1
|
Li LP, Jiao XY, Peng S, Wei DB, Jin YC, Wang CS, Pan D, Liu P, Wang XR, Tang YP, Ren D, Liu XH. Exploring the variations in molecular characteristics of dissolved organic matter driven by aquaculture types. WATER RESEARCH 2024; 266:122355. [PMID: 39226743 DOI: 10.1016/j.watres.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
In recent decades, global aquaculture has expanded rapidly, raising concerns about coastal environmental degradation due to unregulated or poorly regulated discharge of aquaculture tailwater. Despite the crucial role of dissolved organic matter (DOM) in biogeochemical processes and aquatic biodiversity, the influence of aquaculture type on the molecular characteristics of DOM remains largely unexplored. Herein, this study investigated the variations in chemical and spectroscopic properties as well as molecular characteristics and composition of DOM across different aquaculture types including crustacean, fish and shellfish. Our findings revealed notable differences in DOM quantities among different aquaculture types, with crustacean and fish aquaculture water containing higher DOM amount compared to shellfish aquaculture water. This disparity can be attributed to the more frequent formulated feeds of crustacean and fish in contrast to shellfish aquaculture. Furthermore, distinct differences were also observed in the characteristics and composition of DOM among the different aquaculture waters. Specifically, DOM in shellfish aquaculture water exhibited a higher abundance of unsaturated and reduced molecules as well as increased aromaticity compared to the other two aquaculture waters. Conversely, DOM from fish aquaculture water showed a greater contribution from terrestrial origin characterized by elevated levels of plant-based components such as lignin-like and tannin-like compounds. Interestingly, DOM from shellfish aquaculture water contained lower levels of microbial-derived components such as lipid-like and protein-like compounds, likely due to reduced microorganism populations resulting from lower nutrients availability and higher salinity. Overall, these significant variations in characteristics and composition of DOM underscore the potential impacts of aquaculture type on the DOM biogeochemical cycle and the environmental quality in aquatic ecosystems.
Collapse
Affiliation(s)
- Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xin-Yi Jiao
- College of Environmental Science and Engineering, China West Normal University, NO.1 Shida Road, Shunqing District, Nanchong 637009, China
| | - Shuang Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong-Bin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan-Chao Jin
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Cai-Shan Wang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Ding Pan
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Peng Liu
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xue-Rong Wang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yu-Ping Tang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, NO.1 Shida Road, Shunqing District, Nanchong 637009, China.
| | - Xin-Hui Liu
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Wu H, Bai X, Li L, Li Z, Wang M, Zhang Z, Zhu C, Xu Y, Xiong H, Xie X, Tian X, Li J. Two-stage partial nitrification-denitrification and anammox process for nitrogen removal in vacuum collected toilet wastewater at ambient temperature. ENVIRONMENTAL RESEARCH 2024; 262:119917. [PMID: 39251178 DOI: 10.1016/j.envres.2024.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Vacuum collected toilet wastewater (VCTW) contains high and fluctuating contents of organics and nitrogen, which exerts technological challenges to biological treatment processes. A partial nitrification-denitrification and anammox (PND-AMX) process was developed in sequencing batch reactor (SBR) and moving bed biofilm reactor (MBBR) to achieve effective nitrogen removal in VCTW at low ambient temperature. Stable PND was achieved, and nitrogen removal efficiency in SBR could be manipulated by adjusting influent COD/N ratios. As temperature ≥18 °C, 91.0% nitrogen was removed in PND-AMX process. In spite of the decreased anammox activity at 13-18 °C, more than 90% nitrogen removal could be obtained by adjusting SBR influent COD/N to 2.43 ± 0.32 with methanol. In MBBR reactor, Candidatus Kuenenia was the dominant anammox bacteria and contributed to more than 90% nitrogen removal capacity. Co-existing anammox and denitrifying bacteria synergistically contributed to the removal of ammonium, nitrite, nitrate, and COD in MBBR.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaolei Bai
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhaoxin Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Cheng Zhu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Yuanmin Xu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Huiqin Xiong
- Nanjing Jianye District Water Bureau, Nanjing, 210017, China
| | - Xin Xie
- Nanjing Jianye District Water Facilities Comprehensive Maintenance Center, Nanjing, 210017, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
3
|
Chang X, Duan T, Feng J, Li YX. Contrasting fate and binding behavior of Mn and Cu with dissolved organic matter during in situ remediation using multicomponent capping in malodorous black water. WATER RESEARCH 2024; 253:121288. [PMID: 38359596 DOI: 10.1016/j.watres.2024.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The common use of peroxides in the remediation of malodorous black water may lead to the activation of heavy metals in sediment when eliminating black and odorous substances. The mechanisms of heavy metal interactions with dissolved organic matter (DOM) in response to in situ capping have not been elucidated, but this information could guide the optimization of capping materials. We developed a capping material consisting of hydrothermally carbonized sediment (HCS), hydrated magnesium carbonate (HMC) and sodium percarbonate (SPC) and used microcosm experiments to investigate the dynamics of Mn and Cu at the sediment-water interface in malodorous black water. The results showed that HCS, HMC and SPC contributed multiple functions of mechanical protection, chemical isolation and oxygen provision to the new caps. HMC promoted the conversion of Mn/Cu into carbonate minerals. The optimal mass proportions were 25 % HCS, 60 % HMC and 15 % SPC based on the mixture design. In situ capping altered the fate and transformation of metals in the sediment-overlying water profile in the short term through Mn immobilization and Cu activation. The complexation of Cu(II) ions was significantly stronger than that of Mn(II) ions. In situ capping had a significant effect on the order of complexation of different fluorescent DOM molecules with Mn(II)/Cu(II) ions: microbial byproducts and fulvic acid-like components were preferentially complexed with Cu(II) ions after capping, while phenolic and humic acid-like components preferentially interacted with Mn(II) ions. Humic-like components bound to Cu were affected the most by capping treatment, whereas protein-like components were relatively weakly affected. Our study provides valuable knowledge on the impact of in situ capping on DOM-metal complexes.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tingting Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiashen Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Zhou L, Wu Y, Zhou Y, Zhang Y, Xu H, Jang KS, Dolfing J, Spencer RGM, Jeppesen E. Terrestrial dissolved organic matter inputs drive the temporal dynamics of riverine bacterial ecological networks and assembly processes. WATER RESEARCH 2024; 249:120955. [PMID: 38071902 DOI: 10.1016/j.watres.2023.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Rivers receive, transport, and are reactors of terrestrial dissolved organic matter (DOM) and are highly influenced by changes in hydrological conditions and anthropogenic disturbances, but the effect of DOM composition on the dynamics of the bacterial community in rivers is poorly understood. We conducted a seasonal field sampling campaign at two eutrophic river mouth sites to examine how DOM composition influences the temporal dynamics of bacterial community networks, assembly processes, and DOM-bacteria associations. DOM composition and seasonal factors explained 34.7% of the variation in bacterial community composition, and 14.4% was explained purely by DOM composition where specific UV absorbance (SUVA254) as an indicator of aromaticity was the most important predictor. Significant correlations were observed between SUVA254 and the topological features of subnetworks of interspecies and DOM-bacteria associations, indicating that high DOM aromaticity results in more complex and connected networks of bacteria. The bipartite networks between bacterial taxa and DOM molecular formulae (identified by ultrahigh-resolution mass spectrometry) further revealed less specialized bacterial processing of DOM molecular formulae under the conditions of high water level and DOM aromaticity in summer than in winter. A shift in community assembly processes from stronger homogeneous selection in summer to higher stochasticity in winter correlated with changes in DOM composition, and more aromatic DOM was associated with greater similarity in bacterial community composition. Our results highlight the importance of DOM aromaticity as a predictor of the temporal dynamics of riverine bacterial community networks and assembly.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Hai Xu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, United States
| | - Erik Jeppesen
- Department of Ecoscience and Center for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|