1
|
He Z, Gao J, Chen X, Ru Y, Zhang D, Pan X. Efficient recovery of heavy metals and selenium from wastewater using granular sludge: The crucial role of glutathione (GSH). WATER RESEARCH 2025; 270:122826. [PMID: 39602962 DOI: 10.1016/j.watres.2024.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Microbial technology offers an effective method for treating heavy metals and selenium (Se) in wastewater, yet the recovery of these valuable elements is often overlooked. This study introduces a glutathione (GSH)-enhanced granular sludge technology for the removal and recovery of heavy metals and Se from wastewater. Using the new technology, the removal rates of copper (Cu), cadmium (Cd), and Se from wastewater reached 99.4-99.99%, while the recovery rates reached 73.2-87.9%. Both long-term reactor operation and short-term stimulation experiments indicated that GSH substantially increased the residual fraction of Cu, Cd, and Se in the sludge. This residual fraction was identified as metal selenides (MSe), composed of Cu1.08Se (75.4 ± 1.8%) and CdSe (15.4 ± 1.0%). The increased abundance and significant upregulation of GSH-related genes, including gshA, gshB, and gor, as well as the indispensable roles of GSH, glutathione reductase (GorA), and NADPH in the in vitro synthesis of MSe, demonstrated that the GSH-mediated Painter-type reaction was the primary pathway for MSe synthesis in the sludge. The biosynthesized MSe was efficiently extracted and recovered from the final sludge, and the extract showed high catalytic activity in pollutant degradation. Given the widespread presence of GSH in diverse microorganisms, the GSH-mediated mechanism for MSe synthesis is likely to occur in various environments contaminated with heavy metals and Se.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Xin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
2
|
Yang Q, Li J, Ma L, Du X. Impact and mechanism of polyethylene terephthalate microplastics with different particle sizes on sludge anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125494. [PMID: 39653267 DOI: 10.1016/j.envpol.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are important sinks for microplastics, and the vast majority of microplastics entering WWTPs are trapped in residual sludge. In order to investigate the effect of microplastics on anaerobic digestion of sludge, polyethylene terephthalate (PET) microplastics with common particle size and physical aging were selected to conduct a comparative study. Regardless of aging, the addition of 300 and 500 μm PET microplastics inhibited methane production, with their cumulative methane production reduced by 11.3-24.9% compared to the control group. In contrast, when 100 μm microplastics were added, the raw PET promoted methane production, yielding 337 L CH4/kg VS, while the aged experimental group showed similar yields to the control group. For the 800 μm microplastics treatment group, aged microplastics facilitated methane production while raw microplastics inhibited it, with methane production of 91.0% and 111% of the control group, respectively. The effects were also investigated by model fitting, stage discussion, and microbial community structure analysis. The results discovered that the main rate-limiting steps of adding microplastics with smaller or larger particle sizes (100, 800 μm) to methane production were solubilization and hydrolysis, while the main rate-limiting step of microplastics with medium particle sizes (300, 500 μm) was methanogenesis. Physically aged PET microplastics with smaller or larger sizes showed a more significant effect on methane production. Furthermore, PET microplastics altered the microbial community structure, shifting methanogens from acetotrophic pathways to hydrotrophic pathways. This study offers new insights into the performance analysis of sludge anaerobic digestion in practical WWTPs.
Collapse
Affiliation(s)
- Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Xue Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Zhang F, Zhao F, Chen Y, Wu Y, Feng Q, Guo R. Comparative study on the effects of anionic, cationic, and nonionic polyacrylamide surface modified magnetic micro-particles (MMP) for anaerobic digestion treatment of vegetable waste water (VWW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122160. [PMID: 39208750 DOI: 10.1016/j.jenvman.2024.122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Anaerobic digestion provides a solution for the treatment of vegetable waste water (VWW), but there are currently limited targeted treatment methods available. Building upon previous studies, this research investigated the effects of polyacrylamide-modified magnetic micro-particles (MMP) on anaerobic digestion (AD) of VWW. Three variations of these particles were created by grafting anionic, cationic, and non-ionic polyacrylamide (PAM) onto the MMPs' surfaces, resulting in aPAM-MMP, cPAM-MMP, and nPAM-MMP, respectively. In AD experiments, the addition of aPAM-MMP notably enhanced the degradation of chemical oxygen demand (COD) in VWW. COD decreased to 1290 mg/L in the reactor with aPAM-MMP by day 12 and remained low, while the other reactors had COD concentrations of 4137.5, 5510, and 3010 mg/L on the same day, decreasing thereafter. This modification also improved the production and utilization of hydrogen gas and volatile fatty acids (VFAs), along with the conversion of methane. When tested for bioaffinity using fluorescent GFP-E.coli bacteria, the aPAM-MMP, cPAM-MMP, and nPAM-MMP demonstrated increases in fluorescence intensity by 51.66%, 36.13%, and 37.02%, respectively, compared to unmodified MMP when attached with GFP-E.coli. Further analyses of microbial community revealed that the reactor with aPAM-MMP had the highest microbial richness and enriched bacteria capable of organic matter degradation, such as Bacteroidota, Synergistota, Chloroflexi, Halobacterota phyla, and Parabacteroides, Muribaculaceae, and Azotobacter genera. In conclusion, our experiment verifies that APAM-MMP promotes anaerobic treatment of VWW and provides a novel reference point for enhancing VWW degradation.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Yanjun Wu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| |
Collapse
|
4
|
Yang N, Yang S. Neglected sludge solid phase in sludge pretreatment process: Physicochemical characterization and mechanism study of its role in anaerobic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173769. [PMID: 38848921 DOI: 10.1016/j.scitotenv.2024.173769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The low anaerobic digestion efficiency of the solid phase separated from pre-treated sludge indicates the need to explore other suitable resource utilization pathways for sludge solid phase. However, there is a lack of comprehensive and in-depth research on the physicochemical properties of sludge solid phase. This study comprehensively analyzes the characteristics of sludge solid phase and elucidates the mechanism of sludge solid phase in the anaerobic degradation of toxic wastewater. The results show that the surface free energy of sludge solid phase after different pre-treatments is mainly contributed by Lewis acid-base hydration free energy. The distribution of proteins on the surface of sludge solid phase plays a major role in the adhesion between sludge solid particles. Metal ions in the sludge solid phase are mainly present in the exchange state, followed by the carbonate state and the organics-bound state. The sludge solid phase obtained by sludge pH 12 + 150 °C treatment has the highest conductivity (1.36 mS/m) and capacitance (25.51 μF/g), mainly due to the presence of melanoidins in the sludge solid phase, which has similar semiquinone radicals to humic acids, thus increasing conductivity. The addition of sludge solid phase promotes an increase in cumulative methane production and rate of methane production. The sludge solid phase might play a role of an auxiliary carbon source acting as an adsorbent to buffer against toxicity inhibition and facilitate electron transfer. This study reveals the characteristics of sludge solid phase and its role in anaerobic digestion, providing theoretical guidance for finding suitable resource utilization pathways for sludge solid phase.
Collapse
Affiliation(s)
- Ning Yang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shucheng Yang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Liu C, Li L, Xu L, Zhang T, He Q, Xin X. Enhancing volatile fatty acids production from waste activated sludge: The role of pretreatment by N,N-bis(carboxymethyl)-l-glutamate (GLDA). ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100393. [PMID: 38357479 PMCID: PMC10864876 DOI: 10.1016/j.ese.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
N,N-bis(carboxymethyl)-l-glutamate (GLDA) is an eco-friendly chelating agent that effectively extracts multivalent metal ions from waste activated sludge (WAS) flocs, which could potentially alter their structure. However, the effect of GLDA on the production of volatile fatty acids (VFAs) from WAS is not well known. Here, we demonstrate that pretreatment with GLDA at a concentration of 200 mmol per kg VSS results in a significant increase of 142% in extractable extracellular polymeric substances and enhances the total VFAs yield by 64% compared to untreated samples. We reveal GLDA's capability to mobilize organic-binding multivalent metal ions within sludge flocs. Specifically, post-pretreatment analyses showed the release of 69.1 mg L-1 of Ca and 109.8 mg L-1 of Fe ions from the flocs, leading to a more relaxed floc structure and a reduced apparent activation energy (10.6 versus 20 kJ mol-1) for WAS solubilization. Molecular dynamic simulations further demonstrate GLDA's preferential binding to Fe3+ and Ca2+ over Mg2+. Our study suggests that GLDA pretreatment causes minimal disruption to reactor stability, thereby indicating the stability of microbial community composition. GLDA has emerged as a viable pretreatment agent for enhancing volatile fatty acids production from waste activated sludge.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Tanglong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
6
|
Jiao Q, Gao W, Zhong C, Yan Z, Tian S, Liu J. New insight into enhanced carbon recovery from anaerobic fermentation of waste activated sludge with cation exchange resin coupled with NaCl pretreatment. WATER RESEARCH 2024; 261:122046. [PMID: 38976931 DOI: 10.1016/j.watres.2024.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Carbon recovery from waste activated sludge has been attracting considerable attention. However, the migration and transformation patterns of carbon sources between the phases have rarely been reported. In this study, a novel strategy using cation exchange resin (CER) coupled with sodium chloride (NaCl) to enhance carbon recovery through anaerobic fermentation (AF) was proposed. The results demonstrated that CER coupled with NaCl destroyed OH and CO stretching in amide I while promoting the formation of β-sheet and random coil structures, leading to sludge disintegration. This significantly improved the kinetics of endogenous carbon release, resulting in the release of 1146.33 mg/L of carbon from the solid sludge into the liquid phase. Approximately 75.61 % of the initial carbon source was bio-transformed into short-chain fatty acids. Correspondingly, carbon recovery was significantly increased up to 852.23 mg C/L, 4.57 times that of the control. Mechanism exploration revealed that carbon source recovery was significantly elevated by the synergistic effect of CER and NaCl. CER effectively removed high-valence cations from extracellular polymeric substance (EPS), weakening its bridging and adsorption-electro neutralization capabilities, promoting protein deflocculation, and triggering EPS disruption to release extracellular carbon sources. NaCl disrupted the ionic strength and distribution inside and outside microbial cells, creating an osmotic pressure difference that resulted in cell plasmolysis and lysis, ultimately inducing the release of intracellular carbon sources. Economic and carbon emission reduction benefit analyses verified that the CER coupled with NaCl pretreatment is a cost-effective sludge treatment strategy. This study illustrates the carbon source migration and transformation pathways in the CER coupled with NaCl-assisted AF process, providing guidance for sustainable sludge management.
Collapse
Affiliation(s)
- Qiangqiang Jiao
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wenyu Gao
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chenkai Zhong
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhenyu Yan
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shujie Tian
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
7
|
Geng H, Xu Y, Liu R, Xu J, Li X, Yang D, Dai X. Magnetic porous microspheres altering interfacial thermodynamics of sewage sludge to drive metabolic cooperation for efficient methanogenesis. WATER RESEARCH 2024; 261:122022. [PMID: 39002417 DOI: 10.1016/j.watres.2024.122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Controllable and recyclable magnetic porous microspheres (MPMs) have been proposed as a means for enhancing the anaerobic digestion (AD) of sludge, as they do not require continuous replenishment and can serve as carriers for anaerobes. However, the effects of MPMs on the interfacial thermodynamics of sludge and the biological responses triggered by abiotic effects in AD systems remain to be clarified. Herein, the underlying mechanisms by which MPMs alter the solid-liquid interface of sludge to drive methanogenesis were investigated. A significant increase in the contents of 13C and 2H (D) in methane molecules was observed in the presence of MPMs, suggesting that MPMs might enhance the CO2-reduction methanogenesis and participation of water in methane generation. Experimental results demonstrated that the addition of MPMs did not promote the anaerobic bioconversion of soluble organics for methanogenesis, suggesting that the enhanced methanogenesis and water participation were not achieved through promotion of the bioconversion of original liquid-state organics in sludge. Analyses of the capillary force, surface adhesion force, and interfacial proton-coupled electron transfer (PCET) of MPMs revealed that MPMs can enhance mass transfer, effective contact, and electron-proton transfer with sludge. These outcomes were confirmed by the statistical analyses of variations in the interfacial thermodynamics and PCET of sludge with and without MPMs during AD. It was thus proposed that the MPMs enhanced the PCET of sludge and PCET-driven release of protons from water by promoting the interfacial Lewis acid-base interactions of sludge, thereby resulting in the enrichment of free and attached methanogenic consortia and the high energy-conserving metabolic cooperation. This proposition was further confirmed by identifying the predominant syntrophic partners, suggesting that PCET-based efficient methanogenesis was attributable to the enrichment of genomes harbouring CO2-reducing pathway and genes encoding water-mediated proton transfer. These findings offer new insights into how substrate properties can be altered by exogenous materials to enable highly efficient methanogenesis.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Niu Y, Wang Z, Xiong Y, Wang Y, Chai L, Guo C. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules 2024; 29:3494. [PMID: 39124898 PMCID: PMC11313768 DOI: 10.3390/molecules29153494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
By allowing coal to be converted by microorganisms into products like methane, hydrogen, methanol, ethanol, and other products, current coal deposits can be used effectively, cleanly, and sustainably. The intricacies of in situ microbial coal degradation must be understood in order to develop innovative energy production strategies and economically viable industrial microbial mining. This review covers various forms of conversion (such as the use of MECoM, which converts coal into hydrogen), stresses, and in situ use. There is ongoing discussion regarding the effectiveness of field-scale pilot testing when translated to commercial production. Assessing the applicability and long-term viability of MECoM technology will require addressing these knowledge gaps. Developing suitable nutrition plans and utilizing lab-generated data in the field are examples of this. Also, we recommend directions for future study to maximize methane production from coal. Microbial coal conversion technology needs to be successful in order to be resolved and to be a viable, sustainable energy source.
Collapse
Affiliation(s)
- Yu Niu
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Zhiqian Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yingying Xiong
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yuqi Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Lin Chai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
| | - Congxiu Guo
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| |
Collapse
|
9
|
Wang C, Wei W, Wu L, Wang Y, Dai X, Ni BJ. A Novel Sustainable and Self-Sufficient Biotechnological Strategy for Directly Transforming Sewage Sludge into High-Value Liquid Biochemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12520-12531. [PMID: 38953238 DOI: 10.1021/acs.est.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.
Collapse
Affiliation(s)
- Chen Wang
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Xie Y, Liu X, Liu L, Zhou Y, Wang Z, Huang C, He H, Zhai Y. Deep eutectic solvents pretreatment enhances methane production from anaerobic digestion of waste activated sludge: Effectiveness evaluation and mechanism elucidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120615. [PMID: 38518499 DOI: 10.1016/j.jenvman.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.
Collapse
Affiliation(s)
- Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8135, Japan
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
11
|
Xiang Y, Xiong W, Yang Z, Xu R, Zhang Y, Wu M, Ye Y, Peng H, Sun W, Wang D. Metagenomic insights into the toxicity of carbamazepine to functional microorganisms in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170780. [PMID: 38340855 DOI: 10.1016/j.scitotenv.2024.170780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Contaminants of emerging concern (CECs) contained in sludge, such as carbamazepine, may be toxic to microorganisms and affect the biogenesis of methane during anaerobic digestion. In this study, different scales of anaerobic digesters were constructed to investigate the inhibitory effect of carbamazepine. Results showed that carbamazepine reduced methane production by 11.3 % and 62.1 % at concentrations of 0.4 and 2 mg/g TS, respectively. Carbamazepine hindered the dissolution of organic matter and the degradation of protein. Carbamazepine inhibited some fermentative bacteria, especially uncultured Aminicenantales, whose abundance decreased by 9.5-93.4 % under carbamazepine stress. It is worth noting that most prior studies investigated the effects of CECs only based on well-known microorganisms, ignoring the metabolisms of uncultured microorganisms. Genome-predicted metabolic potential suggested that 54 uncultured metagenome-assembled genomes (MAGs) associated with acidogenesis or acetogenesis. Therein, uncultured Aminicenantales related MAGs were proved to be acetogenic fermenters, their significant reduction may be an important reason for the decrease of methane production under carbamazepine stress. The toxicity of carbamazepine to microorganisms was mainly related to the overproduction of reactive oxygen species. This study elucidates the inhibition mechanism of carbamazepine and emphasizes the indispensable role of uncultured microorganisms in anaerobic digestion.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yanru Zhang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou 510650, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Li J, Huang C. Anaerobic co-digestion of corn straw, sewage sludge and fresh leachate: Focusing on synergistic/antagonistic effects and microbial mechanisms. BIORESOURCE TECHNOLOGY 2024; 395:130414. [PMID: 38310978 DOI: 10.1016/j.biortech.2024.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Effects of sewage sludge (SS) and fresh leachate (FL) addition on corn straw (CS) digestion and underlying mechanisms were investigated. Co-digestion of CS, SS and FL significantly increased cumulative methane production by 7.2-61.1%. Further analysis revealed that co-digestion acted mainly on slowly degradable substrates and exerted dual effects on methane production potential, which was closely related to the volatile solids (VS) content. Antagonistic effects of co-digestion resulted from the dominance of norank_c_Bathyarchaeia, a mixotrophic methanogen that may generate methane inefficiently and consume existing methane. The synergistic enhancement of methane production (0.7-12.7%) was achieved in co-digestion with 33.5-45.5% of total VS added as SS and FL. Co-digestion with more balanced nutrients and higher buffering capacity enriched Actinobacteriota, Firmicutes, and Synergistota, thereby facilitating the substrate degradation. Furthermore, the predominant acetoclastic methanogens, increased hydrogenotrophic methanogens, and decreased methylotrophic methanogens in the digester combined to prompt the synergy.
Collapse
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Geng H, Xu Y, Dai X, Yang D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169313. [PMID: 38123094 DOI: 10.1016/j.scitotenv.2023.169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
14
|
Li S, Zhang Y, Liu M, Du Z, Li J, Gu L, Xu L, Liu F. Ascorbic acid reduction pretreatment enhancing metal regulation to improve methane production from anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169185. [PMID: 38092219 DOI: 10.1016/j.scitotenv.2023.169185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Conversion of waste activated sludge (WAS) to methane by anaerobic digestion (AD) is often limited by the slow rate of hydrolysis, and the presence of metal ions in sludge is regarded as a critical factor hindering sludge hydrolysis. This study developed a novel strategy to remove Fe from WAS by using ascorbic acid (VC) as a reducing agent under acidic conditions. The feasibility of reduction pretreatment in improving methane production of AD and its intrinsic mechanism were investigated. Results indicate that, under VC doses of 100 mmol/L and pH of 3.50, pretreatment removed 47.60 % of Fe, 59.88 % of Ca, and 51.86 % of Mg contained in the sludge. The removal of metal ions facilitated the disruption of sludge flocculation structure and extracellular polymeric substance (EPS) layers, leading to a 14.78 % increase in cell lysis and a decrease in fractal dimension values to 2.08. Batch AD experiments showed that VC pretreatment improved methane production, with an optimized net methane yield of 190.22 mL/g·VS, an increase of 134.75 % compared to raw WAS. The pretreatment affected the interfacial interaction energy of the sludge, leading to a transformation in the sludge surfaces from hydrophilic to hydrophobic, reducing the interaction between sludge molecules and increasing the number of binding sites available for enzymatic reactions. According to a study of microbial communities, it was found that VC pretreatment caused an increase in the presence of essential functional microbes responsible for hydrolysis, acidification, and methanation. This increase in acetoclastic and hydrogenotrophic methanogens resulted in a substantial enhancement in methane production. These results can be used to develop better pretreatment methods to enhance AD performance.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yu Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| |
Collapse
|
15
|
Pang H, Wang Y, Xu Y, He J, Wang L. Innovative cation exchange-driven carbon migration and recovery patterns in anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 394:130168. [PMID: 38072075 DOI: 10.1016/j.biortech.2023.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/04/2024]
Abstract
Despite numerous treatments have been developed to enhance anaerobic fermentation of waste activated sludge, the innovative cation exchange (CE) approach has been rarely reported, little attempt was conducted to revealcarbon source fate. The interphase carbon balance was illustrated to clarify endogenous carbon dissolution, biotransformation,and recovery patterns. By CE-mediated divalent cation removal, almost 34.72 % of particulate carbon sources were dissolved in 2-day treatment, corresponding to soluble carbon content of 1165.58 mg C/L. Most of the originally dissolved carbon sources (58.01-66.81 %) were bio-transformed to volatile fatty acids with high bioavailability, while the further transformation to biogas was inhibited, contributing to recoverable carbon source accumulation. Overall, 21.38 % of total solid carbon sources were recovered through 8-day fermentation, the carbon extraction was implemented by solid-liquid separation with carbon loss of 14.21-22.91 %, manifesting the valid carbon recovery of 85.05-87.96 mg C/g VSS. Such CE-driven carbon recovery provided negentropy benefits in sustainable cycle economy.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yumeng Xu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China.
| |
Collapse
|
16
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane. WATER RESEARCH 2024; 248:120897. [PMID: 38007883 DOI: 10.1016/j.watres.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The recovery of renewable bioenergy from anaerobic digestion (AD) of sludge is a promising method to alleviate the energy problem. Although methane can be effectively recovered through sludge pretreatment by cation exchange resin (CER), the simultaneous enhancement of hydrogen and methane generation from AD using CER has not been extensively investigated. Herein, the effect of CER on the sequential recovery of hydrogen and methane and the corresponding mechanisms were investigated. When CER is introduced, the maximum increases for the hydrogen and methane production are 104.7 % and 35.3 %, respectively, confirming the sequential enhancement effects of CER on the hydrogen and methane production. Analyses of the variations in the main biochemical components with and without the effect of CER demonstrate that CER promotes sludge organic solubilisation, hydrolysis, and acidification in both hydrogen- and methane-production stages. Moreover, investigations of variations in the solid-liquid interfacial thermodynamics and removal rates of main multivalent metals of sludge reveal that the ion exchange reactions between the CER and sludge in the hydrogen-production stage provide the direct driving force of effective contact between bacteria and organic particulates. Additionally, the residual effect of the CER during methane production reduces the energy barrier for mass transfer and provides a driving force for this transfer. Further analyses of the microbial community structure and metagenomics indicate that CER directly drives the enrichment of hydrogen-producing bacteria (+ 15.1 %) and key genes encoding enzymes in the hydrogen-production stage. Moreover, CER indirectly induces the enrichment of methane-producing anaerobes (e.g. Methanosaeta: + 16.7 %, Methanosarcina: + 316.5 %); enhances the bioconversion of different substrates into methyl-coenzyme M; and promotes the metabolism pathway of acetoclastic process and CO2 reduction in the methane-production stage. This study can provide valuable insights for simultaneously enhancing the production of hydrogen and methane from AD through sequential recovery.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Wang X, Chen Y, Ding W, Wei L, Shen N, Bian B, Wang G, Zhou Y. Organic binding iron formation and its mitigation in cation exchange resin assisted anaerobic digestion of chemically enhanced primary sedimentation sludge. WATER RESEARCH 2023; 247:120806. [PMID: 37925860 DOI: 10.1016/j.watres.2023.120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Fe based chemically enhanced primary sedimentation (CEPS) is an effective method of capturing the colloidal particles and inorganic phosphorous (P) from wastewater but also produces Fe-CEPS sludge. Anaerobic digestion is recommended to treat the sludge for energy and phosphorus recovery. However, the aggregated sludge flocs caused by the coagulation limited sludge hydrolysis and P release during anaerobic digestion process. In this study, cation exchange resin (CER) was employed during anaerobic digestion of Fe-CEPS sludge with aims of prompting P release and carbon recovery. CER addition effectively dispersed the sludge flocs. However, the greater dispersion of sludge flocs could not translate to higher sludge hydrolysis. The maximum hydrolysis and acidification achieved at lower CER dosage of 0.5 g CER/g TS. It was observed that the extents of sludge hydrolysis and acidification had a strongly negative correlation with the organic binding iron (OBI) concentration. The presence of CER during anaerobic digestion favored Fe(III) reduction to Fe(II), and then further induced iron phase transformation, leading to the OBI formation from the released organic matters. Meanwhile, higher CER dosage resulted in higher P release efficiency and the maximum efficiency at 4 g CER/g TS was four times than that of the control. The reduction of BD-P, NaOH-P and HCl-P in solid phase contributed most P release into the supernatant. A new two-stage treatment process was further developed to immigrate the OBI formation and improve the carbon recovery efficiency. Through this process, approximately 45% of P was released, and 63% of carbon was recovered as methane from Fe-CEPS sludge via CER pretreatment.
Collapse
Affiliation(s)
- Xiao Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Liyan Wei
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
18
|
Pang H, Xu Y, Zhang Y, Wei Q, Xu D, Liu J, Lu J. Endogenous biopolymer hydrolysis for enhancing short-chain fatty acids recovery from excess sludge: Combination of lysozyme-catalyzing and cation exchange resin-mediated metal regulation. CHEMOSPHERE 2023; 341:140102. [PMID: 37683954 DOI: 10.1016/j.chemosphere.2023.140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In decades, anaerobic fermentation with short-chain fatty acids (SCFAs) recovery from excess sludge have attained rising attention. However, rigid particulate organic matter (POMs) structure with slow hydrolysis limited anaerobic fermentation performance of excess sludge. Remarkable sludge hydrolysis performance was supposed to be achievable by the synchronous EPS repture and microbial cell lysis. This study clarified the improvement of overall anaerobic fermentation performance by combination treatment of lysozyme (Lyso) catalysis and metal regulation (MR). The Lyso + MR treatment triggered EPS rupture by protein structure deflocculation while catalyzing microbial cell lysis, which promoted massive extracellular and intracellular POMs hydrolysis. As a result, a significant amount of SCOD (5646.67 mg/L) was produced. Such endogenous organic matters hydrolysis led to considerable SCFAs accumulation (3651.14 mg COD/L) through 48-h anaerobic fermentation at 1.75 g/g SS cation-exchange resin and Lyso dosage of 10% (w/w), which was 5.945 times higher than that in the control. Additionally, it suggested that most of the recovered SCFAs remained in fermentative liquid after chemical conditioning and mechanical dewatering towards solid-liquid separation, which provided considerable economic benefit of 363.6-1059.1 CNY/ton SS.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Yumeng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dong Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinxuan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
19
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
20
|
Wang W, Dong L, Zhai T, Wang W, Wu H, Kong F, Cui Y, Wang S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163423. [PMID: 37062319 DOI: 10.1016/j.scitotenv.2023.163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.
Collapse
Affiliation(s)
- Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
21
|
Romero L, Oulego P, Collado S, Díaz M. Advanced thermal hydrolysis for biopolymer production from waste activated sludge: Kinetics and fingerprints. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118243. [PMID: 37276624 DOI: 10.1016/j.jenvman.2023.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Waste activated sludge (WAS) is the main residue of wastewater treatment plants, which can be considered an environmental problem of prime concern due to its increasing generation. In this study, a non-energetic approach was evaluated in order to use WAS as a renewable resource of high value-added products. For this reason, WAS was treated by thermal hydrolysis, H2O2 oxidation and advanced thermal hydrolysis (ATH) promoted by H2O2. The influence of temperature, H2O2 concentration and dosing strategy on biomolecule production (proteins and carbohydrates), size distribution (fingerprints) and various physico-chemical parameters (VSS, total and soluble COD, soluble TOC, pH and colour) was studied. The results revealed a synergistic effect between TH and H2O2 oxidation, which led to a significant increase in the production of both proteins and carbohydrates. In this sense, the concentration of proteins and carbohydrates obtained during TH at 85 °C for120 min was found to be 1376 ± 9 mg/L (121 mg/gVSSo) and 208 ± 4 mg/L (18 mg/gVSSo), respectively. However, in the presence of 4.5 mM H2O2/gVSSo under the same process conditions, the concentrations of proteins and carbohydrates exhibited a significant increase of 1.9-fold and 3.1-fold, respectively. Besides, the addition of H2O2 promoted the transformation of hydrophobic compounds, such as proteins and or lipids, into hydrophilic compounds, which presented low and medium sizes. An increase in temperature improved the solubilization rate and the yield of biomolecules significantly. Besides, the analysis of the kinetics related to the dosing strategy of H2O2 suggested the existence of two fractions during WAS solubilization, one of them being easily oxidizable, whereas the other one was more refractory to oxidation. Thus, the value of kH2O2 for the first addition of 1 mM H2O2/g VSSo was 0.020 L0.4 mgH2O2-0.4 min-1, while it was 4.3 and 8 times lower for the second and third additions, respectively.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
22
|
Wang R, Yang W, Cai C, Zhong M, Dai X. Dose-response and type-dependent effects of antiviral drugs in anaerobic digestion of waste-activated sludge for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27045-7. [PMID: 37209333 DOI: 10.1007/s11356-023-27045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
In the context of the COVID-19 pandemic, antiviral drugs (AVDs) were heavily excreted into wastewater and subsequently enriched in sewage sludge due to their widespread use. The potential ecological risks of AVDs have attracted increasing attention, but information on the effects of AVDs on sludge anaerobic digestion (AD) is limited. In this study, two typical AVDs (lamivudine and ritonavir) were selected to investigate the responses of AD to AVDs by biochemical methane potential tests. The results indicated that the effects of AVDs on methane production from sludge AD were dose- and type-dependent. The increased ritonavir concentration (0.05-50 mg/kg TS) contributed to an 11.27-49.43% increase in methane production compared with the control. However, methane production was significantly decreased at high lamivudine doses (50 mg/kg TS). Correspondingly, bacteria related to acidification were affected when exposed to lamivudine and ritonavir. Acetoclastic and hydrotropic methanogens were inhibited at a high lamivudine dose, while ritonavir enriched methylotrophic and hydrotropic methanogens. Based on the analysis of intermediate metabolites, the inhibition of lamivudine and the promotion of ritonavir on acidification and methanation were confirmed. In addition, the existence of AVDs could affect sludge properties. Sludge solubilization was inhibited when exposed to lamivudine and enhanced by ritonavir, perhaps caused by their different structures and physicochemical properties. Moreover, lamivudine and ritonavir could be partially degraded by AD, but 50.2-68.8% of AVDs remained in digested sludge, implying environmental risks.
Collapse
Affiliation(s)
- Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Menghuan Zhong
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Wu T, Ding J, Zhong L, Zhao YL, Sun HJ, Pang JW, Zhao L, Bai SW, Ren NQ, Yang SS. Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress. ENVIRONMENTAL RESEARCH 2023; 224:115513. [PMID: 36801232 DOI: 10.1016/j.envres.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
One of the most prevalent heavy metals found in rural sewage is Zn(II), while its effect on simultaneous nitrification, denitrification and phosphorus removal (SNDPR) remains unclear. In this work, the responses of SNDPR performance to long-term Zn(II) stress were investigated in a cross-flow honeycomb bionic carrier biofilm system. The results indicated that Zn(II) stress at 1 and 5 mg L-1 could increase nitrogen removal. Maximum ammonia nitrogen, total nitrogen, and phosphorus removal efficiencies of up to 88.54%, 83.19%, and 83.65% were obtained at Zn(II) concentration of 5 mg L-1. The functional genes, such as archaeal amoA, bacterial amoA, NarG, NirS, NapA, and NirK, also reached the highest value at 5 mg L-1 Zn(II), with the absolute abundances of 7.73 × 105, 1.57 × 106, 6.68 × 108, 1.05 × 109, 1.79 × 108, and 2.09 × 108 copies·g-1 dry weight, respectively. The neutral community model demonstrated that deterministic selection was responsible for the system's microbial community assembly. Additionally, response regimes with extracellular polymeric substances and cooperation among microorganisms facilitated the stability of the reactor effluent. Overall, the findings of this paper contribute to improving the efficiency of wastewater treatment.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shun-Wen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
24
|
Liu R, Xu Y, Song L, Liu S, Liang Z, Zhu D, Dai X. The effect of repeated energy inputs on the release profiles of extracellular organic substances in sewage sludge. WATER RESEARCH 2023; 233:119776. [PMID: 36848849 DOI: 10.1016/j.watres.2023.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Organic matter (OM) recovery from sewage sludge is critical for sustainable development. Extracellular organic substances (EOS) are the main organic components of sludge, and the release of EOS from sludge is usually the rate-limiting step for OM recovery. However, a poor understanding of the intrinsic characteristics of binding strength (BS) of EOS usually restricts the release of OM from sludge. To reveal the underlying mechanism that how the intrinsic characteristics of EOS limit its release, in this study, the BS of EOS in sludge was quantitatively characterised by 10 rounds of energy input (Ein) with the same magnitude per round; the corresponding changes in the main components, floc structures and rheological properties of sludge after different numbers of Ein were also explored. Results showed that relationships between the release of EOS and the main multivalent metals, median diameters, fractal dimensions, elastic modulus and viscous modulus in the linear viscoelastic region of sludge versus the number of Ein, highlighted that the power-law distribution of BS in EOS was responsible for the occurrence state of organic molecules, stability of floc structures and maintenance of rheological properties. The result of hierarchical cluster analysis (HCA) further revealed three BS levels of the EOS in sludge, indicating that the release or recovery of OM from sludge occurred in three stages. To the best of our knowledge, this is the first study that explores the release profiles of EOS in sludge by repeated Ein for assessing the BS. Our findings may provide an important theoretical basis for the development target methods about the release and recovery of OM from sludge.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zixuan Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Danyang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
25
|
Yang W, Cai C, Wang R, Dai X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130341. [PMID: 36403443 DOI: 10.1016/j.jhazmat.2022.130341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Wide commercial applications of antimicrobial quaternary ammonium compounds (QACs) inevitably lead to the release into wastewater and enrichment in sewage sludge. This study evaluated the impacts of levels and structures of QACs on sewage sludge properties, microbial community, and methane production during anaerobic digestion. Methane production was stimulated or not affected at low QACs concentrations, but significantly inhibited at high QACs concentrations. Compared with benzyl and alkyltrimethyl QACs, dialkyl QACs showed least toxicity on digestion performance. Meanwhile, microbial community analysis indicated that shifts in bacterial communities mainly depended on QACs doses, but the archaeal communities were affected by both QACs doses and types. The dominant methanogenic pathway shifted from acetotrophic/methylotrophic methanogens to mixotrophic methanogens by low levels of benzyl and alkyltrimethyl QACs but not dialkyl QACs, and further to hydrogenotrophic methanogens at high QACs concentration. Mechanism exploration revealed that the presence of QACs promoted sludge solubilization by the integrated effects of cell lysis, electric neutralization, and hydrophobicity improvement, but inhibited methanogenesis due to the accumulation of volatile fatty acids and susceptibility of methanogens to QACs. These findings provided a reference for potential impacts of different QACs on sludge biological treatment, which had implications for the use and selection of QACs disinfectants.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
26
|
Jin M, Liu H, Deng H, Xiao H, Liu S, Yao H. Dissociation and removal of alkali and alkaline earth metals from sewage sludge flocs during separate and assisted thermal hydrolysis. WATER RESEARCH 2023; 229:119409. [PMID: 36462258 DOI: 10.1016/j.watres.2022.119409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
High levels of alkali and alkaline earth metals (AAEM, including K, Na, Ca, and Mg) in sludge needs to be removed in pretreatment process for alleviating adverse effects on subsequent disposal. Theoretically, the liquid environment provided by the pretreatment technology of thermal hydrolysis (TH) is the ideal condition for the dissolution of AAEM. Therefore, this work quantified AAEM removal efficiency of TH and carbonaceous skeleton (CSkel) assisted TH that we previously proposed for sludge dewatering. Then the mechanism of AAEM dissociating from sludge was explored through the new perspective of biological structure evolution and chemical species transformation. The results showed that all of the AAEM in raw sludge was trapped in extracellular polymer substances (EPS) and cells. Only the water-soluble K/Na in EPS could be released by TH to the supernatant, the residual K/Na in EPS was organically linked with humic matters that were generated through the degradation of proteins. Water/NH4Ac-soluble K/Na in cells still stayed inside with a more stable form of HCl-soluble after TH. Fortunately, with the assistance of CSkel, this part of K/Na could be leached out due to organic acids derived from hemicellulose decomposition. In such a case, the removal efficiency of K/Na was elevated to 55.5% and 72.5%, respectively. Unlike K/Na, nearly all the Ca/Mg in EPS were transferred to cell residuals during TH. They were combined with the bio-phosphorus in cell residuals as the form of HCl-soluble Ca/Mg-P precipitates, rather than carbonates, sulfates or other compounds. This precipitation reaction was also moderately suppressed in CSkel-assisted TH with low pH, then 7.7% and 34.1% of Ca/Mg were taken away by filtrate. This means that appropriately raising the reaction temperature and adding CSkel with high hemicellulose/cellulose contents can promote the removal of AAEM in sludge during TH process.
Collapse
Affiliation(s)
- Minghao Jin
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hongping Deng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuai Liu
- Hunan province Key Laboratory of Efficient & Clean Thermal Power Generation Technologies, State Grid Hunan Electric Power Corporation Research Institute, Changsha, 410007, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
27
|
Pang H, Zhang Y, Wei Q, Jiao Q, Pan X, He J, Tian Y. Enhancing volatile fatty acids accumulation through anaerobic co-fermentation of excess sludge and sodium citrate: Divalent cation chelation and carbon source supplement. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Ding Y, Wu B, Xu Y, Liu Z, Dai X. Enhancing phosphorus recovery from efficient acidogenic fermentation of waste activated sludge with acidic cation exchange resin pretreatment: Insights from occurrence states and transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157534. [PMID: 35872200 DOI: 10.1016/j.scitotenv.2022.157534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Achieving phosphorus (P) recovery during treatment and disposal of waste activated sludge (WAS) by anaerobic-based processes has received increasing attention. To solve the problem of low phosphorus release efficiency, anaerobic fermentation (AF) combined with acidic cation exchange resin (ACER) pretreatment was first proposed in this study. Results showed that the isoelectric point pretreatment with ACER increased the recoverable phosphorus content by 2.3 times compared to that without ACER pretreatment. Phosphorus transformation was systematically analyzed from a whole-process perspective, and the results visually revealed that the release of phosphorus during the conventional AF process (without ACER pretreatment) was limited by insufficient phosphorus release from extracellular polymeric substances (EPS) and mineral precipitation, as well as the reprecipitation of soluble phosphorus with metals. ACER enabled effective dissolution of mineral phosphorus by acidifying WAS. On the other hand, ACER adsorbed metals to promote EPS disintegration and hydrolysis, thereby enhancing the release of EPS-bound P, which also reduced the reprecipitation of soluble phosphorus during AF. Furthermore, ACER pretreatment increased volatile fatty acids production by >2-fold with enhanced sludge hydrolysis. This finding has important implications for both non-renewable phosphorus recovery and sludge resource recovery.
Collapse
Affiliation(s)
- Yanyan Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhigang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
29
|
Song L, Liu S, Liu R, Yang D, Dai X. Direct lactic acid production from household food waste by lactic acid bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156479. [PMID: 35679945 DOI: 10.1016/j.scitotenv.2022.156479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
China is vigorously promoting garbage classification, but the treatment of classified waste, especially household food waste (HFW) has yet to be studied. Lactic acid (LA), a high value-added platform molecule has broad market prospects. Although there have been many studies on the production of LA from food waste, open fermentation often produces lots of by-products, while the traditional fermentation under a pure bacteria system often requires the saccharification process, which increases the production cost. We sought to analyze the comprehensive properties of classified HFW in Shanghai, then to produce LA by inoculating lactic acid bacteria (LAB) directly. The effects of strains, temperature, sterilized or not, initial pH, inoculum size, and substrate concentration on LA production were investigated. HFW was rich in nutrients and growth factors which provided the possibility for direct LA production from HFW by inoculating LAB. The results showed that Lactobacillus rhamnosus ATCC 7469, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus all could be used as the inoculum, however, no significant synergistic effect of the three strains on LA production was found. LA concentration of 30.25 g/L at 37 °C, pH 6.8 could be obtained by inoculating Lactobacillus rhamnosus ATCC 7469 from sterilized HFW. High inoculum size and substrate concentration resulted in high LA concentration, but not high LA yield. The result of ANOVA indicated that there was a significantly positive relationship between substrate concentration and LA concentration (r = 0.942, p < 0.01), while no statistically significant difference between these groups at different inoculum size was evident (p = 0.318). In addition, an average LA concentration of 26.8 g/L, LA yield of 0.20 g/g TCOD was obtained by repeated batch fermentation for 32 d.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
30
|
He C, Fang K, Gong H, Liu J, Song X, Liang R, He Q, Yuan Q, Wang K. Advanced organic recovery from municipal wastewater with an enhanced magnetic separation (EMS) system: Pilot-scale verification. WATER RESEARCH 2022; 217:118449. [PMID: 35429875 DOI: 10.1016/j.watres.2022.118449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The up-concentration process has been demonstrated as an attractive approach to carbon-neutral wastewater treatment. Innovation in the separation processes can help eliminate the current heavy dependence on gravity, and credible pilot-scale verification is crucial for application promotion. We hereby proposed a pilot-scale enhanced magnetic separation (EMS) system as an up-concentration step to maximize energy recovery from municipal wastewater. The design of EMS was based on the hypothesis that magnetic-driven separation could be a breakthrough in separation speed, and adsorption could further enhance the separation efficiency by capturing soluble substances. Jar tests confirmed the feasibility of activated carbon adsorption, which could also roughen the surface of aggregates. Further, over one-year operation of a 300 m3/d EMS equipment provided optimum operation strategies and evidence of system effectiveness. More than 80% of particulate organics and 60% of soluble organics were removed within 10 min at an energy consumption of only 0.036 kWh/m3. The characteristics of sludge were clarified in terms of organic concentration, extracellular polymeric substances composition, and micro-community analysis. The anaerobic experiments further demonstrated the potential value of the concentrated products. Surprisingly, the developed EMS system exhibited significant advantages in time consumption and space occupation, with competitive operating cost and energy consumption. Overall, the results of this study posed the EMS process for up-concentration as a potential approach to organics recovery from municipal wastewater.
Collapse
Affiliation(s)
- Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Xinxin Song
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Ruisong Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiuhang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|