1
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Butovych H, Keshavarz F, Barbiellini B, Lähderanta E, Ilnytskyi J, Patsahan T. Role of EDTA protonation in chelation-based removal of mercury ions from water. Phys Chem Chem Phys 2024; 26:25402-25411. [PMID: 39318161 DOI: 10.1039/d4cp02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A robust method of hazardous metal ion removal from an aqueous environment involves the use of chelating agents, such as ethylenediaminetetraacetic acid (EDTA). Here, we focus on mercury (Hg2+) uptake by EDTA using both molecular dynamics and density functional theory simulations. Our results indicate that the deprotonation of the EDTA carboxylate groups improves the localization of negative charge on the deprotonated sites. This mechanism facilitates charge transfer between the metal ions and EDTA, and provides a stronger and more stable EDTA-Hg2+ complex formation improving the efficiency of the chelation process. The best metal removal conditions are achieved using the fully deprotonated form of EDTA, which naturally occurs at pH levels above 3.
Collapse
Affiliation(s)
- Halyna Butovych
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Fatemeh Keshavarz
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Erkki Lähderanta
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Universitat de les Illes Balears, Cra Valldemossa, km. 7.5, 07122 Palma, Spain
| | - Jaroslav Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| | - Taras Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| |
Collapse
|
3
|
Liu Z, Zhao J, Wang A, Yuan H, Chi Y. Adsorption behavior and mechanism of Cu(II) by sodium alginate/carboxymethylcellulose/magnesium hydroxide (SC-MH) hydrogel. Int J Biol Macromol 2024; 277:134046. [PMID: 39033892 DOI: 10.1016/j.ijbiomac.2024.134046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
In the present work, an environmentally-friendly, reusable hydrogel ball characterized by its great adsorption capacity to Cu(II) was synthesized. The preparation of this hydrogel drew on sodium alginate (SA) and carboxymethyl cellulose (CMC) as primary composition elements. The endeavor brought novelty by ingeniously infusing it with slurry magnesium hydroxide (MH). The factors (pH, SC-MH amount, initial concentration, adsorption time) that are critical to adsorption were also investigated. FTIR, SEM-EDS and XPS were used to reveal the adsorption mechanism of Cu on SC-MH. The results show that the surface of SC-MH is rough, and there are a large number of gully-like structures conducive to adsorption, which are rich in hydroxyl and carboxyl groups. Under the optimum conditions, the maximum adsorption capacity reached 215.68 mg/g. Based on its high R2 value (0.999), the Langmuir model is determined to be the most appropriate for describing the adsorption behavior, indicating monolayer homogeneous adsorption. The kinetic data align well with the pseudo-second-order kinetic model. Furthermore, thermodynamic analysis reveals the adsorption process to be spontaneous and endothermic, as demonstrated by a negative ΔG and positive ΔH (38.8859 KJ/mol). The mechanism involves electrostatic attraction, chelation, Mg(OH)2 adsorption and ion exchange.
Collapse
Affiliation(s)
- Zhong Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianhai Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Anni Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongying Yuan
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongzhi Chi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
4
|
Zheng C, Wu Q, Sun K, Xu B, Sun Y, Zheng H. Insight into the impact of environmental factors on heavy metal adsorption by sodium alginate hydrogel: Inspiration on applicable scenarios. ENVIRONMENTAL RESEARCH 2024; 262:119878. [PMID: 39222734 DOI: 10.1016/j.envres.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH). The result showed that high concentration of organics (above 10 mg L-1) had a negative influence on heavy metal removal (decreased by 9.45 % at least), while inorganic ion, turbidity and antibiotics at relatively low concentrations exhibited a negligible even promoting effect (increased by 9.8 % with the presence of 5 mg L-1 Nor). Based on above results and corresponding mechanism analyses, the possible applicable and unsuitable scenarios of SAH can be predicted. SAH could be a great candidate for treating heavy metal-polluted water such as river and lake water, while it is not a good option for electroplating or livestock wastewater which contains high concentration of organic matters. Besides, the operating conditions including pH (5.0 for Cu(II), 6.0 for Ni(II)), contact time (24 h), temperature (298 K) et al. were also determined. Overall, this work provides theoretical guidance and operational strategies for promoting the practical application of SA adsorbent in water treatment.
Collapse
Affiliation(s)
- Chaofan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kuiyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Huaili Zheng
- Chongqing Engineering Research Center of Water Treatment Coagulant, Chongqing, 400045, China
| |
Collapse
|
5
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
6
|
Mohamed Noor MH, Ngadi N. Ecotoxicological risk assessment on coagulation-flocculation in water/wastewater treatment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52631-52657. [PMID: 39177740 DOI: 10.1007/s11356-024-34700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
It is undeniable that removal efficiency is the main factor in coagulation-flocculation (C-F) process for wastewater treatment. However, as far as environmental safety is concerned, the ecotoxicological aspect of the C-F process needs to be examined further. In this study, a systematic review was performed based on publications related to the toxicity research in C-F technology for wastewater treatment. Through a series of screening steps, available toxicity studies were categorized into four themes, namely acute toxicity, phytotoxicity, cytotoxicity, and genotoxicity, which comprised 48 articles. A compilation of the methodologies executed for each theme was also outlined. The findings show that conventional metallic coagulants (e.g., alum, iron chloride, and iron sulfate) were less toxic when tested on test species such as Daphnia magna (water flea), Lattuca sativa (lettuce), and animal cells compared to synthetic polymers. Natural coagulants such as chitosan or Moringa oleifera were less toxic compared to metallic coagulants; however, inconsistent results were observed. Moreover, an advanced C-F (electrocoagulation) as well as integration between C-F and Fenton, adsorption, and photocatalytic does not significantly change the toxicological profile of the system. It was found that diverse coagulants and flocculants, species sensitivity, complexity in toxicity testing, and dynamic environmental conditions were some key challenges faced in this field. Finally, it was expected that advances in technology, interdisciplinary collaboration, and a growing awareness of environmental sustainability will drive efforts to develop more effective and eco-friendly coagulants and flocculants, improve toxicity testing methodologies, and enhance the overall efficiency and safety of water and wastewater treatment processes.
Collapse
Affiliation(s)
- Mohamed Hizam Mohamed Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
7
|
Xiang X, Mao X, Ding X, Gu X, Li H, Liu R, Liu Y, Jin J, Qin L. Assembly of core-shell Fe 3O 4 @CD-MOFs derived hollow magnetic microcubes for efficient extraction of hazardous substances: Plausible mechanisms for selective adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134588. [PMID: 38797072 DOI: 10.1016/j.jhazmat.2024.134588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Hazardous heavy metals and organic substances removal is of great significance for ensuring the safety of aquatic-ecosystem, yet the highly effective and selective extraction always remains challenging. To address this problem, magnetic hollow microcubes were fabricated through thermal carbonization of Fe3O4-COOH@ γ-CD-MOFs, and core-shell structured precursors were in-situ greenly constructed on a large scale via microwave-assisted self-assembly strategy. As noted, the development of secondary crystallization was utilized to achieve uniform dispersion of cores within MOFs frameworks and thus improved magnetic and adsorption ability of composites. Acquired magnetic Fe3O4 @HC not only can harvest excellent extraction of heavy metals (Cd, Pb, and Cu of 129.87, 151.05, and 106.98 mg·g-1) but also exhibit highly selective adsorption ability for cationic organics (separation efficiency higher than 95.0 %). Impressively, Fe3O4 @HC achieved outstanding adsorption (60-80 %) of Cd in realistic mussel cooking broth with no obvious loss in amino acid. Characterizations better offer mechanistic insight into the enhanced selectivity of positively charged pollutants can be attributed to synergistic effect of ions exchange and electrostatic interaction of abundant oxygen-containing functional groups. Our study provides a feasible route by rationally developing core-shell structured composites to promote the practical applications of sustainable water treatment and value-added utilization of processing by-products.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinqi Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiu Gu
- Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haorui Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruizhi Liu
- Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Liu
- National Narcotic Laboratory Zhejiang Regional Center (NNLZRC), Hangzhou 310053, China
| | - Jiabin Jin
- National Narcotic Laboratory Zhejiang Regional Center (NNLZRC), Hangzhou 310053, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
9
|
Sun R, Gao S, Zhang K, Cheng WT, Hu G. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Int J Biol Macromol 2024; 268:131853. [PMID: 38679268 DOI: 10.1016/j.ijbiomac.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.
Collapse
Affiliation(s)
- Ruiyi Sun
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Sanshuang Gao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kai Zhang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Wen-Tong Cheng
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
10
|
Li D, Wang Y, Deng W, Wang D. Efficient and selective capture of various mercury species from water using an exfoliated thiocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171063. [PMID: 38373452 DOI: 10.1016/j.scitotenv.2024.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The primary challenge in mercury (Hg) adsorbents for large-scale practical applications is to achieve the balance between performance and economy. This work attempts to address this issue by synthesizing an exfoliated thiocellulose (CU-SH) with high thiol density and hierarchical porosity using in-situ ligands grafting combined with chemical stripping. The prepared CU-SH shows remarkable physical stability and chemical resistance, and the micron sized fiber is conducive to separation from water. Hg(II) adsorption tests in water demonstrate that CU-SH has broad working pH range (1-12), fast kinetics (0.64 g/(mg‧min)), high adsorption capacity (652.9 mg/g), outstanding selectivity (Kd = 6.2 × 106 mg/L), and excellent reusability (R > 95 % after 20 cycles). Importantly, CU-SH exhibits good resistance to various coexisting ions and organic matter, and can efficiently remove Hg(II) from different real water. CU-SH can be made into a Point of Use (POU) device for continuous and efficient removal of Hg(II) from drinking water. 0.1 g CU-SH filled device can purify 3.2 L of Hg(II) (0.5 ppm) contaminated tap water before the breakthrough point of 2 ppb. Moreover, CU-SH also reveals good adsorption affinity for Hg-dissolved organic matter complexes (Hg(II)-DOM) in water, chloro(phenyl)mercury (PMC) in organic media and Hg0 vapor in air, suggesting the great practical potential of CU-SH.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Jia TZ, Feng R, Cui C, Chen Q, Cseri L, Zhou RF, Szekely G, Cao XL, Sun SP. Conductive nanofiltration membranes via in situ PEDOT-polymerization for electro-assisted membrane fouling mitigation. WATER RESEARCH 2024; 252:121251. [PMID: 38324983 DOI: 10.1016/j.watres.2024.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT. This interwoven structure integrates with the polyamide network to establish a stable selective layer, yielding a remarkable 90 % increase in permeability to 20.4 L m-2 h-1 bar-1. Leveraging the conductivity conferred by PEDOT doping, an electro-assisted cleaning strategy is devised, rapidly restoring the flux to 98.3 % within 5 min, outperforming the 30-minute pure water cleaning approach. Through simulations in an 8040 spiral-wound module and the utilization of the permeated salt solution for cleaning, the electro-assisted cleaning strategy emerges as an eco-friendly solution, significantly reducing water consumption and incurring only a marginal electricity cost of 0.055 $ per day. This work presents an innovative avenue for constructing conductive membranes and introduces an efficient and cost-effective electro-assisted cleaning strategy to effectively combat membrane fouling.
Collapse
Affiliation(s)
- Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ru Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chun Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom
| | - Rong-Fei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China
| | - Gyorgy Szekely
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, United Kingdom; Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China.
| |
Collapse
|
12
|
Wang Z, Huang K, Zheng Y, Ye H, Wang J, Tao X, Zhou J, Dang Z, Lu G. Efficient removal of heavy metals in water utilizing facile cross-link conjugated linoleic acid micelles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20665-20677. [PMID: 38381288 DOI: 10.1007/s11356-024-32517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Micellar-enhanced ultrafiltration (MEUF) technology is an effective method to treat low-concentration heavy metal wastewater. However, the leakage of surfactants in the ultrafiltration (UF) process will inevitably cause secondary pollution. In this study, a biosurfactant of conjugated linoleic acid (CLA) with conjugated double bonds was selected to bind its micelles by simple thermal crosslinking to obtain morphologically stable stearic acid (SA) nanoparticles. The pure SA nanoparticles were obtained by repeated dialysis. The stability of the SA nanoparticles was verified by comparing the particle size distribution and solubility of the materials before and after crosslinking at different pH levels. The effectiveness of SA nanoparticle-enhanced UF in removing heavy metals was verified by exploring the adsorption performance of SA nanoparticles. The dialysis device was used to simplify the UF device, wherein SA nanoparticles were assessed as adsorbents for the elimination of Cu2+, Pb2+, and Cd2+ ions from aqueous solutions under diverse process parameters, including pH, contact time, metal ion concentration, and coexisting ions. The findings indicate that the SA nanoparticles have no evidence of secondary contamination in UF and exhibit compatibility with a broad pH range and coexisting ions. The maximum adsorption capacities for Cu2+, Pb2+, and Cd2+ were determined to be 152.77, 403.56, and 271.46 mg/g, respectively.
Collapse
Affiliation(s)
- Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kaibo Huang
- School of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Juan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Inverse vulcanization induced oxygen modified porous polysulfides for efficient sorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16940-16957. [PMID: 38326685 DOI: 10.1007/s11356-024-32323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
14
|
Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, Ge S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122830. [PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
Collapse
Affiliation(s)
- Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
| | - Haoran Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
15
|
Xie S, Hu J, Li K, Zhao Y, Ma N, Wang Y, Jin Y, Guo G, Kumar R, Li J, Huang J, Tian H. Substantial and efficient adsorption of heavy metal ions based on protein and polyvinyl alcohol nanofibers by electrospinning. Int J Biol Macromol 2023; 253:126536. [PMID: 37634775 DOI: 10.1016/j.ijbiomac.2023.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The adverse effects of heavy metal pollutants in wastewater have threatened human health in recent decades. Therefore, the development of absorbents for such pollutants is essential to overcome these problems. Electrospun nanofibers are often used for wastewater treatment owing to their high porosity and high specific surface area. Zein from plants and collagen from animals are vulnerable to moisture, which limits its broad application in practice. However fully biodegradable polyvinyl alcohol (PVA), which is soluble in water, can be mixed with protein individually to overcome the limitation. In this work, the two proteins described above and PVA were combined to prepare protein nanofibers by electrospinning technology, which could achieve adsorption of Cu2+. As the protein content increased, the adsorption properties of the obtained nanofibers for Cu2+ showed a rising and then decreasing trend, with the highest point at 50 % of protein content, especially the collagen nanofibers, which reached 24.62 mg/g. Both protein nanofibers reached adsorption equilibrium after 15 h, but overall, collagen nanofibers showed a superior adsorption performance for Cu2+ than that by zein nanofibers. In the process of Cu2+ adsorption by protein nanofibers, both physical and chemical effect existed, and the physical effect played the leading role.
Collapse
Affiliation(s)
- Shiyu Xie
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jing Hu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ke Li
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaxin Zhao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Na Ma
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaomin Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Gaiping Guo
- College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 7648, India
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
16
|
Zheng H, Meng X, Wu J, Liu D, Huo S. Photoelectrocatalytic modification of nanofiltration membranes with SrF 2/Ti 3C 2T x to simultaneously enhance heavy metal ions rejection and permeability. CHEMOSPHERE 2023; 342:140152. [PMID: 37714470 DOI: 10.1016/j.chemosphere.2023.140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Heavy metal pollution can significantly harm water systems and human health. Combining photoelectrocatalytic (PEC) and nanofiltration (NF) membrane separation technologies can effectively remove heavy metal ions from wastewater. In this study, a water bath method was used to form SrF2/Ti3C2Tx (ST) nanoparticles on the surface of polyvinylidene fluoride (PVDF) membranes and an additional polyamide (PA) functional layer was formed at the interface by crosslinking. ST@PA composite NF membranes (STPP) with good photocatalytic performance were obtained. The separation and catalytic properties of the STPP membranes were controlled by the ST content, which modifies the surface structure and properties of the membranes. The membrane with optimal ST crosslinking exhibited a water contact angle of 50.8°, pure water flux of 24.6 L·m-2·h-1·bar-1, and rejection rates of Mn2+, Ni2+, Cu2+, and Zn2+ of 98.8%, 95.3%, 95.7%, and 97.3%, respectively, under PEC-assisted separation with visible light illumination from a Xe lamp (300 W) and an applied voltage (2 V). The STPP membranes showed improved rejection rates of heavy metal ions under PEC-assisted operation. The mechanism for the improved membrane performance under PEC conditions was preliminarily clarified considering the relationship between the photocatalytic and filtration properties of STPP membranes along with the influence of light irradiation and an external voltage on the heavy metal ions. The generation of electrons, holes, superoxide radicals, and hydroxyl radicals during membrane operation enhances the rejection rates of heavy metal ions. Based on these results, STPP membranes are considered a promising technology for industrial applications in heavy metal removal.
Collapse
Affiliation(s)
- Huiqi Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jiao Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Danghao Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Huo
- Research Institute of Membrane Separation Technology of Shaanxi Province Co., Ltd, Xi'an 710055, China
| |
Collapse
|
17
|
Zheng Q, Li Q, Tao Y, Gong J, Shi J, Yan Y, Guo X, Yang H. Efficient removal of copper and silver ions in electroplating wastewater by magnetic-MOF-based hydrogel and a reuse case for photocatalytic application. CHEMOSPHERE 2023; 340:139885. [PMID: 37604344 DOI: 10.1016/j.chemosphere.2023.139885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Direct discharge of electroplating wastewater containing hazardous metal ions such as Cu2+ and Ag + results in environmental pollution. In this study, we rationally prepare a magnetic composite hydrogel consisted of Fe3O4, UiO-66-NH2, chitosan (CTS) and polyethyleneimine (PEI), namely Fe3O4@UiO-66-NH2/CTS-PEI. Thanks to the strong attraction between the amino group and metal cations, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel shows the maximum adsorption capacities of 321.67 mg g-1 for Cu2+ ions and 226.88 mg g-1 for Ag + ions within 120 min. As real scenario, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel exhibits excellent removal efficiencies for metallic ions even in the complicated media of actual electroplating wastewater. In addition, we explore the competitive adsorption order of metal cations by using experimental characterization and theoretical calculations. The optimal configuration of CTS-PEI is also discovered with the density functional theory, and the water retention within hydrogel is simulated through molecular dynamics modeling. We find that the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel could be reused and after 5 cycles of adsorption-desorption, removal efficiency could maintain 80%. Finally, the Ag+ accumulated by hydrogel are reduced to generate a photocatalyst for efficient degradation of Rhodamine B. The novel magnetic hydrogel paves a promising path for efficient removal of heavy metal ions in wastewater and further resource utilization as photocatalysts.
Collapse
Affiliation(s)
- Qiangting Zheng
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinyi Li
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Tao
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiamin Gong
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiangli Shi
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Yan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Shetty S, Baig N, Wahed SA, Hassan A, Das N, Alameddine B. Iodine and Nickel Ions Adsorption by Conjugated Copolymers Bearing Repeating Units of Dicyclopentapyrenyl and Various Thiophene Derivatives. Polymers (Basel) 2023; 15:4153. [PMID: 37896396 PMCID: PMC10611155 DOI: 10.3390/polym15204153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The synthesis of three conjugated copolymers TPP1-3 was carried out using a palladium-catalyzed [3+2] cycloaddition polymerization of 1,6-dibromopyrene with various dialkynyl thiophene derivatives 3a-c. The target copolymers were obtained in excellent yields and high purity, as confirmed by instrumental analyses. TPP1-3 were found to divulge a conspicuous iodine adsorption capacity up to 3900 mg g-1, whereas the adsorption mechanism studies revealed a pseudo-second-order kinetic model. Furthermore, recyclability tests of TPP3, the copolymer which revealed the maximum iodine uptake, disclosed its efficient regeneration even after numerous adsorption-desorption cycles. Interestingly, the target copolymers proved promising nickel ions capture efficiencies from water with a maximum equilibrium adsorption capacity (qe) of 48.5 mg g-1.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
19
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
20
|
Ma X, Wang Y, Tong L, Luo J, Chen R, Wang Y, Guo X, Wang J, Zhou Z, Qi J, Li G, Liang H, Tang X. Gravity-driven membrane system treating heavy metals-containing secondary effluent: Improved removal of heavy metals and mechanism. CHEMOSPHERE 2023; 339:139590. [PMID: 37480959 DOI: 10.1016/j.chemosphere.2023.139590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
This study aimed at investigating the removal performance of the gravity-driven membrane (GDM) system in treating the heavy metals-containing secondary effluent, as well as evaluating the respective roles of Fe and Mn addition on the removal of heavy metals. GDM process with the formation of biocake layer exerted effective removals of Cr, Pb and Cd, with an average removal efficiency of 98%, 95% and 40%, respectively, however, after removing the biocake layer, the removal efficiencies of Cr, Pb and Cd reduced to 59%, 85% and 19%, respectively, indicating that the biocake layer played a fundamental role in removing heavy metals. With the assistance of Fe, the removal efficiency of heavy metals increased, and exhibited a positive response to the Fe dosage, due to the adsorption by the freshly generated iron oxides. On the contrary, the Mn involvement would result in the reduction of Cd removal due to the competitive adsorption of residual dissolved Mn2+ and Cd. Furthermore, the addition of a high dosage of Fe increased the diversity of eukaryotic communities and facilitated the elimination of heavy metals, however, the involvement of Mn would lead to a reduction in microbial diversity, resulting in a decrease of heavy metal removal efficiency. These findings are expected to develop new tactics to enhance heavy metal removal and promote widespread application of GDM technology in the fields of deep treatment of heavy metals-containing wastewater and reclamation of secondary effluent.
Collapse
Affiliation(s)
- Xiaobin Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Yanrui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Le Tong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jiaoying Luo
- Heilongjiang College of Construction, 999 Xueyuan Road, Hulan District, Harbin, 150025, PR China
| | - Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Yuanxin Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Xishou Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Zhiwei Zhou
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, PR China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
21
|
Manin A, Golubenko D, Novikova S, Yaroslavtsev A. Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties. MEMBRANES 2023; 13:624. [PMID: 37504990 PMCID: PMC10386577 DOI: 10.3390/membranes13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
The possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex® AM and pseudo-homogeneous Neosepta® AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid. The structures of the obtained hybrid membranes and separately synthesized cerium phosphate were investigated using FTIR, P31 MAS NMR, EDX mapping, and scanning electron microscopy. The modification increased the membrane selectivity to monovalent ions in the ED desalination of an equimolar mixture of NaCl and Na2SO4. The highest selectivities of Ralex® AM and Neosepta® AMX-based hybrid membranes were 4.9 and 7.7, respectively. In addition, the modification of Neosepta® membranes also increased the resistance to a typical anionic surfactant, sodium dodecylbenzenesulfonate.
Collapse
Affiliation(s)
- Andrey Manin
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| | - Svetlana Novikova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| |
Collapse
|
22
|
Chidichimo F, De Biase M, Tursi A, Maiolo M, Straface S, Baratta M, Olivito F, De Filpo G. A model for the adsorption process of water dissolved elements flowing into reactive porous media: Characterization and sizing of water mining/filtering systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130554. [PMID: 36635918 DOI: 10.1016/j.jhazmat.2022.130554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study presents a mathematical model describing the adsorption-desorption process of water dissolved elements onto reactive porous materials during filtering operations performed under dynamic flow conditions. The developed model is based on a reversible second order adsorption kinetic featuring the progressive reduction of the purifying capacity of the filtering material due to the gradual exhaustion of the active sites available for solute retention. It enables the simulation of the performances of water filtering systems through the use of parameters having a clear chemical-physical significance or it can be used for the estimation of these parameters to characterize the adsorption properties of the reactive material. Starting from the same adsorptive conceptual model used for the filtering system marked by ongoing flowing conditions, an adaptation for static systems was performed on the mathematical framework in order to process the same chemical physical parameters in both schemes. Adsorption laboratory tests were carried out to validate the developed model. Results show that the kinetic constants and adsorption capacities (a maximum of about 45 mg g-1 was obtained for the tested material) are highly comparable, both within the same experimental system, and between different experimental setup. This confirms the validity of the developed model which is able to perfectly fit the observed concentration data in all tested configurations.
Collapse
Affiliation(s)
- Francesco Chidichimo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Michele De Biase
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mario Maiolo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Salvatore Straface
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
23
|
Yang C, Xu M, Wang Y, Li S, Lv X, Wang H, Li Z. Recyclable hydrogel-MOFs composite beads for selective removal of Pb(II) from water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Liu Q, Sun M, Wang T, Zhou Y, Sun M, Li H, Liu Y, Xu A. The Differential Antagonistic Ability of Curcumin against Cytotoxicity and Genotoxicity Induced by Distinct Heavy Metals. TOXICS 2023; 11:233. [PMID: 36976998 PMCID: PMC10053940 DOI: 10.3390/toxics11030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Widespread heavy metal pollution has aroused severe health risks worldwide. Curcumin has been reported to play a wide-spectrum protective role for various heavy metals. However, the specificity and difference in the antagonistic ability of curcumin against distinct types of heavy metals are still largely unknown. Here, using cadmium (Cd), arsenic (As), lead (Pb), and nickel (Ni) as the typical heavy metals, we systematically compared the detoxification efficiency of curcumin on the cytotoxicity and genotoxicity elicited by different heavy metals under the same experimental conditions. Curcumin was proved to have a significant discrepant antagonistic capacity when counteracting the adverse effect of different heavy metals. Stronger protective effects of curcumin emerged when antagonizing the toxicity of Cd and As, rather than Pb and Ni. Curcumin exhibits a better detoxification ability against heavy metal-induced genotoxicity than cytotoxicity. Mechanistically, inhibiting the oxidative stress elicited by heavy metals and reducing the bioaccumulation of metal ions both contributed to the detoxification of curcumin against all the tested heavy metals. Our results illustrated that curcumin shows prominent detoxification specificity against different types of heavy metals and toxic endpoints, which provides a new clue for the better and targeted application of curcumin in heavy metal detoxification.
Collapse
Affiliation(s)
- Qiao Liu
- School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Mengzi Sun
- School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Meng Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - An Xu
- School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
26
|
Li B, Shen L, Zhao Y, Yu W, Lin H, Chen C, Li Y, Zeng Q. Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network. J Colloid Interface Sci 2023; 640:110-120. [PMID: 36842417 DOI: 10.1016/j.jcis.2023.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Since adhesive membrane fouling is critically determined by the interfacial interaction between a foulant and a rough membrane surface, efficient quantification of the interfacial interaction is critically important for adhesive membrane fouling mitigation. As a current available method, the advanced extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory involves complicated rigorous thermodynamic equations and massive amounts of computation, restricting its application. To solve this problem, artificial intelligence (AI) visualization technology was used to analyze the existing literature, and the genetic algorithm back propagation (GABP) artificial neural network (ANN) was employed to simplify thermodynamic calculation. The results showed that GABP ANN with 5 neurons could obtain reliable prediction performance in seconds, versus several hours or even days time-consuming by the advanced XDLVO theory. Moreover, the regression coefficient (R) of GABP reached 0.9999, and the error between the prediction results and the simulation results was less than 0.01%, indicating feasibility of the GABP ANN technique for quantification of interfacial interaction related with adhesive membrane fouling. This work provided a novel strategy to efficiently optimize the thermodynamic prediction of adhesive membrane fouling, beneficial for better understanding and control of adhesive membrane fouling.
Collapse
Affiliation(s)
- Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yingbo Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
27
|
Investigation on the Removal Performances of Heavy Metal Copper (II) Ions from Aqueous Solutions Using Hydrate-Based Method. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020469. [PMID: 36677525 PMCID: PMC9862171 DOI: 10.3390/molecules28020469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Since heavy metal ion-contaminated water pollutionis becoming a serious threat to human and aquatic lives, new methods for highly efficient removal of heavy metal ions from wastewater are important to tackle environmental problems and sustainable development. In this work, we investigate the removal performances of heavy metal copper (II) ions from aqueous solutions using a gas hydrate-based method. Efficient removal of heavy metal copper (II) ions from wastewater via a methane hydrate process was demonstrated. The influence of the temperature, hydration time, copper (II) ions concentration, and stirring rate on the removal of heavy metal copper (II) ions were evaluated. The results suggested that a maximum of 75.8% copper (II) ions were removed from aqueous solution and obtained melted water with 70.6% yield with a temperature of -2 °C, stirring speed 800 r/min, and hydration time of 4 h with aninitial copper concentration of 100 mg/L. The initial concentration of copper (II) ions in the aqueous solution could be increased to between 100 and 500 mg/L. Meanwhile, our study also indicated that 65.6% copper (II) ions were removed from aqueous solution and the yield of melted water with 56.7%, even with the initial copper concentration of 500 mg/L. This research work demonstrates great potential for general applicability to heavy metal ion-contaminated wastewater treatment and provides a reference for the application of the gas hydrate method in separation.
Collapse
|
28
|
Adsorption of Pb(II) ions from aqueous solutions by magnetite (Fe3O4) nanoparticles functionalized with two different Schiff base ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Ren H, Li H, Fan H, Qi G, Liu Y. Facile synthesis of CoFe2O4-graphene oxide nanocomposite by high-gravity reactor for removal of Pb(II). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|