent probe for selective recognition of HOBr in the water environment. The probe exhibited excellent spectral performance and showed high sensitivity to HOBr (LOD = 515 nM). This method has a relatively ideal recovery rate for HOBr detection in environmental water samples. Furthermore, the HOBr production during the chlorination disinfection process was simulated and the HOBr generated from this process was detected by the probe. Importantly, the process of HOBr recognition by the probe is accompanied by the change of color. Based on this, the relationship between the change of color B/G value and HOBr concentration was successfully constructed. The probe was loaded on the filter paper to make a test strip, which was utilized to the detection of HOBr. Collectively, this work provided a promising and powerful method for HOBr detection in the environment.
Collapse
Affiliation(s)
- Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Li W, Wu S, Zhang W. Insights into the Formation of Chlorinated Polycyclic Aromatic Hydrocarbons Related to Chlorine in Salt-Tolerant Rice: Profiles in Market Samples, Effects of Saline Cultivation, and Household Cooking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24833-24846. [PMID: 39440816 DOI: 10.1021/acs.jafc.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (XPAHs) present potential risk owing to their greater toxicity than PAHs. This study aimed to explore their profiles in commercial salt-tolerant rice, effects of saline cultivation (0‰ and 3‰ saline conditions), and formation during home cooking. A validated SPE-GC-MS/MS method was used to analyze PAHs and XPAHs in 16 commercial salt-tolerant rice samples. The PAH24 and XPAH18 concentrations were 6.95-32.73 μg kg-1 and 0.013-0.593 μg kg-1, respectively. Chlorinated PAHs (ClPAHs) were significantly greater in salt-tolerant rice (0.14 μg kg-1) than in normal rice (0.048 μg kg-1). During cooking, a notable increase (210-1120%) in ClPAHs and a significant correlation (r = 0.70-0.81, p < 0.05) between newly formed ClPAHs and their parent PAHs were observed, suggesting cooking-induced chlorination of PAHs. Moreover, chlorine radical-induced chlorination of PAHs may be the primary mechanism involved. These findings highlight increased exposure to ClPAHs due to saline cultivation and cooking and provide new insight into ClPAH formation from household cooking.
Collapse
Affiliation(s)
- Wei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| |
Collapse
|
4
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
5
|
Zhang M, Lin K. Unintended polyhalogenated carbazole production during advanced oxidation of coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134649. [PMID: 38772108 DOI: 10.1016/j.jhazmat.2024.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging as dioxin-like global pollutants, yet their environmental origins are not fully understood. This study investigates the application of the Fenton process in coking wastewater treatment, focusing on its dual role in carbazole removal and unintended PHCZ formation. The common halide ions (Cl- and Br-) in coking wastewater, especially Br- ions, exerted a notable impact on carbazole removal. Particularly, the influence of Br- ions was more significant, not only enhancing carbazole removal but also shaping the congener composition of PHCZ formation. Elevated halide ion concentrations were associated with the heightened formation of higher halogenated carbazoles. The Fenton reagent dosage ratio was identified as a crucial factor affecting the congener composition of PHCZs and their toxic equivalency value. The coexisting organic substance (i.e., phenol) in coking wastewater was observed to inhibit PHCZ formation, likely through competitive reactions with carbazole. Intriguingly, ammonium (NH4+) facilitated the generation of higher and mixed halogenated carbazoles, possibly due to the generation of nitrogen-containing brominating agents with stronger bromination capacity. This study underscores the importance of a comprehensive assessment, considering both substrate removal and potential byproduct formation, when employing the Fenton process for saline wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Zheng W, Chen Y, Zhang J, Peng X, Xu P, Niu Y, Dong B. Control of chlorination disinfection by-products in drinking water by combined nanofiltration process: A case study with trihalomethanes and haloacetic acids. CHEMOSPHERE 2024; 358:142121. [PMID: 38677607 DOI: 10.1016/j.chemosphere.2024.142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Disinfection by-products (DBPs) are prevalent contaminants in drinking water and are primarily linked to issues regarding water quality. These contaminants have been associated with various adverse health effects. Among different treatment processes, nanofiltration (NF) has demonstrated superior performance in effectively reducing the levels of DBPs compared to conventional processes and ozone-biological activated carbon (O3-BAC) processes. In this experiment, we systematically investigated the performance of three advanced membrane filtration treatment schemes, namely "sand filter + nanofiltration" (SF + NF), "sand filter + ozone-biological activated carbon + nanofiltration" (SF + O3-BAC + NF), and "ultrafiltration + nanofiltration" (UF + NF), in terms of their ability to control disinfection by-product (DBP) formation in treated water, analyzed the source and fate of DBP precursors during chlorination, and elucidated the role of precursor molecular weight distribution during membrane filtration in relation to DBP formation potential (DBPFP). The results indicated that each treatment process reduced DBPFP, as measured by trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP), with the SF + O3-BAC + NF process being the most effective (14.27 μg/L and 14.88 μg/L), followed by the SF + NF process (21.04 μg/L and 16.29 μg/L) and the UF + NF process (26.26 μg/L and 21.75 μg/L). Tyrosine, tryptophan, and soluble microbial products were identified as the major DBP precursors during chlorination, with their fluorescence intensity decreasing gradually as water treatment progressed. Additionally, while large molecular weight organics (60-100,000 KDa) played a minor role in DBPFP, small molecular weight organics (0.2-5 KDa) were highlighted as key contributors to DBPFP, and medium molecular weight organics (5-60 KDa) could adhere to the membrane surface and reduce DBPFP. Based on these findings, the combined NF process can be reasonably selected for controlling DBP formation, with potential long-term benefits for human health.
Collapse
Affiliation(s)
- Wenjing Zheng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yan Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Jian Zhang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xing Peng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Pengcheng Xu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yalin Niu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Bingzhi Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, China
| |
Collapse
|
7
|
Zhang X, Liu C, Zhu H, Wang K, Liu M, Li X, Ma L, Yu M, Sheng W, Zhu B. A novel benzothiazolin-based fluorescent probe for hypobromous acid and its application in environment and biosystems. Talanta 2024; 266:124969. [PMID: 37524040 DOI: 10.1016/j.talanta.2023.124969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Studies have shown that hypobromous acid (HOBr) produced during chlorination disinfection of tap water can react with some organic matter in water to form toxic brominated disinfection byproducts (Br-DBPs) and HOBr also plays an important role during the process of micro pollutants degradation. Hence, real-time monitoring of HOBr in water environment plays a significant role in controlling the generation of Br-DBPs and degradation of micro pollutants. Herein, a novel highly specific fluorescent probe (PBE-HOBr) for accurate detection of HOBr was constructed based on the HOBr-induced oxidation elimination of benzothiazoline moiety employing the photo-induced electron transfer (PET) mechanism. PBE-HOBr has high sensitivity and linear response to HOBr with a low detection limit of 119 nM. PBE-HOBr not only has the ability to detect endogenous and exogenous HOBr in cells and zebrafish, but also has been used to monitor the formation of HOBr in water treatment. In addition, benzothiazoline group was demonstrated for the first time to be able to be used as a new recognition receptor for developing highly specific fluorescent probes for HOBr.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
8
|
Mahbub P, Duke M. Scalability of advanced oxidation processes (AOPs) in industrial applications: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118861. [PMID: 37651902 DOI: 10.1016/j.jenvman.2023.118861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Disinfection and decontamination of water by application of oxidisers is an essential treatment step across numerous industrial sectors including potable supply and industry waste management, however, could be greatly enhanced if operated as advanced oxidation processes (AOPs). AOPs destroy contaminants including pathogens by uniquely harnessing radical chemistry. Despite AOPs offer great practical opportunities, no reviews to date have highlighted the critical AOP virtues that facilitate AOPs' scale up under growing industrial demand. Hence, this review analyses the critical AOP parameters such as oxidant conversion efficiency, batch mode vs continuous-flow systems, location of radical production, radical delivery by advanced micro-/mesoporous structures and AOP process costs to assist the translation of progressing developments of AOPs into their large-scale applications. Additionally, the state of the art is analysed for various AOP inducing radical/oxidiser measurement techniques and their half-lives with a view to identify radicals/oxidisers that are suitable for in-situ production. It is concluded that radicals with short half-lives such as hydroxyl (10-4 μsec) and sulfate (30-40 μsec) need to be produced in-situ via continuous-flow reactors for their effective transport and dosing. Meanwhile, radicals/oxidisers with longer half-lives such as ozone (7-10 min), hydrogen peroxide (stable for several hours), and hypochlorous acid (10 min -17 h) need to be applied through batch reactor systems due to their relatively longer stability during transportation and dosing. Complex and costly synthesis as well as cytotoxicity of many micro-/mesoporous structures limit their use in scaling up AOPs, particularly to immobilising and delivering the short-lived hydroxyl and sulfate radicals to their point of applications. Overall, radical delivery using safe and advanced biocompatible micro-/mesoporous structures, radical conversion efficiency using advanced reactor design and portability of AOPs are priority areas of development for scaling up to industry.
Collapse
Affiliation(s)
- Parvez Mahbub
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia; First Year College, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia.
| | - Mikel Duke
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia
| |
Collapse
|
9
|
Sun H, Zhang L, Dong D, Zhang W, Guo Z. Freezing degradation of the anticonvulsant oxcarbazepine by bromate in water ice under sunlight irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165014. [PMID: 37343881 DOI: 10.1016/j.scitotenv.2023.165014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Ice plays a crucial role in contaminant transformation in seasonally ice-covered waters. In this study, the characteristics and mechanisms of an emerging contaminant oxcarbazepine (OXC) degradation by a disinfection by-product bromate ( [Formula: see text] ) in ice were explored via combined experiments and theoretical calculations. Results showed that 74.0 % and 86.4 % of OXC was degraded by [Formula: see text] in ice after 140 min in dark and 120 min under solar irradiation, respectively, while the reaction was negligible in water. The oxidation-reduction potential of [Formula: see text] solution at 1000 μmol L-1 was 56.9 % higher than that at 50 μmol L-1. The oxidation-reduction potential of [Formula: see text] solution at pH 2 was 14.8 %-109.5 % higher than those at other pH values. Enhanced OXC degradation by [Formula: see text] in ice could be attributed to increased [Formula: see text] oxidation capacity resulting from locally elevated [Formula: see text] and H+ concentrations. Hypobromous acid (HOBr), •OH, and Br• generated by direct photolysis under solar irradiation further promoted the OXC degradation in ice. Br• formed by the direct photolysis of accumulated HOBr under solar irradiation caused the generation of bromine-containing degradation products. Bromine-containing degradation products possessed higher potential toxicities, which could contribute to increase the secondary pollution of water environment.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenming Zhang
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
11
|
Sun H, Zhang L, Wang L, Dong D, Li Y, Guo Z. Enhanced freezing-induced carbamazepine degradation by bromate under solar irradiation via the formation of hypobromous acid and hydroxyl radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131793. [PMID: 37302190 DOI: 10.1016/j.jhazmat.2023.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Ice is a crucial medium in cold regions and plays an important role in the transformation of pollutants. When waters receiving treated wastewater freeze in cold regions during winter, the emerging contaminant carbamazepine (CBZ) and the disinfection by-product bromate ( [Formula: see text] ) can coexist in ice. However, their interaction in ice remains poorly understood. Here, CBZ degradation by [Formula: see text] in ice was investigated via a simulation experiment. Results showed that 96% of CBZ was degraded by [Formula: see text] after 90 min in ice in dark, while the degradation was negligible in water. The time required for nearly 100% CBZ degradation by [Formula: see text] in ice under solar irradiation was 22.2% shorter than in dark. The production of hypobromous acid (HOBr) was responsible for the gradually accelerated CBZ degradation rate in ice. The HOBr generation time in ice under solar irradiation was 50% shorter than in dark. The formation of HOBr and hydroxyl radical by the direct photolysis of [Formula: see text] under solar irradiation enhanced the CBZ degradation in ice. CBZ was mainly degraded by deamidation, decarbonylation, decarboxylation, hydroxylation, molecular rearrangement, and oxidation reactions. Furthermore, 18.5% of degradation products exhibited lower toxicity than their parent CBZ. This work can provide new insights into the environmental behaviors and fate of emerging contaminants in cold regions.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Li M, Li W, Yang Y, Yu D, Lin J, Wan R, Zhu H. Remarkably efficient Pt/CeO 2-Al 2O 3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al 2O 3 and CeO 2. CHEMOSPHERE 2023; 327:138515. [PMID: 36972872 DOI: 10.1016/j.chemosphere.2023.138515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Monoiodoacetic acid (MIAA) is one of the highly toxic halogenated disinfection by-products, which is formed during water disinfection processes. Catalytic hydrogenation with supported noble metal catalyst is a green and effective technique for the transformation of halogenated pollutant, but its activity still needs to be identified. In this study, Pt nanoparticles were supported on CeO2 modified γ-Al2O3 (Pt/CeO2-Al2O3) by chemical deposition method and the synergistic effect of Al2O3 and CeO2 on catalytic hydrodeiodination (HDI) of MIAA was systematically studied. Characterizations revealed that Pt dispersion could be improved by the introduced CeO2 through the formation of Ce-O-Pt bond and MIAA adsorption could be facilitated by high Zeta potential of Al2O3 component. Furthermore, optimal Ptn+/Pt0 could be obtained by adjusting CeO2 deposition amount on Al2O3, which could effectively facilitate the activation of C-I bond. Therefore, Pt/CeO2-Al2O3 exhibited remarkable catalytic activities and TOF values compared with those of Pt/CeO2 and Pt/Al2O3. Through detailed kinetic experiments and characterization, the extraordinary catalytic performance of Pt/CeO2-Al2O3 can be attributed to the abundant Pt sites as well as the synergistic effect between CeO2 and Al2O3.
Collapse
Affiliation(s)
- Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Wen Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Dailiang Yu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Jingling Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
13
|
Li W, Wu S. Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Zhang S, Yin Q, Zhang S, Manoli K, Zhang L, Yu X, Feng M. Chlorination of methotrexate in water revisited: Deciphering the kinetics, novel reaction mechanisms, and unexpected microbial risks. WATER RESEARCH 2022; 225:119181. [PMID: 36198210 DOI: 10.1016/j.watres.2022.119181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Chlorination of a typical anticancer drug with annually ascending use and global prevalence (methotrexate, MTX) in water has been studied. In addition to the analysis of kinetics in different water/wastewater matrices, high-resolution product identification and in-depth secondary risk evaluation, which were eagerly urged in the literature, were performed. It was found that the oxidation of MTX by free available chlorine (FAC) followed first-order kinetics with respect to FAC and first-order kinetics with respect to MTX. The pH-dependent rate constants (kapp) ranged from 170.00 M-1 s-1 (pH 5.0) to 2.68 M-1 s-1 (pH 9.0). The moiety-specific kinetic analysis suggested that 6 model substructures of MTX exhibited similar reactivity to the parent compound at pH 7.0. The presence of Br- greatly promoted MTX chlorination at pH 5.0-9.0, which may be ascribed to the formation of bromine with higher reactivity than FAC. Comparatively, coexisting I- or humic acid inhibited the degradation of MTX by FAC. Notably, chlorination effectively abated MTX in different real water matrices. The liquid chromatography-high resolution mass spectrometry analysis of multiple matrix-mediated chlorinated samples indicated the generation of nine transformation products (TPs) of MTX, among which seven were identified during FAC oxidation for the first time. In addition to the reported electrophilic chlorination of MTX (the major and dominant reaction pathway), the initial attacks on the amide and tertiary amine moieties with C-N bond cleavage constitute novel reaction mechanisms. No genotoxicity was observed for MTX or chlorinated solutions thereof, whereas some TPs were estimated to show multi-endpoint aquatic toxicity and higher biodegradation recalcitrance than MTX. The chlorinated mixtures of MTX with or without Br- showed a significant ability to increase the conjugative transfer frequency of plasmid-carried antibiotic resistance genes within bacteria. Overall, this work thoroughly examines the reaction kinetics together with the matrix effects, transformation mechanisms, and secondary environmental risks of MTX chlorination.
Collapse
Affiliation(s)
- Shengqi Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Yin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kyriakos Manoli
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
15
|
Jiang H, Kaw HY, Zhu L, Wang W. Halonaphthoquinones: A group of emerging disinfection byproducts of high toxicity in drinking water. WATER RESEARCH 2022; 217:118421. [PMID: 35429882 DOI: 10.1016/j.watres.2022.118421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Aromatic halogenated disinfection byproducts (DBPs) have received particular attention in recent years due to their high toxicity. However, most relevant researches at present focused merely on halo-monocyclic DBPs, while halo-polycyclic DBPs were scarcely explored. In this study, a new group of halo-bicyclic DBPs termed as halonaphthoquinones (HNQs) was systematically studied. By coupling with vacuum centrifugal concentrator, a SPE-UPLC-MS/MS method with high accuracy and sensitivity was developed to detect five semi-volatile HNQs in drinking water, which achieved the detection limits in the range of 0.05-0.24 ng/L. Five HNQs were identified using this method with 100% detection frequency at concentrations up to 136.7 ng/L in drinking water originated from seven water treatment plants. The cytotoxicity of the five tested HNQs in CHO-K1 cells (IC50 from 3.17 to 13.18 μM) was comparable to the most toxic known carbonaceous DBP in drinking water, iodoacetic acid (IC50=2.95 μM). Meanwhile, the cytotoxicity of five tested HNQs were also higher than 2,6-dichloro-1,4-benzoquinone (IC50=21.73 μM) which is hundreds to thousands of times more toxic than regulated DBPs, indicating the significant toxicity risk of HNQ DBPs. To the best of our knowledge, this study presents the first analytical method for analysis of HNQ DBPs, and the first set of data on the occurrence and cytotoxicity of HNQ DBPs in drinking water. These findings are meaningful for probing deeply into the presence of varied halo-polycyclic DBPs in the aqueous environment.
Collapse
Affiliation(s)
- Hangcheng Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
16
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Mazur DM, Lebedev AT. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77. [PMCID: PMC9924213 DOI: 10.1134/s1061934822140052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The purity of drinking water is an important issue of the human life quality. Water disinfection has saved millions people from the diseases spread with water. However, that procedure has a certain drawback due to formation of toxic organic disinfection products. Establishing the structures of these products and the mechanisms of their formation and diminishing their levels in drinking water represent an important task for chemistry and medicine, while mass spectrometry is the most efficient tool for the corresponding studies. The current review throws light upon natural and anthropogenic sources of the formation of disinfection by-products (DBPs) and the mechanisms of their formation related to the structural peculiarities and the presence of functional groups. In addition to chlorination, bromination is discussed since it is used quite often as an alternative method of disinfection, particularly, for the purification of swimming pool water. The benefits of the contemporary GC/MS and LC/MS methods for the elucidation of DBP structures and study of the mechanisms of their formation are discussed. The reactions characteristic for various functional groups and directions of transformation of certain classes of organic compounds in conditions of aqueous chlorination/bromination are also covered in the review.
Collapse
Affiliation(s)
- D. M. Mazur
- Organic Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. T. Lebedev
- M.V. Lomonosov Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|