1
|
Pinela E, Schnürer A, Neubeck A, Moestedt J, Westerholm M. Impact of additives on syntrophic propionate and acetate enrichments under high-ammonia conditions. Appl Microbiol Biotechnol 2024; 108:433. [PMID: 39110235 PMCID: PMC11306274 DOI: 10.1007/s00253-024-13263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
High ammonia concentrations in anaerobic degradation systems cause volatile fatty acid accumulation and reduced methane yield, which often derive from restricted activity of syntrophic acid-oxidising bacteria and hydrogenotrophic methanogens. Inclusion of additives that facilitate the electron transfer or increase cell proximity of syntrophic species by flocculation can be a suitable strategy to counteract these problems, but its actual impact on syntrophic interactions has yet to be determined. In this study, microbial cultivation and molecular and microscopic analysis were performed to evaluate the impact of conductive (graphene, iron oxide) and non-conductive (zeolite) additives on the degradation rate of acetate and propionate to methane by highly enriched ammonia-tolerant syntrophic cultures derived from a biogas process. All additives had a low impact on the lag phase but resulted in a higher rate of acetate (except graphene) and propionate degradation. The syntrophic bacteria 'Candidatus Syntrophopropionicum ammoniitolerans', Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen were found in higher relative abundance and higher gene copy numbers in flocculating communities than in planktonic communities in the cultures, indicating benefits to syntrophs of living in close proximity to their cooperating partner. Microscopy and element analysis showed precipitation of phosphates and biofilm formation in all batches except on the graphene batches, possibly enhancing the rate of acetate and propionate degradation. Overall, the concordance of responses observed in both acetate- and propionate-fed cultures highlight the suitability of the addition of iron oxide or zeolites to enhance acid conversion to methane in high-ammonia biogas processes. KEY POINTS: • All additives promoted acetate (except graphene) and propionate degradation. • A preference for floc formation by ammonia-tolerant syntrophs was revealed. • Microbes colonised the surfaces of iron oxide and zeolite, but not graphene.
Collapse
Affiliation(s)
- Eduardo Pinela
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, 752 36, Uppsala, Sweden
| | - Jan Moestedt
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Department of Biogas R & D, Tekniska Verken I Linköping AB (Publ.), Box 1500, 581 15, Linköping, Sweden
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
2
|
Xie H, Wang Y, Chen Y, Hu Y, Adeleke R, Obi L, Wang Y, Cao W, Lin JG, Zhang Y. Carbon flow, energy metabolic intensity and metagenomic characteristics of a Fe (III)-enhanced anerobic digestion system during treating swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173431. [PMID: 38782283 DOI: 10.1016/j.scitotenv.2024.173431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Deep treatment and bioenergy recovery of swine wastewater (SW) are beneficial for constructing a low-carbon footprint and resource-recycling society. In this study, Fe (III) addition from 0 to 600 mg/L significantly increased the methane (CH4) content of the recovered biogas from 61.4 ± 2.0 to 89.3 ± 2.0 % during SW treatment in an anaerobic membrane digestion system. The specific methane yields (SMY) also increased significantly from 0.20 ± 0.05 to 0.29 ± 0.02 L/g COD. Fe (III) and its bio-transformed products which participated in establishing direct interspecific electron transfer (DIET), upregulated the abundance of e-pili and Nicotinamide adenine dinucleotide (NADH), enriched electroactive bacteria. The increase in cellular adenosine triphosphate (cATP) from 6583 to 14,518 ng/gVSS and electron transport system (ETS) from 1468 to 1968 mg/(g·h) promoted the intensity of energy flow and electron flow during anaerobic digestion of SW. Moreover, Fe (III) promoted the hydrolysis and acidification of organic matters, and strengthened the acetoacetic methanogenesis pathway. This study established an approach for harvesting high quality bioenergy from SW and revealed the effects and mechanisms from the view of carbon flow, energy metabolic intensity and metagenomics.
Collapse
Affiliation(s)
- Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Linda Obi
- University of South Africa, Department of Environmental Sciences, Pretoria, South Africa
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; National Yang Ming Chiao Tung University, Taiwan
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Ye M, Zhu A, Liu J, Li YY. Iron Recycle-Driven Organic Capture and Sidestream Anaerobic Membrane Bioreactor for Revolutionizing Bioenergy Generation in Municipal Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9350-9360. [PMID: 38743617 DOI: 10.1021/acs.est.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
4
|
Wei Z, Qin Y, Li X, Gao P. Resource recovery of high value-added products from wastewater: Current status and prospects. BIORESOURCE TECHNOLOGY 2024; 398:130521. [PMID: 38432547 DOI: 10.1016/j.biortech.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Wastewater resource recovery not only allows the extraction of value-added products and offsets the operational costs of wastewater treatment, but it is also conducive to alleviating adverse environmental issues due to energy and chemical inputs and associated emissions. A number of attractive compounds such as alginate-like polymers, struvite, polyhydroxyalkanoates, and sulfated polysaccharides, were found and successfully obtained from wastewater and have a wide range of application prospects. The aim of this work is to provide a comprehensive review of recent advances in recovery of these popular products from wastewater, and their physicochemical properties, main sources, and current recovery status are summarized. Various factors influencing the recovery performance of these materials are thoroughly discussed. Moreover, the research needs and future directions towards wastewater resource recovery are highlighted. This study can provide valuable insights for future research endeavors aiming to improve wastewater resource recovery through the retrieval of high value-added products.
Collapse
Affiliation(s)
- Zihan Wei
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Yang Y, Cheng X, Rene ER, Qiu B, Hu Q. Effect of iron sources on methane production and phosphorous transformation in an anaerobic digestion system of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 395:130315. [PMID: 38215887 DOI: 10.1016/j.biortech.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The iron materials are commonly employed to enhance resource recovery from waste activated sludge through anaerobic digestion (AD). The influence of different iron sources, such as Fe2O3, Fe3O4, and FeCl3 on methane production and phosphorus transformation in AD systems with thermal hydrolyzed sludge as the substrate was assessed in this study. The results indicated that iron oxides effectively promote methane yield and methane production rate in AD systems, resulting in a maximum increase in methane production by 1.6 times. Soluble FeCl3 facilitated the removal of 92.3% of phosphorus from the supernatant through the formation of recoverable precipitates in the sludge. The introduction of iron led to an increase in the abundance of bacteria responsible for hydrolysis and hydrogenotrophic methanogenesis. However, the enrichment of microbial communities varied depending on the specific irons used. This study provides support for AD systems that recover phosphorus and produce methane efficiently from waste sludge.
Collapse
Affiliation(s)
- Yunfei Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China.
| | - Qian Hu
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Amin L, Al-Juboori RA, Lindroos F, Bounouba M, Blomberg K, Viveros ML, Graan M, Azimi S, Lindén J, Mikola A, Spérandio M. Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169520. [PMID: 38141995 DOI: 10.1016/j.scitotenv.2023.169520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.
Collapse
Affiliation(s)
- Lobna Amin
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France.
| | - Raed A Al-Juboori
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland; NYUAD Water Research Center, New York University - Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Fredrik Lindroos
- Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Mansour Bounouba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France
| | - Kati Blomberg
- Helsinki Region Environmental Services Authority HSY, Wastewater Treatment, P.O. Box 320, FI-00066 HSY, Finland
| | | | - Marina Graan
- Helsinki Region Environmental Services Authority HSY, Wastewater Treatment, P.O. Box 320, FI-00066 HSY, Finland
| | - Sam Azimi
- SIAAP, Direction Innovation, 92700 Colombes, France
| | - Johan Lindén
- Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Anna Mikola
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland
| | - Mathieu Spérandio
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France
| |
Collapse
|
7
|
Eshun LE, Coker VS, Shaw S, Lloyd JR. Strategies for optimizing biovivianite production using dissimilatory Fe(III)-reducing bacteria. ENVIRONMENTAL RESEARCH 2024; 242:117667. [PMID: 37980994 DOI: 10.1016/j.envres.2023.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.
Collapse
Affiliation(s)
- Lordina E Eshun
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Victoria S Coker
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Samuel Shaw
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Jonathan R Lloyd
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| |
Collapse
|
8
|
Wang P, Zuo W, Zhu W, Wang S, Li B, Jiang Y, Wang G, Tian Y, Zhang Y. Deciphering the interaction of heavy metals with Geobacter-induced vivianite recovery from wastewater. WATER RESEARCH 2023; 245:120621. [PMID: 37717332 DOI: 10.1016/j.watres.2023.120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Vivianite recovery from wastewater driven by Geobacter is one of the promising approaches to address the challenges of phosphorus (P) resource shortage and eutrophication. However, the interfere of heavy metals which are prevalent in many actual wastewater with this process is rarely reported. In this study, we investigated the impact of heavy metals (i.e., Cu and Zn ions) on microbial activity, Fe reduction, P recovery efficiency, and their fate during Geobacter-induced vivianite recovery process. The experimental results showed that low and medium concentrations of Cu and Zn prolonged the Fe reduction and P recovery time but had little effect on the final P recovery efficiency. However, high concentrations of Cu and Zn ultimately inhibit vivianite formation. In addition, the different concentrations of Cu and Zn showed different effects on the morphology of the recovered vivianite. The migration of Cu and Zn was analysed by stepwise extraction of heavy metals in the vivianite. Medium concentrations of Cu and Zn were more likely to co-precipitate with vivianite, while adsorption was the primary mechanism at low concentrations. Furthermore, there were differences in the fate of Cu and Zn, and a competition mechanism was observed. Finally, we found that increasing the Fe/P ratio can significantly reduce the residues of heavy metals in vivianite. It also increased the adsorbed Cu and Zn proportion and reduced co-precipitation. These results provide insights into improving the efficiency of vivianite recovery and managing the environmental risks of heavy metal in the recovered product.
Collapse
Affiliation(s)
- Pu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Weichen Zhu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Song Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Yufeng Jiang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Guan Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
9
|
Hu Z, Liu T, Wang Z, Meng J, Zheng M. Toward Energy Neutrality: Novel Wastewater Treatment Incorporating Acidophilic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4522-4532. [PMID: 36897644 PMCID: PMC10035426 DOI: 10.1021/acs.est.2c06444] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 05/19/2023]
Abstract
Chemically enhanced primary treatment (CEPT) followed by partial nitritation and anammox (PN/A) and anaerobic digestion (AD) is a promising roadmap to achieve energy-neutral wastewater treatment. However, the acidification of wastewater caused by ferric hydrolysis in CEPT and how to achieve stable suppression of nitrite-oxidizing bacteria (NOB) in PN/A challenge this paradigm in practice. This study proposes a novel wastewater treatment scheme to overcome these challenges. Results showed that, by dosing FeCl3 at 50 mg Fe/L, the CEPT process removed 61.8% of COD and 90.1% of phosphate and reduced the alkalinity as well. Feeding by low alkalinity wastewater, stable nitrite accumulation was achieved in an aerobic reactor operated at pH 4.35 aided by a novel acid-tolerant ammonium-oxidizing bacteria (AOB), namely, Candidatus Nitrosoglobus. After polishing in a following anoxic reactor (anammox), a satisfactory effluent, containing COD at 41.9 ± 11.2 mg/L, total nitrogen at 5.1 ± 1.8 mg N/L, and phosphate at 0.3 ± 0.2 mg P/L, was achieved. Moreover, the stable performances of this integration were well maintained at an operating temperature of 12 °C, and 10 investigated micropollutants were removed from the wastewater. An energy balance assessment indicated that the integrated system could achieve energy self-sufficiency in domestic wastewater treatment.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Tao Liu
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Zhiyao Wang
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Jia Meng
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Min Zheng
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
10
|
Wang X, Shi C, Hao X, van Loosdrecht MCM, Wu Y. Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine. WATER RESEARCH 2023; 231:119658. [PMID: 36708629 DOI: 10.1016/j.watres.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Wet-chemical approach is widely applied for phosphate recovery from incinerated ash of waste activated sludge (WAS), along with metals removed/recovered. The high contents of both aluminum (Al) and iron (Fe) in WAS-incinerated ash should be suitable for producing coagulants with some waste anions like Cl- and SO42- With acid (HCl) leaching and metals' removing, approximately 88 wt% of phosphorus (P) in the ash could be recovered as hydroxylapatite (HAP: Ca5(PO4)3OH); Fe3+ in the acidic leachate could be selectively removed/recovered by extraction with an organic solvent of tributyl phosphate (TBP), and thus a FeCl3-based coagulant could be synthesized by stripping the raffinate with the original brine (containing abundant Cl- and SO42-). Furthermore, a liquid poly-aluminum chloride (PAC)-based coagulant could also be synthesized with Al3+ removed from the ash and the brine, which behaved almost the same in the coagulation performance as a commercial coagulant on both phosphate and turbidity removals. Both P-recovery from the ash and coagulant production associated with the brine would enlarge the markets of both 'blue' phosphate and 'green' coagulants.
Collapse
Affiliation(s)
- Xiangyang Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China.
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| |
Collapse
|
11
|
Wang S, Li N, Yuan Q, Liang D, Chang J, Wang X, Ren N. Vivianite recovery from high concentration phosphorus wastewater with mine drainage as iron sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160098. [PMID: 36370783 DOI: 10.1016/j.scitotenv.2022.160098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.
Collapse
Affiliation(s)
- Shu Wang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Li
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qing Yuan
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jifei Chang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|