1
|
Hoseinzadeh E, Taha P. Environmental iodine as a natural iodine intake in humans and environmental pollution index: a scientometric and updated mini review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3600-3614. [PMID: 38317354 DOI: 10.1080/09603123.2024.2312546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Although almost a third of the world's population is exposed to iodine deficiency (ID), and supplementation programs such as enriching table salt have been carried out or are being carried out at the global and national level, in many regions of the world, people are facing an increase in iodine intake, which is mainly due to the presence of large amounts of iodine in water, soil, agricultural products, or high consumption of seafood. Published articles were indexed in the Scopus database (from 2000 to 1 April 2023) were reviewed and analyzed by VOSviewer software. The results showed the growing interest of researchers over the last 20 years in environmental iodine intake. The results of this study can have a significant impact on the planning and policy-making of relevant officials and communities to supply the needed iodine.
Collapse
Affiliation(s)
- Edris Hoseinzadeh
- Environmental Health Engineering, Saveh University of Medical Sciences, Saveh, Iran
| | - Parisa Taha
- Nutrition Department, District Health Center, Saveh University of Medical Sciences, Saveh, Iran
| |
Collapse
|
2
|
Jütte M, Wilbert JA, Reusing M, Abdighahroudi MS, Schüth C, Lutze HV. Reaction Mechanisms of Chlorine Dioxide with Phenolic Compounds─Influence of Different Substituents on Stoichiometric Ratios and Intrinsic Formation of Free Available Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18846-18855. [PMID: 37276343 DOI: 10.1021/acs.est.2c09496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorine dioxide (ClO2) is an oxidant applied in water treatment processes that is very effective for disinfection and abatement of inorganic and organic pollutants. Thereby phenol is the most important reaction partner of ClO2 in reactions of natural organic matter (NOM) and in pollutant degradation. It was previously reported that with specific reaction partners (e.g., phenol), free available chlorine (FAC) could form as another byproduct next to chlorite (ClO2-). This study investigates the impact of different functional groups attached to the aromatic ring of phenol on the formation of inorganic byproducts (i.e., FAC, ClO2-, chloride, and chlorate) and the overall reaction mechanism. The majority of the investigated compounds reacted with a 2:1 stoichiometry and formed 50% ClO2- and 50% FAC, regardless of the position and kind of the groups attached to the aromatic ring. The only functional groups strongly influencing the FAC formation in the ClO2 reaction with phenols were hydroxyl- and amino-substituents in ortho- and para-positions, causing 100% ClO2- and 0% FAC formation. Additionally, this class of compounds showed a pH-dependent stoichiometric ratio due to pH-dependent autoxidation. Overall, FAC is an important secondary oxidant in ClO2 based treatment processes. Synergetic effects in pollutant control and disinfection might be observable; however, the formation of halogenated byproducts needs to be considered as well.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of Environmental Analytics and Pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Janis A Wilbert
- Technical University of Darmstadt, Institute IWAR, Chair of Environmental Analytics and Pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Marcel Reusing
- Technical University of Darmstadt, Institute IWAR, Chair of Environmental Analytics and Pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of Environmental Analytics and Pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Christoph Schüth
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of Environmental Analytics and Pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany
| |
Collapse
|
3
|
Suh MJ, Simpson AMA, Mitch WA. Purified Chlorine Dioxide as an Alternative to Chlorine Disinfection to Minimize Chlorate Formation During Postharvest Produce Washing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12063-12071. [PMID: 37531609 DOI: 10.1021/acs.est.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3-) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3- can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2-) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2- mixture used for its generation through a trap containing ClO2- can scavenge chlorine, substantially reducing ClO3- concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3- formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3- concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.
Collapse
Affiliation(s)
- Min-Jeong Suh
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
- Department of Engineering, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York 11549, United States
| | - Adam M-A Simpson
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
4
|
Chlorine Dioxide: Friend or Foe for Cell Biomolecules? A Chemical Approach. Int J Mol Sci 2022; 23:ijms232415660. [PMID: 36555303 PMCID: PMC9779649 DOI: 10.3390/ijms232415660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.
Collapse
|
5
|
Almeida J, Monahan A, Dionísio J, Delgado F, Magro C. Sustainability assessment of wastewater reuse in a Portuguese military airbase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158329. [PMID: 36030850 DOI: 10.1016/j.scitotenv.2022.158329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The current water-scarcity crisis that is being felt in Europe, namely in the southern region, has leveraged the development and implementation of national and regional water management plans. These policies aim to promote efficient wastewater reuse in industrial and urban sectors. Thus, stakeholders are now seeking strategies to enhance the sustainability of their wastewater treatment processes. The present work details the evaluation of the wastewater treatment methods used at an Air Force Base located in Portugal. In addition, this study also intended to determine how wastewater reuse can be implemented and add value to the environmental protection mission of the military airbase. Hence, an assessment of wastewater treatment practices was carried out, considering primary and secondary treatments. The chemical, physical, and biological indicators of samples collected over two consecutive years were analyzed to determine trends and fluctuations. The results revealed that the overall effectiveness of nutrient removal is low due to the oversized nature of the treatment plant, the age of the facility, and the composition of the wastewater. The effluent produced meets standards for non-potable reuse and could be used on base for aircraft maintenance and the cleaning of facilities. Nonetheless, the effectiveness of the plant could be improved by implementing a more advanced tertiary wastewater treatment to decrease the concentration of undesired compounds (e.g., total nitrogen), enabling the reuse of water in a broader range of activities.
Collapse
Affiliation(s)
- Joana Almeida
- CENSE-Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Portugal.
| | - Abigail Monahan
- School for International Training, World Learning Inc., Brattleboro, VT 05302, USA
| | - Joana Dionísio
- School for International Training, World Learning Inc., Brattleboro, VT 05302, USA
| | - Filipe Delgado
- Environmental Department, Portuguese Air Force, Portugal
| | - Cátia Magro
- School for International Training, World Learning Inc., Brattleboro, VT 05302, USA.
| |
Collapse
|
6
|
He H, Xu H, Li L, Yang X, Fu Q, Yang X, Zhang W, Wang D. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156547. [PMID: 35688238 DOI: 10.1016/j.scitotenv.2022.156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matters (DOM) have important effects on the performance of surface water treatment processes and may convert into disinfection by-products (DBPs) during disinfection. In this work, the transformation of DOM and the chlorinated DBPs (Cl-DBPs) formation in two different full-scale surface water treatment processes (process 1: prechlorination-coagulation-precipitation-filtration; process 2: coagulation-precipitation-post-disinfection-filtration) were comparatively investigated at molecular scale. The results showed that coagulation preferentially removed unsaturated (H/C < 1.0 and DBE > 17) and oxidized (O/C > 0.5) compounds containing more carboxyl groups. Therefore, prechlorination produced more Cl-DBPs with H/C < 1.0 and O/C > 0.5 than post-disinfection. However, the algal in the influent produced many reduced molecules (O/C < 0.5) without prechlorination, and these compounds were more reactive with disinfectants. Sand filtration was ineffective in DOM removal, while microorganisms in the filter produced high molecular weight (MW) substances that were involved in the Cl-DBPs formation, causing the generation of higher MW Cl-DBPs under post-disinfection. Furthermore, the CHO molecules with high O atom number and the CHON molecules containing one N atom were the main Cl-DBPs precursors in both surface water treatment processes. In consideration of the putative Cl-DBPs precursors and their reaction pathways, the precursors with higher unsaturation degree and aromaticity were prone to produce Cl-DBPs through addition reactions, while that with higher saturation degree tended to form Cl-DBPs through substitution reactions. These findings are useful to optimize the treatment processes to ensure the safety of water quality.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China.
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China; Department of Environmental Engineering, Zhejiang university, Hangzhou 310058, Zhejiang, China
| |
Collapse
|