1
|
Feng Y, Kong L, Zheng R, Wu X, Zhou J, Xu X, Liu S. Adjusted bacterial cooperation in anammox community to adapt to high ammonium in wastewater treatment plant. WATER RESEARCH X 2024; 25:100258. [PMID: 39381622 PMCID: PMC11460484 DOI: 10.1016/j.wroa.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Bacterial cooperation is very important for anammox bacteria which perform low-carbon and energy-efficient nitrogen removal, yet its variation to adapt to high NH4 +-N concentration in actual wastewater treatment plants (WWTPs) remains unclear. Here, we found wide and varied cross-feedings of anammox bacteria and symbiotic bacteria in the two series connected full-scale reactors with different NH4 +-N concentrations (297.95 ± 54.84 and 76.03 ± 34.01 mg/L) treating sludge digester liquor. The uptake of vitamin B6 as highly effective antioxidants secreted by the symbiotic bacteria was beneficial for anammox bacteria to resist the high NH4 +-N concentration and varied dissolved oxygen (DO). When NH4 +-N concentration in influent (1785.46 ± 228.5 mg/L) increased, anammox bacteria tended to reduce the amino acids supply to symbiotic bacteria to save metabolic costs. A total of 26.1% bacterial generalists switched to specialists to increase the stability and functional heterogeneity of the microbial community at high NH4 +-N conditions. V/A-type ATPase for anammox bacteria to adapt to the change of NH4 +-N was highly important to strive against cellular alkalization caused by free ammonia. This study expands the understanding of the adjusted bacterial cooperation within anammox consortia at high NH4 +-N conditions, providing new insights into bacterial adaptation to adverse environments from a sociomicrobiology perspective.
Collapse
Affiliation(s)
- Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Sciences and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| |
Collapse
|
2
|
He BH, Wang HX, Jin RF, Tian T, Zhou JT. Enhanced-nitrogen removal through Fe(III)-triggered partial dissimilatory nitrate reduction to ammonium coupling with anammox in anammox bioreactor. BIORESOURCE TECHNOLOGY 2024; 408:131195. [PMID: 39098358 DOI: 10.1016/j.biortech.2024.131195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 08/06/2024]
Abstract
Anammox is recognized as a prospective alternative for future biological nitrogen removal technologies. However, the nitrate by-products produced by anammox bacteria limit its overall nitrogen removal efficiency below 88 %. This study introduced Fe(III) into the anammox bioreactor to enhance the nitrogen removal efficiency to approximately 95 %, surpassing the biochemical limit of 88 % imposed by anammox stoichiometry. Anammox sludge was demonstrated to utilize extracellular polymeric substances to reduce Fe(III) into Fe(II), and this process promoted the dominance of Ca. Brocadia. The iron addition improved the abundance of narGHI genes and facilitated the partial dissimilatory nitrate reduction to ammonium, with nitrite as the end product. The accumulated nitrite was then eliminated through the anammox pathway, along with the excess ammonium (30 mg/L) in the influent. Overall, this study deepens our understanding of the enhanced nitrogen removal triggered by Fe(III) in anammox sludge and offers an effective approach to boost anammox process.
Collapse
Affiliation(s)
- Bang-Hui He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui-Xuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruo-Fei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ji-Ti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Liu L, Qi WK, Zhang L, Zhang SJ, Ni SQ, Peng Y, Wang C. Treatment of low-C/N nitrate wastewater using a partial denitrification-anammox granule system: Granule reconstruction, stability, and microbial structure analyses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121760. [PMID: 38981264 DOI: 10.1016/j.jenvman.2024.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Industrial wastewater discharged into sewer systems is often characterized by high nitrate contents and low C/N ratios, resulting in high treatment costs when using conventional activated sludge methods. This study introduces a partial denitrification-anammox (PD/A) granular process to address this challenge. The PD/A granular process achieved an effluent TN level of 3.7 mg/L at a low C/N ratio of 2.3. Analysis of a typical cycle showed that the partial denitrification peaked within 15 min and achieved a nitrate-to-nitrite transformation ratio of 86.9%. Anammox, which was activated from 15 to 120 min, contributed 86.2% of the TN removal. The system exhibited rapid recovery from post-organic shock, which was attributed to significant increases in protein content within TB-EPS. Microbial dispersion and reassembly were observed after coexistence of the granules, with Thauera (39.12%) and Candidatus Brocadia (1.25%) identified as key functional microorganisms. This study underscores the efficacy of PD/A granular sludge technology for treating low-C/N nitrate wastewater.
Collapse
Affiliation(s)
- Lifang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; Beijing Drainage Group Co., Ltd., Beijing, 100044, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China; Beijing Drainage Group Co., Ltd., Beijing, 100044, China.
| |
Collapse
|
5
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
7
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
8
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Metagenomic analysis revealed N-metabolizing microbial response of Iris tectorum to Cr stress after colonization by arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116157. [PMID: 38430578 DOI: 10.1016/j.ecoenv.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 02/25/2024] [Indexed: 03/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Suchdol, Praha 16500, Czech Republic
| |
Collapse
|
9
|
Ji J, Zhao Y, Bai Z, Qin J, Yang H, Hu F, Peng Z, Jin B, Yang X. Robustness of the synergistic partial-denitrification, anammox, and fermentation process for treating domestic and nitrate wastewaters under fluctuating C/N ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120547. [PMID: 38452621 DOI: 10.1016/j.jenvman.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The synergistic partial-denitrification, anammox, and fermentation (SPDAF) process presents a promising solution to treat domestic and nitrate wastewaters. However, its capability to handle fluctuating C/N ratios (the ratios of COD to total inorganic nitrogen) in practical applications remains uncertain. In this study, the SPDAF process was operated for 236 days with C/N ratios of 0.7-3.5, and a high and stable efficiency of nitrogen removal (84.9 ± 7.8%) was achieved. The denitrification and anammox contributions were 6.1 ± 7.1% and 93.9 ± 7.1%, respectively. Batch tests highlighted the pivotal role of in situ fermentation at low biodegradable chemical oxygen demand (BCOD)/NO3- ratios. As the BCOD/NO3- ratios increased from 0 to 6, the NH4+ and NO3- removal rates increased, while the anammox contribution decreased from 100% to 80.1% but remained the primary pathway of nitrogen removal. The cooperation and balanced growth of denitrifying bacteria, anammox bacteria, and fermentation bacteria contributed to the system's robustness under fluctuating C/N ratios.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Qin
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaoxu Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaoxuan Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
10
|
Wang D, Zhang Y, Jiang R, Wang W, Li J, Huang K, Zhang XX. Distinct microbial characteristics of the robust single-stage coupling system during the conversion from anammox-denitritation to anammox-denitratation patterns. CHEMOSPHERE 2024; 351:141231. [PMID: 38237781 DOI: 10.1016/j.chemosphere.2024.141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.
Collapse
Affiliation(s)
- Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wuqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; LingChao Supply Chain Management Co., Ltd., Shenzhen, 518000, China
| | - Jialei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Institute of Environmental Research at Greater Bay/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing, 210019, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Zhang Y, Zhang J, Yu D, Li J, Zhao X, Ma G, Zhi J, Dong G, Miao Y. Migration of microorganisms between nitrification-denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. BIORESOURCE TECHNOLOGY 2024; 393:130129. [PMID: 38040314 DOI: 10.1016/j.biortech.2023.130129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
To solve the shortage of inoculum, the feasibility of establishing simultaneous partial nitrification, anammox, and denitrification (SNAD) reactor through inoculating nitrification-denitrification sludge, anammox biofilm and blank carriers was investigated. Advanced nitrogen removal efficiency of 91.2 ± 3.6 % was achieved. Bacteria related to nitrogen removal and fermentation were enriched in anammox biofilm, blank carriers and flocs, and the abundance of dominant anaerobic ammonia oxidizing bacteria (AnAOB), Candidatus Brocadia, reached 3.4 %, 0.5 % and 0.3 %, respectively. Candidatus Competibacter and Calorithrix became the dominant denitrifying bacteria (DNB) and fermentative bacteria (FB), respectively. The SNAD system was successfully established, and new mature biofilms formed in blank carriers, which could provide inoculum for other anammox processes. Partial nitrification, partial denitrification and aerobic_chemoheterotrophy were existed and facilitated AnAOB enrichment. Microbial correlation networks revealed the cooperation between DNB, FB and AnAOB that promoted nitrogen removal. Overall, the SNAD process was started up through inoculating more accessible inoculum.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yuanyuan Miao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Dou Q, Yang J, Peng Y, Zhang L. Multipathway of Nitrogen Metabolism Revealed by Genome-Centered Metatranscriptomics from Pyrite-Guided Mixotrophic Partial Denitrification/Anammox Installations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21791-21800. [PMID: 38079570 DOI: 10.1021/acs.est.3c08192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Further reducing the organic requirements is essential for the sustainable development of partial denitrification/anammox technology. Here, an innovative mixotrophic partial denitrification/anammox (MPD/A) installation fed with pyrite and few organics was realized, and the average nitrogen and phosphorus removal rates were as high as 96.24 ± 0.11% and 79.23 ± 2.06%, respectively, with a C/N ratio of 0.5. To understand the nature by which MPD/A achieves efficient nitrogen removal and organic conservation, the electron transfer-dependent nitrogen escape and energy metabolism were first elucidated using multiomics analysis. Apart from heterotrophic denitrification and anammox, the results revealed some unexpected metabolic couplings of MPD/A systems, in particular, putative nitrate-dependent organic and pyrite oxidation among nominally heterotrophic Denitratisoma (PRO3) strains, which accelerated nitrate gasification with a low-carbon supply. Additionally, Candidatus Brocadia (AMX) employed extracellular solid-state electron acceptors as terminal electron sinks for high-rate ammonium removal. AMX transported ammonium electrons to extracellular γFeO(OH) (generated from pyrite oxidation) through the transient storage of menaquinoline pools, cytoplasmic migration via multiheme cytochrome(s), and OmpA protein/nanowires-mediated electron hopping on cell surfaces. Further investigation observed that extracellular electron flux resulted in the transfer of more energy from the increased oxidation of the electron donor to the ATP, supporting nitrite-independent ammonium removal.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co., Ltd., Tokyo, 100-0011, Japan
- China Coal Technology & Engineering Group Co., Ltd., Beijing 100013, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Tao Y, Shi R, Li L, Xia S, Ning J, Xu W. Performance optimization and nitrogen removal mechanism of up-flow partial denitrification/anammox process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119191. [PMID: 37827074 DOI: 10.1016/j.jenvman.2023.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
This study aimed to remediate the problems of sludge floating and uneven mass transfer in up-flow partial denitrification/anammox (PDA) reactors and dissect the nitrogen removal mechanism. Two up-flow PDA reactors were operated, whereby in R1 combined biological carriers were added, while in R2 mechanical stirring was applied, the reactors were inoculated with PD sludge and anammox sludge. Results showed the TN removal rates at the end of the operation were 89% (R1) and 92% (R2). The addition of both strategies suppressed the occurrence of sludge upwelling and deterioration of settling performance, even when the granule diameter of the granular zone in R1 and R2 reached 1.921 and 2.006 mm, respectively. 16SrRNA sequencing revealed R1 had a higher abundance of anammox bacteria (AAOB, 14.53%-R1, 9.06%-R2, respectively), and R2 had a higher quantity of denitrifying bacteria (61.92%-R1, 67.11%-R2, respectively). And the nitrogen removal was contributed by anammox and denitrification in combination, with contributions of 82.17%, 17.83% (R1), and 85.07%, 14.93% (R2), respectively. In summary, both strategies prevented sludge flotation and uneven nitrogen mass transfer. However, mechanical agitation had a more substantial positive effect on the performance of PDA than the addition of biocarriers because it achieved a more adequate mass transfer.
Collapse
Affiliation(s)
- Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Linjing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Suhui Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianyong Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
15
|
Xu D, Cao S, Berry M, Du R, Peng Y. Granulation of partial denitrification sludge: Advances in mechanism understanding, technologies development and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166760. [PMID: 37659567 DOI: 10.1016/j.scitotenv.2023.166760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The high-rate and stably efficient nitrite generation is vital and still challenges the wide application of partial denitrification (PD) and anammox technology. Increasing attention has been drawn to the granulation of PD biomass. However, the knowledge of PD granular sludge is still limited in terms of granules characterization and mechanisms of biomass aggregation for high nitrite accumulation. This work reviewed the performance and granulation of PD biomass for high nitrite accumulation via nitrate reduction, including the system start-up, influential factors, granular characteristics, hypothetical mechanism, challenges and perspectives in future application. The physiochemical characterization and key influential factors were summarized in view of nitrite production, morphology analysis, extracellular polymer substance structure, as well as microbial mechanisms. The PD granules exhibit potential advantages of a high biomass density, good settleability, high hydraulic loading rates, and strong shock resistance. A novel granular sludge-based PD combined with anammox process was proposed to enhance the capability of nitrogen removal. In the future, PD granules utilizing different electron donors is a promising way to broaden the application of anammox technology in both municipal and industrial wastewater treatment.
Collapse
Affiliation(s)
- Duanyuan Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire 44603, France
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
16
|
Zhou Z, Ali A, Xu L, Su J, Liu S, Li X. Simultaneous removal of phosphorus, zinc, and lead from oligotrophic ecosystem by iron-driven denitrification: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2023; 238:117139. [PMID: 37716392 DOI: 10.1016/j.envres.2023.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Based on the current situation of complex pollution caused in surface water by oligotrophic condition and heavy metal release from river and lake bottom sediments. This study aimed to achieve the simultaneous removal of nitrate, phosphorus, Zn2+ and Pb2+ through microbial approach. At nitrate concentration of 4.82 mg L-1, carbon to nitrogen ratio of 1.5, pH of 6.0, and Fe2+ concentration of 5.0 mg L-1, the nitrate removal efficiency of Zoogloea sp. FY-6 reached 95.17%. The addition of pollutants under these conditions resulted in 88.76% removal of total phosphorus at 18 h, and 85.46 and 78.59% removal of Zn2+ and Pb2+ respectively, and there was competition for adsorption between Zn2+ and Pb2+. Extracellular polymers and fluorescence excitation-emission substrates confirmed that Fe2+ reduced heavy metal toxicity through promoting bacterial production of secretions and promotes denitrification as a carbon source. Meanwhile, contaminant removal curves and Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy demonstrated the synchronous removal of Zn2+ and Pb2+ mainly through biological action and the formation of nanoscale iron oxides. Biological-iron precipitation also provided adsorption sites for phosphorus. This research provides the theoretical foundation for applying microorganisms to restore oligotrophic source water (rivers and lakes) containing complex pollutants.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
17
|
Zhang X, Zhang X, Chen J, Wu P, Yang Z, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ruth G. A critical review of improving mainstream anammox systems: Based on macroscopic process regulation and microscopic enhancement mechanisms. ENVIRONMENTAL RESEARCH 2023; 236:116770. [PMID: 37516268 DOI: 10.1016/j.envres.2023.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Full-scale anaerobic ammonium oxidation (anammox) engineering applications are vastly limited by the sensitivity of anammox bacteria to the complex mainstream ambience factors. Therefore, it is of great necessity to comprehensively summarize and overcome performance-related challenges in mainstream anammox process at the macro/micro level, including the macroscopic process variable regulation and microscopic biological metabolic enhancement. This article systematically reviewed the recent important advances in the enrichment and retention of anammox bacteria and main factors affecting metabolic regulation under mainstream conditions, and proposed key strategies for the related performance optimization. The characteristics and behavior mechanism of anammox consortia in response to mainstream environment were then discussed in details, and we revealed that the synergistic nitrogen metabolism of multi-functional bacterial genera based on anammox microbiome was conducive to mainstream anammox nitrogen removal processes. Finally, the critical outcomes of anammox extracellular electron transfer (EET) at the micro level were well presented, carbon-based conductive materials or exogenous electron shuttles can stimulate and mediate anammox EET in mainstream environments to optimize system performance from a micro perspective. Overall, this review advances the extensive implementation of mainstream anammox practice in future as well as shedding new light on the related EET and microbial mechanisms.
Collapse
Affiliation(s)
- Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, PR China.
| | - Zhiqiu Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| |
Collapse
|
18
|
Zhang Y, Zhang W, Wang H, Wu Y, Liu B. N, P and C removal simultaneously and microbial population numbers in a cyclic activated sludge system treating village and township domestic wastewater by altering the cycle times. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2271-2283. [PMID: 37966182 PMCID: wst_2023_342 DOI: 10.2166/wst.2023.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
It was necessary to research an efficient treatment process suitable for township domestic wastewater. In this paper, the performance of the cyclic activated sludge system (CASS) system for simultaneous carbon (C), nitrogen (N) and phosphorus (P) removal was investigated by changing the operation cycle of the CASS reactor. Four operating conditions were set up, T1, T2, T3 and T4, with cycle times of 6, 8, 12 and 8 h (with carbon source), respectively. The results showed that the CASS system had good simultaneous removal of C, N and P. The highest removal rates of COD, TN, NH4+ -N and TP were 87.69, 72.99, 98.60 and 98.38%, respectively, at a cycle time of 8 h. The TN removal rate could be increased to 82.51% after the addition of carbon source. Microbial community analysis showed that Proteobacteria, Bacteroidetes and Candidatus Saccharibacteria were the main phylum-level bacteria. Their presence facilitated the effectiveness of the CASS process for nitrogen removal and phosphorus removal. Functional analysis of genes revealed that the abundance values of genes associated with C, N and P metabolism were higher when the treatment was effective.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China E-mail:
| | - Weijia Zhang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China
| | - Haotong Wang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China
| | - Yanhu Wu
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China
| | - Bingtao Liu
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China
| |
Collapse
|
19
|
Yoon S, Heo H, Han H, Song DU, Bakken LR, Frostegård Å, Yoon S. Suggested role of NosZ in preventing N 2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023; 14:e0154023. [PMID: 37737639 PMCID: PMC10653820 DOI: 10.1128/mbio.01540-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.
Collapse
Affiliation(s)
- Sojung Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hokwan Heo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dong-Uk Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
20
|
Pan Z, Li Z, Zeng B, Shen L, Lin H. Enhanced denitrification performance of granular sludge for the treatment of waste brine from ion exchange resin process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118473. [PMID: 37413732 DOI: 10.1016/j.jenvman.2023.118473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ion exchange resin process is a widely used process in wastewater treatment plants, but its waste brine is characterized by high salinity and nitrate concentration, leading to costly treatment. This study innovatively explored the use of an up-flow anaerobic sludge bed (USB) for the treatment of waste brine from ion exchange resin process, following a pilot-scale ion exchange resin process. Specifically, the D890 ion exchange resin was employed for nitrate removal from secondary effluent, with resin regeneration using 4% NaCl solution. The USB was inoculated with anaerobic granular sludge and acclimated under various single-factor conditions, which revealed the optimal pH range of 6.5-9, salt concentration of 2%, hydraulic retention time of 12 h, C/N ratio of 3.3, and up-flow velocity of 1.5 m/h for reactor operation. This study provides a novel approach for the cost-effective treatment of waste brine from ion exchange resin process. The study found that the denitrification efficiency was highest when the NO3--N concentration was around 200 mg/L, with NO3--N and TN removal rates exceeding 95% and 90%, respectively, under optimal operating conditions. Characterization of the granular sludge during different phases of the operation revealed a significant increase in proteobacteria and gradually became the dominant species over time. This study presents a novel, cost-effective approach to treat waste brine from ion exchange resin process, and the long-term stable operation of the reactor offers a reliable option for resin regeneration wastewater treatment.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongqiang Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
21
|
Ahmad HA, Ahmad S, Gao L, Ismail S, Wang Z, El-Baz A, Ni SQ. Multi-omics analysis revealed the selective enrichment of partial denitrifying bacteria for the stable coupling of partial-denitrification and anammox process under the influence of low strength magnetic field. WATER RESEARCH 2023; 245:120619. [PMID: 37716295 DOI: 10.1016/j.watres.2023.120619] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The microbial consortium involving anaerobic ammonium oxidation (anammox) and partial denitrification (PD), known as PD-anammox, is an emerging energy-efficient and lower carbon nitrogen removal process from wastewater. However, maintaining a stable PD process by locking nitrate reduction until nitrite was challenging. This study established the first stable connection of anammox with constant nitrite generation by PD bacteria under a low-strength (1.3 mT) magnetic field (MF). When the nitrogen loading rate was 1.81 kg-N/m3/d, the nitrogen removal efficiency of the control reactor (R1) was 75%, lower than that of the experimental reactor (R2), which was 85%. The expression of Thauera and Zoogloea, potential PD bacteria was substantially lower in R1 (5.75% and 1.21%, respectively) than in R2 (10.25 and 6.61%, respectively), according to a meta-transcriptomic analysis. At the same time, the mRNA expression of anammox genera Candidatus Brocadia and Candidatus Kuenenia was 33.53% and 3.83% in R1 and 22.86% and 1.87% in R2. Moreover, carbon and nitrogen metabolism pathways were more abundant under the influence of low-strength MF. The selective enrichment of PD bacteria can be attributed to the increased expression of carbon metabolic pathways like the citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism. Interestingly, the control reactor was dominated by a hydroxylamine-dependent anammox process while a low-strength MF-enhanced nitric-oxide-dependent anammox process. For successful anammox-centered nitrogen removal from wastewater, this study demonstrated that low-strength MF is a convenient and applicable technique to lock the nitrate reduction until nitrite.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Linjie Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
22
|
Li B, Godfrey BJ, RedCorn R, Candry P, Abrahamson B, Wang Z, Goel R, Winkler MKH. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. WATER RESEARCH 2023; 242:120303. [PMID: 37419028 DOI: 10.1016/j.watres.2023.120303] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.
Collapse
Affiliation(s)
- Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Bruce J Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Raymond RedCorn
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Pieter Candry
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Britt Abrahamson
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Zhiwu Wang
- Virginia Polytechnic Institute and State University, Department of Biological Systems Engineering, 1230 Washington St. SW, Blacksburg VA 24061, VA 20147, USA
| | - Ramesh Goel
- The University of Utah, Department of Civil & Environmental Engineering, 110 S. Central Campus Drive, 2000MCE, Salt Lake City, UT 84112, USA
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Li B, Godfrey BJ, RedCorn R, Wang Z, Goel R, Winkler MKH. Simultaneous anaerobic carbon and nitrogen removal from primary municipal wastewater with hydrogel encapsulated anaerobic digestion sludge and AOA-anammox coated hollow fiber membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163696. [PMID: 37100124 DOI: 10.1016/j.scitotenv.2023.163696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
In this study, a one-stage continuous-flow membrane-hydrogel reactor integrating both partial nitritation-anammox (PN-anammox) and anaerobic digestion (AD) was designed and operated for simultaneous autotrophic nitrogen (N) and anaerobic carbon (C) removal from mainstream municipal wastewater. In the reactor, a synthetic biofilm consisting of anammox biomass and pure culture ammonia oxidizing archaea (AOA) were coated onto and maintained on a counter-diffusion hollow fiber membrane to autotrophically remove nitrogen. Anaerobic digestion sludge was encapsulated in hydrogel beads and placed in the reactor to anaerobically remove COD. During the pilot operation at three operating temperature (25, 16 and 10 °C), the membrane-hydrogel reactor demonstrated stable anaerobic COD removal (76.2 ± 15.5 %) and membrane fouling was successfully suppressed allowing a relatively stable PN-anammox process. The reactor demonstrated good nitrogen removal efficiency, with an overall removal efficiency of 95.8 ± 5.0 % for NH4+-N and 78.9 ± 13.2 % for total inorganic nitrogen (TIN) during the entire pilot operation. Reducing the temperature to 10 °C caused a temporary reduction in nitrogen removal performance and abundances of AOA and anammox. However, the reactor and microbes demonstrated the ability to adapt to the low temperature spontaneously with recovered nitrogen removal performance and microbial abundances. Methanogens in hydrogel beads and AOA and anammox on the membrane were observed in the reactor by qPCR and 16S sequencing across all operational temperatures.
Collapse
Affiliation(s)
- Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA.
| | - Bruce J Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| | - Raymond RedCorn
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| | - Zhiwu Wang
- Virginia Polytechnic Institute and State University, Department of Biological Systems Engineering, 1230 Washington St. SW, VA 24061, Blacksburg, VA 20147, USA
| | - Ramesh Goel
- The University of Utah, Department of Civil & Environmental Engineering, 110 S. Central Campus Drive, 2000MCE, Salt Lake City, UT 84112, USA
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| |
Collapse
|
24
|
Gong S, Qin Y, Zheng S, Lu T, Yang X, Zeng M, Zhou H, Chen J, Huang W. The rapid start-up of CANON process through adding partial nitration sludge to ANAMMOX system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117821. [PMID: 37001425 DOI: 10.1016/j.jenvman.2023.117821] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to start up the completely autotrophic nitrogen removal over nitrite (CANON) process after adding partial nitration (PN) sludge to the ANAMMOX reactor, so as to help the rapid start-up and stable operation of the CANON process in practical engineering applications. There were three steps in the research: cultivating the PN sludge, building a reliable ANAMMMOX system, and finally starting and running the CANON process. The PN sludge was successfully cultivated in less than 45 days with around 90% nitrite accumulation rate. The ANAMMOX reactor enriched a significant quantity of red granular sludge within 70 days, achieving the maximum nitrogen removal rate of 1.74 kg/(m3·d). Eventually, the CANON reactor was started up successfully, which achieved 95.08% of average ammonium removal efficiency and 84.51% of average total nitrogen removal efficiency in 60 days. The residual recalcitrant nitrite-oxidizing bacteria in the CANON process was successfully inhibited by intermittent aeration and 12 mg/L free ammonia in UASB reactor. Besides, Candidatus Kuenenia, Candidatus Brocadia and Nitrosomonas were the main functional microorganisms involved in the CANON process.
Collapse
Affiliation(s)
- Siyuan Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Shaohong Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Xiangjing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Ming Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Hongen Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Weichan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
25
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
26
|
Hong S, Winkler MKH, Wang Z, Goel R. Integration of EBPR with mainstream anammox process to treat real municipal wastewater: Process performance and microbiology. WATER RESEARCH 2023; 233:119758. [PMID: 36812815 DOI: 10.1016/j.watres.2023.119758] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The mainstream application of anaerobic ammonium oxidation (anammox) for sustainable N removal remains a challenge. Similarly, with recent additional stringent regulations for P discharges, it is imperative to integrate N with P removal. This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining biofilm anammox with flocculent activated sludge for enhanced biological P removal (EBPR). This technology was assessed in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with a hydraulic retention time of 8.8 h. After a steady state operation was reached, robust reactor performance was obtained with average TIN and P removal efficiencies of 91.3 ± 4.1% and 98.4 ± 2.4%, respectively. The average TIN removal rate recorded over the last 100 d of reactor operation was 118 mg/L·d, which is a reasonable number for mainstream applications. The activity of denitrifying polyphosphate accumulating organisms (DPAOs) accounted for nearly 15.9% of P-uptake during the anoxic phase. DPAOs and canonical denitrifiers removed approximately 5.9 mg TIN/L in the anoxic phase. Batch activity assays, which showed that nearly 44.5% of TIN were removed by the biofilms during the aerobic phase. The functional gene expression data also confirmed anammox activities. The IFAS configuration of the SBR allowed operation at a low solid retention time (SRT) of 5-d without washing out biofilm ammonium-oxidizing and anammox bacteria. The low SRT, combined with low dissolved oxygen and intermittent aeration, provided a selective pressure to washout nitrite-oxidizing bacteria and glycogen-accumulating organisms, as relative abundances of.
Collapse
Affiliation(s)
- Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, 616 Northlake Place, Seattle, WA 98195, USA.
| | - Zhiwu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA 20110, USA.
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
28
|
Zuo F, Yue W, Gui S, Sui Q, Wei Y. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox. BIORESOURCE TECHNOLOGY 2023; 374:128783. [PMID: 36828226 DOI: 10.1016/j.biortech.2023.128783] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
29
|
Wang C, Wang H, Yan Q, Chen C, Bao X, Pan M, Qian Y. Enhanced nitrogen removal from low C/N municipal wastewater employing algal biochar supported nano zero-valent iron (ABC-nZVI) using A/A/O-MBR: Duration and rehabilitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160396. [PMID: 36435251 DOI: 10.1016/j.scitotenv.2022.160396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
To bridge the organic-dependent barrier on nitrogen from low carbon/nitrogen (C/N) municipal wastewater, employing algal biochar supported nano zero-valent iron (ABC-nZVI) was investigated using A/A/O-MBR. Firstly, it can be seen that adequate carbon source is indispensable for the removal, since total nitrogen (TN) removal reached 77.89 % with the influent C/N of 7.8. Secondly, conducted in batch experiments with different doses of ABC-nZVI with/without active sludge, removal efficiency of total inorganic nitrogen (TIN) and the effective time achieved 84.94 % and 24 h with an ABC-nZVI dose of 300 mg/L, respectively. Thirdly, it was found that the duration of high-efficiency denitrification reached 9 h with the addition of 250 mg/L of ABC-nZVI to the anoxic tank of A/A/O-MBR, and the effluent ammonium nitrogen (NH4+-N) also meet the national discharge standard. Besides, biodiversity of both anoxic and aerobic sludge was apparently promoted with the addition of ABC-nZVI, while the lab-scale A/A/O-MBR could also be fully rehabilitated within 12 h. Finally, predicted through PICRUSt2, relevant abundance of functional genes involved in nitrogen metabolism could be enriched by nZVI addition. As an alternative supporting electron donor and mediator, ABC-nZVI can also be participated in the enhanced nitrogen removal in A/A/O-MBR at low C/N.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiangming Bao
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Meijuan Pan
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| | - Yunfei Qian
- Jiangsu Taiyuan Environmental Science and Technology Co., Ltd., Wuxi 214200, China
| |
Collapse
|
30
|
Xu L, Yang Y, Su J, He C, Shi J, Yan H, Wei H. Simultaneous removal of nitrate, lead, and tetracycline by a fixed-biofilm reactor assembled with kapok fiber and sponge iron: Comparative analysis of operating conditions and biotic community. ENVIRONMENTAL RESEARCH 2023; 219:115163. [PMID: 36580984 DOI: 10.1016/j.envres.2022.115163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In recent years, under the condition of lack of carbon source, the presence of composite micro-pollutants make the removal of nitrate seriously damaged, and to find a suitable way to solve this problem is imminent. A fixed-biofilm carrier modified by mixing sponge iron (SI) and kapok fiber (KF) combined with strain Zoogloea sp. FY6 was constructed in this study to get a fixed-biofilm reactor with merit denitrification performance. By adjusting the operation parameters, it can be concluded that when the carbon to nitrogen (C/N) ratio was 1.5, the hydraulic retention time (HRT) was 6.0 h, and the pH was 6.0, the nitrate removal efficiency (NRE) of the fixed-biofilm reactor was up to 95.4% (2.95 mg L-1 h-1). In addition, the fixed-biofilm reactor constructed in this study can remove lead (Pb2+) and tetracycline (TC) excellently in the presence of SI and Zoogloea sp. FY6, and the denitrification performance can still maintain a high level under the influence of different concentrations of Pb2+ and TC. Furthermore, the addition of SI not only removes the compound pollutants, but also protects the toxicity of the pollutant inflow in the bioreactor, and the metabolic process of microorganisms in the bioreactor also removes some of the compound pollutants. The high-throughput data showed the abundance of strain Zoogloea sp. FY6 was still the highest value under the influence of various pollutants, and the metagenomic prediction showed that the fixed-biofilm reactor had perfect denitrification process and iron redox cycle benefits. This study provides a valuable reference for sustainable utilization of natural biological resources and reduction of material costs in wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Chong He
- School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Shanghai Baoye Metallurgical Engineering Co., Ltd, Baoshan District, Shanghai, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
31
|
Yang Z, Lou Y, Pan H, Wang H, Yang Q, Zhuge Y, Hu J. Improved Denitrification Performance of Polybutylene Succinate/Corncob Composite Carbon Source by Proper Pretreatment: Performance, Functional Genes and Microbial Community Structure. Polymers (Basel) 2023; 15:polym15040801. [PMID: 36850087 PMCID: PMC9958998 DOI: 10.3390/polym15040801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Blending biodegradable polymers with plant materials is an effective method to improve the biodegradability of solid carbon sources and save denitrification costs, but the recalcitrant lignin in plant materials hinders the microbial decomposition of available carbon sources. In the present study, corncob pretreated by different methods was used to prepare polybutylene succinate/corncob (PBS/corncob) composites for biological denitrification. The PBS/corncob composite with alkaline pretreatment achieved the optimal NO3--N removal rate (0.13 kg NO3--N m-3 day-1) with less adverse effects. The pretreatment degree, temperature, and their interaction distinctly impacted the nitrogen removal performance and dissolved organic carbon (DOC) release, while the N2O emission was mainly affected by the temperature and the interaction of temperature and pretreatment degree. Microbial community analysis showed that the bacterial community was responsible for both denitrification and lignocellulose degradation, while the fungal community was primarily in charge of lignocellulose degradation. The outcomes of this study provide an effective strategy for improving the denitrification performance of composite carbon sources.
Collapse
|
32
|
Wang G, Yu G, Chi T, Li Y, Zhang Y, Wang J, Li P, Liu J, Yu Z, Wang Q, Wang M, Sun S. Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130148. [PMID: 36265377 DOI: 10.1016/j.jhazmat.2022.130148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Biochar has been increasingly applied in constructed wetlands (CWs) to remediate heavy metal (HM)-polluted water. Nevertheless, only few studies have elucidated the enhanced mechanism and potential synergies related to the HM removal from biochar-based CWs (BC-CWs) for HMs removal. This study used cadmium (Cd) as the target HM and added biochar into CWs to monitor physicochemical parameters, plant' physiological responses, substrate accumulation, and microbial metabolites and taxa. In comparison with the biochar-free CW (as CWC), a maximum Cd2+ removal of 99.7% was achieved in the BC-CWs, associated with stable physicochemical parameters. Biochar preferentially adsorbed the available Cd2+ and significantly accumulated Fe/Mn oxides-bond and the exchangeable Cd fraction. Moreover, biochar alleviated the lipid peroxidation (decreased by 36.4%) of plants, resulting in improved growth. In addition, extracellular polymeric substances were increased by 376.9-396.8 mg/L in BC-CWs than compared to CWC, and N and C cycling was enhanced through interspecific positive connectivity. In summary, this study explored comprehensively the performance and mechanism of BC-CWs in the treatment of Cd2+-polluted water, suggesting a promising approach to promote the plant-microbe-substrate synergies under HM toxicity.
Collapse
Affiliation(s)
- Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Tianying Chi
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yameng Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Peiyuan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jiaxin Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Zhi Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Qi Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Miaomiao Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
33
|
Peng Z, Zhang Q, Li X, Wang S, Peng Y. Exploring and comparing the impacts of low temperature to endogenous and exogenous partial denitrification: The nitrite supply, transcription mechanism, and microbial dynamics. BIORESOURCE TECHNOLOGY 2023; 370:128568. [PMID: 36592868 DOI: 10.1016/j.biortech.2022.128568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrite supply was pretty significant to exogenous or endogenous partial denitrification (ExPD or EdPD) for their combination with anammox in removing nitrogen. This study investigated how temperature impacted the nitrite supply of ExPD and EdPD, through long-term experiments in two 10 L sequencing batch reactors (SBRs) and 12 batch temperature tests, with sodium acetate as organic. It was demonstrated that low temperature (5-15 °C) favored higher nitrite transformation rate (NTR) for two systems (1.1-1.3 and 1.1-1.2 times higher separately), and ExPD owned higher nitrite-supply ability than EdPD (32.8 % higher NTR). Moreover, quantitative reverse transcription PCR and 16srDNA sequencing were conducted, exploring the inherent mechanism and microbial dynamics. Results presented that more inhibition to transcription and translation of nirSK genes than narG in low temperature induced higher NTR. Besides, compared with ExPD, less microbial dynamics and granule size reduction occurred to EdPD, which was more capable of adapting to low temperature.
Collapse
Affiliation(s)
- Zhihao Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
34
|
Yao JC, Yao GJ, Wang ZH, Yan XJ, Lu QQ, Li W, Liu YD. Bioaugmentation of intertidal sludge enhancing the development of salt-tolerant aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116394. [PMID: 36323127 DOI: 10.1016/j.jenvman.2022.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Three parallel bioreactors were operated with different inoculation of activated sludge (R1), intertidal sludge (ItS) (R2), and ItS-added AS (R3), respectively, to explore the effects of ItS bioaugmentation on the formation of salt-tolerant aerobic granular sludge (SAGS) and the enhancement of COD removal performance. The results showed that compared to the control (R1-2), R3 promoted a more rapid development of SAGS with a cultivation time of 25 d. Following 110-day cultivation, R3 exhibited a higher granular diameter of 1.3 mm and a higher hydrophobic aromatic protein content than that in control. Compared to the control, the salt-tolerant performance in R3 was also enhanced with the COD removal efficiency of 96.4% due to the higher sludge specific activity of 14.4 g·gVSS-1·d-1 and the salinity inhibition constant of 49.3 gL-1. Read- and genome-resolved metagenomics together indicated that a higher level of tryptophan/tyrosine synthase gene (trpBD, tyrBC) and enrichment of the key gene hosts Rhodobacteraceae, Marinicella in R3, which was about 5.4-fold and 1.4-fold of that in control, could be the driving factors of rapid development of SAGS. Furthermore, the augmented salt-tolerant potential in R3 could result from that R1 was dominated by Rhodospirillaceae, Bacteroidales, which carried more trehalose synthase gene (otsB, treS), while the dominant members Rhodobacteraceae, Marinicella in R3 were main contributors to the glycine betaine synthase gene (ectC, betB, gbsA). This study could provide deeper insights into the rapid development and improved salt-tolerant potential of SAGS via bioaugmentation of intertidal sludge, which could promote the application of hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Jin-Chi Yao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Gen-Ji Yao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Zu-Hao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin-Jie Yan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Qing-Qing Lu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yong-di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
35
|
Yang Y, Long Y, Xu J, Liu S, Liu L, Liu C, Tian Y. Achieving robust and highly efficient nitrogen removal in a mainstream anammox reactor by introducing low concentrations of readily biodegradable organics. Front Microbiol 2023; 14:1186819. [PMID: 37187540 PMCID: PMC10175599 DOI: 10.3389/fmicb.2023.1186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, an anammox reactor was operated to treat low-strength (NH4+ + NO2-, 25-35 mg/L) wastewater without (phase I) or with (phase II) readily biodegradable chemical oxygen demand (rbCOD). In phase I, although efficient nitrogen removal was achieved at the beginning, nitrate accumulated in the effluent after long-term operation (75 days), resulting in a decrease in the nitrogen removal efficiency to 30%. Microbial analysis revealed that the abundance of anammox bacteria decreased from 2.15 to 1.78%, whereas that of nitrite-oxidizing bacteria (NOB) increased from 0.14 to 0.56%. In phase II, rbCOD, in terms of acetate, was introduced into the reactor with a carbon/nitrogen ratio of 0.9. The nitrate concentration in the effluent decreased within 2 days. Advanced nitrogen removal was achieved in the following operation, with an average effluent total nitrogen of 3.4 mg/L. Despite the introduction of rbCOD, anammox pathway still dominated to the nitrogen loss. High-throughput sequencing indicated that high anammox abundance (2.48%) further supports its dominant position. The improvement in nitrogen removal was attributed to the enhanced suppression of NOB activity, simultaneous nitrate polishing through partial denitrification and anammox, and promotion of sludge granulation. Overall, the introduction of low concentrations of rbCOD is a feasible strategy for achieving robust and efficient nitrogen removal in mainstream anammox reactors.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
- Engineering Research Center of Concrete Technology Under Marine Environment, Ministry of Education, Qingdao, China
- *Correspondence: Yandong Yang,
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shichong Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lei Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
36
|
Yang JH, Huang DQ, Geng YC, Ling YR, Fan NS, Jin RC. Role of quorum sensing-based regulation in development of anaerobic ammonium oxidation process. BIORESOURCE TECHNOLOGY 2023; 367:128228. [PMID: 36332868 DOI: 10.1016/j.biortech.2022.128228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Shortage of anaerobic ammonium oxidation (anammox) sludge greatly limits the extensive full-scale application of anammox-based processes. Although numerous start-up strategies have been proposed, the interaction among microbial consortia and corresponding mechanism during the process development remain unknown. In this study, three reactors were established based on different seed sludges. After 27 days, the anammox process inoculated with anammox granules and activated sludge (1:5) was firstly achieved, and the highest nitrogen removal rate was 1.17 kg N m-3 d-1. Correspondingly, the anammox activity and abundances of related functional genes increased. Notably, the dominant anammox bacteria shifted from Candidatus Kuenenia to Candidatus Brocadia. Metagenomic analysis indicated that quorum sensing-based regulation mainly contributed to the proliferation and accumulation of anammox bacteria. This work provides an insight into the quorum sensing (QS)-regulated microbial interactions in the anammox and activated sludge consortia during the process development.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
37
|
Zhang L, Hao S, Dou Q, Dong T, Qi WK, Huang X, Peng Y, Yang J. Multi-Omics Analysis Reveals the Nitrogen Removal Mechanism Induced by Electron Flow during the Start-up of the Anammox-Centered Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16115-16124. [PMID: 36215419 DOI: 10.1021/acs.est.2c02181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Wei Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Xiaowu Huang
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong515063, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd.Shandong274200, China
| |
Collapse
|
38
|
Zhou JJ, Zhang X, Zhuang JL, Xu TX, Liu YD, Li W. Saline short-term shock and rapid recovery on anammox performance. CHEMOSPHERE 2022; 307:135687. [PMID: 35842050 DOI: 10.1016/j.chemosphere.2022.135687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia oxidation (anammox) is an environmental-friendly biological nitrogen removal process, which has been developed as a promising technology in industrial wastewater treatment. However, anammox nitrogen removal under high saline conditions still faces many challenges. This study investigated the performance of anammox sludge under saline short-term shock and the strategy of rapid recovery. Salinity concentration, saline exposure time, and NaCl/Na2SO4 ratio were selected as three critical factors for short-term shock. The activity inhibition of anammox sludge were tested by using response surface methodology (RSM). Our results showed that, compared with the NaCl/Na2SO4 ratio, the salinity concentration and saline exposure time were the significant factor causing the anammox inhibition. The addition of glycine betaine (GB) in moderate amounts (0.1-5 mM) was found to help anammox to resist in relative low saline shock intensities (e.g., IC25 and IC50), with the activity retention rate of 94.7%. However, glycine betaine was not worked effectively under relatively high saline shock intensities (e.g., complete inhibition condition). Microbial community analysis revealed that Brocadiaceae accounted for only about 7.6%-13.2% at inhibited conditions. Interestingly, 16S rRNA analysis showed that the abundance of activated Brocadiaceae remarkably decreased with time after high-level saline shock. This tendency was consistent with the results of qPCR targeted hzsA gene. Finally, based on quorum sensing, the anammox activity was recovered to 93.5% of original sludge by adding 30% original sludge. The study realized the rapid recovery of anammox activity under complete inhibition, promoting the development and operation of salt-tolerant anammox process.
Collapse
Affiliation(s)
- Jia-Jia Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Tian-Xiang Xu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Yong-di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
39
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|