1
|
Büngener L, Postila H, Ronkanen AK, Heiderscheidt E. Distribution of microplastics between ice and water in aquatic systems: The influence of particle properties, salinity and freshwater characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176160. [PMID: 39260475 DOI: 10.1016/j.scitotenv.2024.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) are an anthropogenic emerging pollutant, with global contamination of both marine and freshwater systems extensively documented. The interplay of MP particle properties and environmental conditions needs to be understood in order to assess the environmental fate and evaluate mitigation measures. In cold climate, ice formation has appeared to significantly affect the distribution of MPs, but so far, limited research is available comparing different aquatic systems, especially freshwater. Experiments often rely on artificial water and specific MP model particles. This study used laboratory tests to investigate the ice-water distribution of a variety of environmentally relevant MP particle types (PP, PE, PS and PVC fragments (25-1000 μm), PET fibers (average length 821 μm, diameter 15 μm)) across different water types, including artificial water of high and low salinity, as well as natural water from a lake and a treatment wetland. Overall, ice entrapment of MPs occurred in almost all tests, but the ice-water distribution of MPs differed across the different water types tested. Among the tests with artificial water, salinity clearly increased MP concentrations in the ice, but it cannot be resolved whether this is caused by increased buoyancy, changes in ice structure, or thermohaline convection during freezing. In the natural freshwater tests, the partition of MPs was shifted towards the ice compared to what was seen in the artificial freshwater. The influence of different types of dissolved and particulate substances in the different waters on MPs fate should be considered important and further explored. In this study, the higher content of suspended solids in the lake water might have enhanced MP settling to the bottom and thereby contributed to the absence of MPs in the ice of the lake test, compared to the wetland test with low suspended solids and considerably more MPs in the ice. Furthermore, the higher negative charge in the lake water possibly stabilized the negatively charged MPs in suspension, and reduced ice entrapment. Regarding particle properties, shape had a distinct effect, with fibers being less likely incorporated into ice than fragments. No fibers were found in freshwater ice. However, it became clear that ice entrapment of MPs depends on factors other than the particles' buoyancy based on density differences and particle size and shape alone.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland.
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland; Finnish Environment Institute, Marine and freshwater solutions, Paavo Havaksen Tie 3, P.O. Box 413, FI-90014 Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| |
Collapse
|
2
|
Yu X, Liu Y, Tan C, Zhai L, Wang T, Fang J, Zhang B, Ma W, Lu X. Quantifying microplastics in sediments of Jinzhou Bay, China: Characterization and ecological risk with a focus on small sizes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174968. [PMID: 39067590 DOI: 10.1016/j.scitotenv.2024.174968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Small-sized microplastics (MPs) pose greater ecological toxicity due to their larger surface area, which makes them more likely to act as carriers for other pollutants and to be ingested by aquatic organisms. However, traditional visual analysis often neglects small-sized MPs and their associated ecological risk. This study utilized Laser Direct Infrared (LDIR) spectroscopy and traditional visual analysis to examine MPs in 31 sediment samples from Jinzhou Bay, a typical semi-enclosed bay located at the economic center of Dalian, China. The results showed significant heterogeneity in MP distribution, with averages of 1192 and 2361 items/kg dry weight reported by visual analysis and LDIR spectroscopy, respectively. LDIR spectroscopy identified MPs as small as 10 μm, with the majority of MPs (89.21 %) within the 10-250 μm range, and a significant proportion (46.45 %) between 10 and 50 μm among them. However, visual analysis was limited to detecting MPs >50 μm, and significant portions were identified between 50 and 100 μm (49.36 %) and 100-250 μm (31.01 %), missing a substantial fraction of smaller MPs. The predominant polymers identified were polyamide (PA), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS). LDIR spectroscopy demonstrated a strong positive correlation between MP abundance and clay content, a relationship not observed with traditional visual analysis. The Potential Ecological Risk Index (PERI) indicated that over 87 % of sites posed an extremely high risk according to LDIR spectroscopy, compared to 51 % by traditional visual analysis. These discrepancy underscores the underestimation of ecological risks by traditional methods, particularly for small-sized MPs. High-risk polymers such as polyvinyl chloride (PVC), ABS, and polyurethane (PUR) significantly influenced PERI values. These findings highlight the critical need for precise identification and thorough risk assessment of small-sized MPs in environmental studies and offer insights for understanding of MP vertical migration in aquatic environments, particularly in the context of co-settlement with sediments.
Collapse
Affiliation(s)
- Xue Yu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yufei Liu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Normal University, Tianjin 300387, China; Nagoya University, Nagoya 464-8601, Japan
| | - Cuiling Tan
- Tianjin Academy of Eco-environmental Sciences, Tianjin 300191, China
| | - Lifang Zhai
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | | | - Jing Fang
- Tianjin Normal University, Tianjin 300387, China
| | - Bo Zhang
- R&D Department, FS Ltd., Katikati 3129, New Zealand
| | - Weiqi Ma
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Shen X, Lin M, Chong H, Zhang J, Li X, Robins P, Bi Q, Zhu Y, Zhang Y, Chen Q. Settling and rising velocities of microplastics: Laboratory experiments and lattice Boltzmann modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125107. [PMID: 39419464 DOI: 10.1016/j.envpol.2024.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs) have become pervasive in marine ecosystems, potentially causing environmental degradation, impacting ecological function, and posing a serious public health risk. Despite the widespread distribution of MPs, their vertical transport within a water column has limited understanding, representing a key knowledge gap in the development of water quality models to minimize these risks. In this study, 6152 individual particles of six common types of MPs were observed through water column experiments to examine a range of drivers of the vertical velocity of MPs, including particle density and size, biofilm growth, water temperature, and salinity. The experimental results revealed that the vertical velocity of MPs obeyed Stokes' law under laminar conditions; increasing salinity decreased the settling tendency of the particles. Moreover, biofilm attachment induced notable alterations in particle characteristics within 60 days, resulting in slower settling velocities (up to a 21.9% change for non-buoyant MPs) and even a reversed vertical direction (up to several times for buoyant particles). Furthermore, a lattice Boltzmann model could predict the vertical velocity of MPs with reasonable accuracy, especially for small particles. This work facilitates the development of sophisticated models/formulas that integrate particle morphology, hydrodynamics, and biological factors to enhance the understanding of MP transport through the river-to-coastal continuum.
Collapse
Affiliation(s)
- Xiaoteng Shen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security, Hohai University, Nanjing, China.
| | - Mingze Lin
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
| | - Haoyu Chong
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
| | - Jinfeng Zhang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, China
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Bangor, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Bangor, UK
| | - Qilong Bi
- Coastal and Marine Systems, Deltares, Delft, the Netherlands
| | - Yuliang Zhu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China.
| | - Ying Zhang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; Jiangxi Water Resources Institute, Nanchang, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Li L, Luo D, Luo S, Yue J, Li X, Chen L, Chen X, Wen B, Luo X, Li Y, Huang W, Chen C. Heteroaggregation, disaggregation, and migration of nanoplastics with nanosized activated carbon in aquatic environments: Effects of particle property, water chemistry, and hydrodynamic condition. WATER RESEARCH 2024; 266:122399. [PMID: 39276480 DOI: 10.1016/j.watres.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Nanosized activated carbon (NAC) as emerging engineered nanomaterials may interact with nanoplastics prevalent in aquatic environments to affect their fate and transport. This study investigated the effects of particle property (charge and concentration), water chemistry [electrolytes, pH, humic acid (HA), and sodium alginate (SA)], and hydrodynamic condition [wave (i.e., sonication) and turbulence (i.e., stirring)] on the heteroaggregation, disaggregation, and migration of NAC with positively charged amino-modified polystyrene (APS) or negatively charged bare polystyrene (BPS) nanoplastics. The homoaggregation rate of APS was slower than its heteroaggregation rate with NAC, with critical coagulation concentrations (CCC) decreasing at higher NAC concentrations. However, the homoaggregation rate of BPS was intermediate between its heteroaggregation rates under low (10 mg/L) and high (40 mg/L) NAC concentrations. The heteroaggregation rate of APS+NAC enhanced as pH increasing from 3 to 10, whereas the opposite trend was observed for BPS+NAC. In NaCl solution or at CaCl2 concentration below 2.5 mM, HA stabilized APS+NAC and BPS+NAC via steric hindrance more effectively than SA. Above 2.5 mM CaCl2, SA destabilized APS+NAC and BPS+NAC by calcium bridging more strongly than HA. The migration process of heteroaggregates was simulated in nearshore environments. The simulation suggests that without hydrodynamic disturbance, APS+NAC (971 m) may travel farther than BPS+NAC (901 m). Mild wave (30-s sonication) and intense turbulence (1500-rpm stirring) could induce disaggregation of heteroaggregates, thus potentially extending the migration distances of APS+NAC and BPS+NAC to 1611 and 2160 m, respectively. Conversely, intense wave (20-min sonication) and mild turbulence (150-rpm stirring) may further promote aggregation of heteroaggregates, shortening the migration distances of APS+NAC and BPS+NAC to 262 and 552 m, respectively. Particle interactions mainly involved van der Waals attraction, electrostatic repulsion, steric hindrance, calcium bridging, π-π interactions, hydrogen bonding, and hydrophobic interactions. These findings highlight the important influence of NAC on the fate, transport, and risks of nanoplastics in aquatic environments.
Collapse
Affiliation(s)
- Lihua Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Dan Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Shijie Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiale Yue
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xinzhi Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lianrong Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Bowen Wen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xitian Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Song J, Meng Q, Song H, Ni X, Zhou H, Liu Y, Zhan J, Yi X. Combined toxicity of pristine or artificially aged tire wear particles and bisphenols to Tigriopus japonicus. CHEMOSPHERE 2024; 363:142894. [PMID: 39029709 DOI: 10.1016/j.chemosphere.2024.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Tire wear particles (TWPs) are considered an important component of microplastic pollution in the marine environment and occur together with a variety of aquatic pollutants, including frequently detected bisphenols. The adverse effects of TWPs or bisphenols on aquatic organisms have been widely reported. However, the combined toxicity of TWPs and bisphenols is still unknown. In this study, the combined toxicity of both pristine (p-) and aged TWPs (a-TWPs) and four bisphenols ((bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF)) to Tigriopus japonicus was evaluated. TWPs increased the toxicity of BPA and BPF but decreased the toxicity of BPAF. For BPS, there was synergistic toxic effect in the presence of p-TWPs, but slightly antagonistic effect was observed in the presence of a-TWPs. This adsorption of BPAF by TWPs resulted in a reduction of its toxicity to the copepod. A-TWPs could release more Zn than p-TWPs, and the released Zn contributed to the synergistic effect of TWPs and BPA or BPF. The aggregation formed by TWPs in certain sizes (e.g., 90-110 μm) could cause intestinal damage and lipid peroxidation in T. japonicus. The synergistic effect of p-TWPs and BPS might be due to the aggregation size of the binary mixture. The results of the current study will be important to understand the combined toxic effect of TWPs and bisphenols and the potential toxic mechanisms of the binary mixture.
Collapse
Affiliation(s)
- Jinbo Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Qian Meng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hongyu Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China.
| |
Collapse
|
7
|
Pan X, Lin L, Cao X, Jing Z, Dong L, Zhai W. Response of microbial communities and biogeochemical cycling functions to sediment physicochemical properties and microplastic pollution under damming and water diversion projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173209. [PMID: 38754501 DOI: 10.1016/j.scitotenv.2024.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Understanding the interactions among flow-sediment, microorganisms, and biogeochemical cycles is crucial for comprehending the ecological response mechanisms of dams and water diversion. This study focused on the spatial patterns of carbon, nitrogen, phosphorus, and sulfur (CNPS) cycle functional genes in the water resource for the middle route of the South-to-North Water Diversion Project in China, specifically the Danjiangkou Reservoir (comprising the Han and Dan reservoirs). The investigation incorporated sediment physicochemical properties and microplastic pollution. Numerous microbial species were identified, revealing that microbial communities demonstrated sensitivity to changes in sedimentary mud content. The communities exhibited greater β diversity due to finer sediment particles in the Han Reservoir (HR), whereas in the Dan Reservoir (DR), despite having higher sediment nutrient content and MPs pollution, did not display this pattern. Regarding the composition and structure of microbial communities, the study highlighted that sediment N and P content had a more significant influence compared to particle size and MPs. The quantitative microbial element cycling (QMEC) results confirmed the presence of extensive chemolithotrophic microbes and strong nitrogen cycle activity stemming from long-term water storage and diversion operations. The denitrification intensity in the HR surpassed that of the DR. Notably, near the pre-dam area, biological nitrogen fixation, phosphorus removal, and sulfur reduction exhibited noticeable increases. Dam construction refined sediment, fostering the growth of different biogeochemical cycling bacteria and increasing the abundance of CNPS cycling genes. Furthermore, the presence of MPs exhibited a positive correlation with S cycling genes and a negative correlation with C and N cycling genes. These findings suggest that variations in flow-sediment dynamics and MPs pollution have significant impact the biogeochemical cycle of the reservoir.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China.
| | - Xiaohuan Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Zheng Jing
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Wenliang Zhai
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| |
Collapse
|
8
|
Chen Z, Elektorowicz M, An C, Tian X, Wang Z, Yang X, Lyu L. Revealing the Freezing-Induced Alteration in Microplastic Behavior and Its Implication for the Microplastics Released from Seasonal Ice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031076 DOI: 10.1021/acs.est.4c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Ice can serve as a significant temporary repository and conveyance mechanism for microplastics (MPs). MPs present in the water column can become entrapped within developing ice formations, subsequently being sequestered and transported by ice floes. With changing temperatures, MPs stored in ice can be released back into the environment, while freezing conditions can alter the properties of MPs, ultimately affecting the fate of MPs in the environment. Freezing of MPs in freshwater ice results in the aggregation of MP particles due to physical compression, leading to an increase in particle size once the MPs are released from the ice. The freezing-induced aggregation enhances buoyancy effects, accelerating the settling/rising velocity of MPs in water. Additionally, freezing can lead to enhanced surface wetting alterations, thus improving the dispersion of hydrophobic MPs. The presence of salt in the water can mitigate the effect of freezing on MPs due to the formation of a brine network within the ice structure, which reduces the pressure on MPs entrapped by ice. In cold regions, numerous MPs undergo freezing and thawing, re-entering the water column.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Maria Elektorowicz
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
9
|
Lin X, Nie X, Xie R, Qin Z, Ran M, Wan Q, Wang J. Heteroaggregation and deposition behaviors of carboxylated nanoplastics with different types of clay minerals in aquatic environments: Important role of calcium(II) ion-assisted bridging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116533. [PMID: 38850697 DOI: 10.1016/j.ecoenv.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The widespread utilization of plastic products ineluctably leads to the ubiquity of nanoplastics (NPs), causing potential risks for aquatic environments. Interactions of NPs with mineral surfaces may affect NPs transport, fate and ecotoxicity. This study aims to investigate systematically the deposition and aggregation behaviors of carboxylated polystyrene nanoplastics (COOH-PSNPs) by four types of clay minerals (illite, kaolinite, Na-montmorillonite, and Ca-montmorillonite) under various solution chemistry conditions (pH, temperature, ionic strength and type). Results demonstrate that the deposition process was dominated by electrostatic interactions. Divalent cations (i.e., Ca2+, Mg2+, Cd2+, or Pb2+) were more efficient for screening surface negative charges and compressing the electrical double layer (EDL). Hence, there were significant increases in deposition rates of COOH-PSNPs with clay minerals in suspension containing divalent cations, whereas only slight increases in deposition rates of COOH-PSNPs were observed in monovalent cations (Na+, K+). Negligible deposition occurred in the presence of anions (F-, Cl-, NO3-, CO32-, SO42-, or PO43-). Divalent Ca2+ could incrementally facilitate the deposition of COOH-PSNPs through Ca2+-assisted bridging with increasing CaCl2 concentrations (0-100 mM). The weakened deposition of COOH-PSNPs with increasing pH (2.0-10.0) was primarily attributed to the reduce in positive charge density at the edges of clay minerals. In suspensions containing 2 mM CaCl2, increased Na+ ionic strength (0-100 mM) and temperature (15-55 ◦C) also favored the deposition of COOH-PSNPs. The ability of COOH-PSNPs deposited by four types of clay minerals followed the sequence of kaolinite > Na-montmorillonite > Ca-montmorillonite > illite, which was related to their structural and surface charge properties. This study revealed the deposition behaviors and mechanisms between NPs and clay minerals under environmentally representative conditions, which provided novel insights into the transport and fate of NPs in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoping Lin
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Ruiyin Xie
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Zonghua Qin
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Meimei Ran
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; School of Geographic and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China.
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| | - Jingxin Wang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| |
Collapse
|
10
|
Chen H, Huang D, Zhou W, Deng R, Yin L, Xiao R, Li S, Li F, Lei Y. Hotspots lurking underwater: Insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135132. [PMID: 39002483 DOI: 10.1016/j.jhazmat.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.
Collapse
Affiliation(s)
- Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
11
|
Tan Y, Xiao Y, Hao T. Carbon fixation via volatile fatty acids recovery from sewage sludge through electrochemical-pretreatment-based anaerobic digestion. WATER RESEARCH 2024; 258:121736. [PMID: 38754300 DOI: 10.1016/j.watres.2024.121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Capturing the carbon in volatile fatty acids (VFA) produced from the anaerobic digestion (AD) of sewage sludge has the potential to not only provide economic benefits but also reduce greenhouse gas production. This study demonstrates a chemical-free method to collect VFA from an AD instead of methane that involves electrochemical pretreatment (EPT) of sludge. Experimental results show that applying 15 V EPT for 45 min enhances acidogenesis and selectively inhibits methanogenesis, leading to a substantial VFA accumulation (2563.1 ± 307.9 mg COD/L) and achieving 2.5 times more carbon fixation than via methane production. Interfacial thermodynamic analysis shows that EPT induces a decrease in both the repulsive electrostatic energy (from 152.9 kT to 12.2 kT) and the energy barrier (from 57.0 kT to 2.6 kT) in the sludge, leading to increased sludge aggregation and entrapment of microorganisms. Molecular docking sheds lights on how the methanogens interacts with the organic matter released from EPT (e.g., alanine-tRNA ligase), showing that these interactions potentially interfere with the proteins that are associated with the activities of the methanogens and the electron transfer pathways, thereby impeding methanogenesis. Integrating EPT into AD therefore facilitates the recovery of valuable VFA and the capture of carbon from freshwater sludge, providing notable economic and environmental benefits in sewage sludge treatment.
Collapse
Affiliation(s)
- Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China.
| |
Collapse
|
12
|
Diansyah G, Rozirwan, Rahman MA, Nugroho RY, Syakti AD. Dynamics of microplastic abundance under tidal fluctuation in Musi estuary, Indonesia. MARINE POLLUTION BULLETIN 2024; 203:116431. [PMID: 38692003 DOI: 10.1016/j.marpolbul.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Tidal dynamics contribute to fluctuations in microplastic abundance (MPs). This is the first study to characterize MPs under the influence of tidal fluctuations in the Musi River Estuary. MPs samples were collected during flood and ebb tides at 10 research stations representing the inner, middle and outer parts of the Musi River Estuary. MPs were extracted to identify the shape, color and size. MP abundances were 467.67 ± 127.84 particles/m3 during flood tide and 723.67 ± 112.05 particles/m3 during ebb tide. The concentration of MPs in the outer zone of the estuary (ocean) was detected to be higher than in the inner zone of the estuary (river). The MPs found were dominated by black color, film shape and size 101-250 μm. A greater abundance of MPs at ebb tide than at flood tide implies that the Musi Estuary's largest source of emissions is discharge from the river.
Collapse
Affiliation(s)
- Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia.
| | - Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
| | - M Akbar Rahman
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Redho Yoga Nugroho
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Agung Dhamar Syakti
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Tanjung Pinang 29100, Riau Islands, Indonesia
| |
Collapse
|
13
|
Gomez-Flores A, Jin S, Nam H, Cai L, Song S, Kim H. Attachment of various-shaped polystyrene microplastics to silica surfaces: Experimental validation of the equivalent Cassini oval extended DLVO model. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134146. [PMID: 38583206 DOI: 10.1016/j.jhazmat.2024.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastics (MPs) vary in shape and surface characteristics in the environment. The attachment of MPs to surfaces can be studied using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, this theory does not account for the shape MPs. Therefore, we investigated the attachment of spherical, pear-shaped, and peanut-shaped polystyrene MPs to quartz sand in NaCl and CaCl2 solutions using batch tests. The attachment of MPs to quartz sand was quantified using the attachment efficiency (alpha). Subsequently, alpha behaviors were interpreted using energy barriers (EBs) and interaction minima obtained from extended DLVO calculations, which were performed using an equivalent sphere model (ESM) and a newly developed equivalent Cassini model (ECM) to account for the shape of the MPs. The ESM failed to interpret the alpha behavior of the three MP shapes because it predicted high EBs and shallow minima. The alpha values for spherical MPs (0.62-1.00 in NaCl and 0.48-0.96 in CaCl2) were higher than those for pear- and peanut-shaped MPs (0.01-0.63 in NaCl and 0.02-0.46 in CaCl2, and 0.01-0.59 in NaCl and 0.02-0.40 in CaCl2, respectively). Conversely, the ECM could interpret the alpha behavior of pear- and peanut-shaped MPs either by changes in EBs or interaction minima as a function of orientation angles and electrolyte ionic strength. Therefore, the particle shape must be considered to improve the attachment analyses.
Collapse
Affiliation(s)
- Allan Gomez-Flores
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Suheyon Jin
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojeong Nam
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Yang X, Huang G, Chen Z, Feng Q, An C, Lyu L, Bi H, Zhou S. Spotlight on the vertical migration of aged microplastics in coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134040. [PMID: 38503206 DOI: 10.1016/j.jhazmat.2024.134040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Coastal waters are complex and dynamic areas with unique environmental attributes that complicate the vertical migration of microplastics (MPs). The MPs that enter coastal waters from diverse sources, including terrestrial, riverine, oceanic, and shoreline inputs undergo various aging pathways. In this study, the variations in the physiochemical characteristics of MPs undergoing various aging pathways and their vertical migration under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were comprehensively explored. Opposite effects of aging on the vertical migration of hydrophobic and hydrophilic MPs were observed, with aging appearing to promote the dispersion of hydrophobic MPs but enhance the vertical migration of hydrophilic ones. The positive role of salinity and the negative role of humic acid (HA) concentrations on MP vertical migration were identified, and the mechanisms driving these effects were analyzed. Notably, intense turbulence not only promoted the floating of positively buoyant MPs but also reversed the migration direction of negatively buoyant MPs from downward to upward. Aging-induced changes in MP characteristics had a limited effect on MP vertical migration. The inherent characteristics of MPs and the surrounding environmental features, however, played major roles in their vertical migration dynamics. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have emerged as a significant global environmental concern and the coastal zones are the hotspots for MP pollution due to their high population density. This study comprehensively investigated the variations in the physiochemical characteristics of MPs undergoing various aging pathways. Their vertical migration patterns under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were revealed. The roles of turbulence and MP density in their migration were identified. The findings of this study have important implications for understanding the transport and determining the ecological risks of MPs in coastal waters.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
15
|
Dittmar S, Ruhl AS, Altmann K, Jekel M. Settling Velocities of Small Microplastic Fragments and Fibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6359-6369. [PMID: 38512318 PMCID: PMC11008250 DOI: 10.1021/acs.est.3c09602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 μm) and five discrete length fractions (50-600 μm) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape.
Collapse
Affiliation(s)
- Stefan Dittmar
- Chair
of Water Quality Control, Technische Universität
Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
- GEOMAR
Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1−3, 24148 Kiel, Germany
| | - Aki S. Ruhl
- Chair
of Water Quality Control, Technische Universität
Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
- German
Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Korinna Altmann
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Martin Jekel
- Chair
of Water Quality Control, Technische Universität
Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
16
|
Jiang J, He L, Zheng S, Liu J, Gong L. A review of microplastic transport in coastal zones. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106397. [PMID: 38377936 DOI: 10.1016/j.marenvres.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Transport of microplastics (MPs) in coastal zones is influenced not only by their own characteristics, but also by the hydrodynamic conditions and coastal environment. In this article, we first summarized the source, distribution and abundance of MPs in coastal zones around the world through the induction of in-situ observation literature, and then comprehensively reviewed the different transports of MPs in coastal zones, including sedimentation, vertical mixing, resuspension, drift and biofouling. Afterwards, we conducted a comparative analysis of relevant experimental literature, and found that the current experimental research on microplastic transport mainly focused on the settling velocity under static water and the transport distribution under dynamic water. Based on the relevant literature on numerical simulation of microplastic transport in coastal zones, it was also found that the Euler-Lagrange method is the most widely used. The main influencing factor in the Euler method is hydrodynamic, while the Lagrange method and Euler-Lagrange method is hydrodynamic and microplastic particle characteristics. Tides in hydrodynamics are mentioned the most frequently, and the role of turbulence in almost all the literature. The density of MPs is the most influencing factor on transport results, followed by size, while shape is only studied in small-scale models. Some literature has also found that the influence of biofilms is mainly reflected in the changes in the density and size of MPs.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China.
| | - Shiwei Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China; Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, 310002, Zhejiang, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lixin Gong
- The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao, 066001, Hebei, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, 066001, Hebei, China
| |
Collapse
|
17
|
Feng Q, Chen Z, Huang G, An C, Yang X, Wang Z. Prolonged drying impedes the detachment of microplastics in unsaturated substrate: Role of flow regimes. WATER RESEARCH 2024; 252:121246. [PMID: 38340454 DOI: 10.1016/j.watres.2024.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate. Intermittent flow is found to result in effluent peaks and a higher rate of MP detachment compared to steady flow. The ionic strength of inflow drops in a stepwise manner, leading to abrupt peaks followed by a tail corresponding to the arrival of each ionic strength front. Each step increase in flow rate leads to a steep peak followed by slow release over several pore volumes. Although transient flow facilitates the detachment of MPs, drying significantly impedes the detachment of MPs irrespective of flow regime. Ultraviolet weathering of MPs for 60 days weakens the inhibition effect of drying on hydrophilic polymethylmethacrylate, facilitating their detachment. Furthermore, the release of MPs decreases markedly with an increase in air-drying duration from 0 h to 72 h. Hydrus-1D two-site kinetic models are used to successfully simulate time-dependent processes, implying that drying heightens the energy barrier for MPs to detach. Our analysis confirms the significance of moisture in determining the remobilization of MPs, providing valuable insights concerning the fate of MPs in unsaturated substrate under prolonged drought conditions.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
18
|
Shafi M, Lodh A, Khajuria M, Ranjan VP, Gani KM, Chowdhury S, Goel S. Are we underestimating stormwater? Stormwater as a significant source of microplastics in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133445. [PMID: 38198866 DOI: 10.1016/j.jhazmat.2024.133445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.
Collapse
Affiliation(s)
- Mozim Shafi
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ayan Lodh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Medha Khajuria
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
19
|
Fu H, Kang Q, Sun X, Liu W, Li Y, Chen B, Zhang B, Bao M. Mechanism of nearshore sediment-facilitated oil transport: New insights from causal inference analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133187. [PMID: 38104519 DOI: 10.1016/j.jhazmat.2023.133187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
A quantitative understanding of spilled oil transport in a nearshore environment is challenging due to the complex physicochemical processes in aqueous conditions. The physicochemical processes involved in oil sinking mainly include oil dispersion, sediment settling, and oil-sediment interaction. For the first time, this work attempts to address the sinking mechanism in petroleum contaminant transport using structural causal models based on observed data. The effects of nearshore salinity distribution from the estuary to the ocean on those three processes are examined. The causal inference reveals sediment settling is the crucial process for oil sinking. Salinity indirectly affects oil sinking by promoting sediment settling rather than directly affecting oil-sediment interaction. The increase of salinity from 0‰ to 35‰ provides a natural enhancement for sediment settling. Notably, unbiased causal effect estimates demonstrate the strongest positive causal effect on the settling efficiency of sediments is posed by increasing oil dispersion effectiveness, with a normalized value of 1.023. The highest strength of the causal relationship between oil dispersion and sediment settling highlights the importance of the dispersing characteristics of spilled oil to sediment-facilitated oil transport. The employed logic, a data-driven method, will shed light on adopting advanced causal inference tools to unravel the complicated contaminants' transport.
Collapse
Affiliation(s)
- Hongrui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiao Kang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
20
|
Yang X, Huang G, Feng Q, An C, Zhou S, Bi H, Lyu L. Unveiling the Vertical Migration of Microplastics with Suspended Particulate Matter in the Estuarine Environment: Roles of Salinity, Particle Properties, and Hydrodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2944-2955. [PMID: 38306690 DOI: 10.1021/acs.est.3c08186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated. The settling of positively buoyant MPs was more reliant on the cohesive SPM compared to the settling of negatively buoyant MPs. Moreover, MPs interacting with the SPM mixture at a clay-to-sand ratio of 1:9 settled more efficiently than those interacting with clay alone. A significant positive correlation was observed between MP settling percentage and the salinity level. MP settling percentage was significantly negatively correlated with fluid shear stress for both types of MPs, meanwhile, negatively buoyant MPs were able to resist greater hydraulic disturbances. In the low-energy mixing state, for both types of MPs, the settling percentage reached about 50% in only 10 min. The resuspension process of MPs under hydrodynamic disturbances was also uncovered. Additionally, the migration and potential sites of MPs were described in the context of prevalent environmental phenomena in estuaries.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
21
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
22
|
Wang Y, Chen X. Aggregation behavior of polyethylene microplastics in the nearshore environment: The role of particle size, environmental condition and turbulent flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165941. [PMID: 37536586 DOI: 10.1016/j.scitotenv.2023.165941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Estuary and coastal waters are hotspot areas for microplastics (MPs) pollution. MPs of varying sizes converge in this complex nearshore environment. Aggregation is an important process that affects the transport and fate of MPs in the aqueous environment. Nevertheless, the influence of different factors on the aggregation behavior and the aggregates structure of MPs is unclear. In this study, the aggregation behavior and the aggregates structure of polyethylene microplastics (PEs) of different sizes under the impact of nearshore environmental conditions (i.e., salinity gradient, dissolved organic matter-DOM, turbulent flow) were investigated. The results show that particle size was the dominant factor affecting the stability of PEs in the aqueous environment, and the critical coagulation concentration (CCC) of PEs shifts to the right with increasing size. It was also found that the size of PEs stable aggregates is negatively correlated with the turbulent kinetic energy dissipation rate. The particle size of PEs can significantly affect the fractal dimension (FD) of stable aggregates, and the smaller the particle size, the more compact the aggregates formed. Moreover, salinity and DOM control the size and FD of PEs stable aggregates through different mechanisms. The findings of this study will be helpful for the prediction of the transport and fate of MPs in the aqueous environment.
Collapse
Affiliation(s)
- Yi Wang
- Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350117, China
| | - Xingwei Chen
- Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
23
|
Reichelt S, Gorokhova E. Aggregation in experimental studies with microparticles: Experimental settings change particle size distribution during exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122369. [PMID: 37597735 DOI: 10.1016/j.envpol.2023.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The ubiquitous occurrence of microplastics is raising broad concerns and motivating effect studies. In these studies, however, particle behaviour in the water and aggregation are rarely considered leading to contradictory results reported by different studies. Using an environmentally relevant experimental setup with Daphnia magna as a test organism, we investigated how experimental conditions affect particle aggregation and the aggregate heterogeneity in terms of the particle size distribution. The experimental factors considered were (1) exposure duration (48 h vs 120 h), (2) the total mass of suspended solids (0-10 mg/l) composed of natural mineral particles (kaolin) and microplastics, (3) the proportion of the microplastics in the particle suspension (0-10% by mass), (4) dissolved organic matter (DOM; 0 vs 20 mg agarose/l), and (5) presence of the test organism (0 and 5 daphnids/vial). We found that particle aggregation occurs within the first 48 h of incubation in all treatments, no substantial change in the aggregate heterogeneity is observed afterwards. The median aggregate size was ∼2-fold higher than the nominal average particle size of clay and microplastics in the stock suspensions used to prepare the experimental mixtures. The strongest positive driver of the aggregate size and heterogeneity was DOM, followed by the presence of daphnids and the concentration of the suspended solids in the system. Also, microplastics were found to facilitate aggregation, albeit they were the weakest contributor. Moreover, besides directly increasing the aggregation, DOM relaxed the effects of the total solids and daphnids on the aggregate size. Thus, the particle size distribution was established early during the exposure and shaped by all experimental factors and their interactions. These findings improve our understanding of the processes occurring in the exposure systems when conducting effect studies with microplastics and other particulates and demonstrate the necessity to access the particle size distribution to characterise the exposure. Aslo, relevant experimental designs with microplastics must include relevant natural particulates and DOM to ensure environmentally realistic particle behaviour and adequate particle-biota interactions.
Collapse
Affiliation(s)
- Sophia Reichelt
- Department of Environmental Science (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Elena Gorokhova
- Department of Environmental Science (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
24
|
Cai M, Qi Z, Guy C, An C, Chen X, Wang Z, Feng Q. Insights into the abiotic fragmentation of biodegradable mulches under accelerated weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131477. [PMID: 37104954 DOI: 10.1016/j.jhazmat.2023.131477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Biodegradable mulches (BMs) can be tilled into soils to mitigate disposal and environmental problems. However, the content of biodegradable microplastics (BMPs) would increase with the addition of biodegradable macroplastics (BMaPs). The fragmented particles have a strong affinity to soil pollutants, having the potential to transfer via the terrestrial food web in an agroecosystem. Based on the spectral analysis and particle size analysis, this study explored the physicochemical characteristics of weathered BMaPs and BMP-derived dissolved organic matter (DOMBMP). Ultraviolet (UV) irradiation reduced the mechanical strength of BMaPs and induced oxygenated functional groups, thus increasing surface roughness and hydrophilicity. This promoted the adsorption of aromatic compounds and heavy metals from soils to BMPs. After entering the water environment, the pH of the solution with DOMBMP decreased, whereas the concentration of dissolved organic carbon (DOC) increased. Compared with paper mulch, bioplastic mulch contributed a higher amount of DOMBMP, such as aromatic structure-containing chemicals and carboxylic acids, to the water environment but released fewer and smaller plastic particles. The findings from this study can help manage environmental risks and determine disposal strategies after the use of mulching.
Collapse
Affiliation(s)
- Mengfan Cai
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| | - Zhiming Qi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| | - Christophe Guy
- University of Technology of Compiègne, Compiègne 60200, France
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada.
| | - Xiujuan Chen
- Department of Civil Engineering, University of Texas at Arlington, Arlington 76019, USA
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
25
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
26
|
Zhang P, Yuan Y, Zhang J, Wen T, Wang H, Qu C, Tan W, Xi B, Hui K, Tang J. Specific response of soil properties to microplastics pollution: A review. ENVIRONMENTAL RESEARCH 2023; 232:116427. [PMID: 37327841 DOI: 10.1016/j.envres.2023.116427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The soil environment is a critical component of the global ecosystem and is essential for nutrient cycling and energy flow. Various physical, chemical, and biological processes occur in the soil and are affected by environmental factors. Soil is vulnerable to pollutants, especially emerging pollutants, such as microplastics (MPs). MPs pollution has become a significant environmental problem, and its harm to human health and the environment cannot be underestimated. However, most studies on MPs pollution have focused on marine ecosystems, estuaries, lakes, rivers, and other aquatic environments, whereas few considered the effects and hazards of MPs pollution of the soil, especially the responses of different environmental factors to MPs. In addition, when many MPs pollutants produced by agricultural activities (mulching film, organic fertilizer) and atmospheric sedimentation enter the soil environment, it will cause changes in soil pH, organic matter composition, microbial community, enzyme activity, animals and plants and other environmental factors. However, due to the complex and changeable soil environment, the heterogeneity is very strong. The changes of environmental factors may react on the migration, transformation and degradation of MPs, and there are synergistic or antagonistic interactions among different factors. Therefore, it is very important to analyze the specific effects of MPs pollution on soil properties to clarify the environmental behavior and effects of MPs. This review focuses on the source, formation, and influencing factors of MPs pollution in soil and summarizes its effect and influence degree on various soil environmental factors. The results provide research suggestions and theoretical support for preventing or controlling MPs soil pollution.
Collapse
Affiliation(s)
- Panting Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Taoyi Wen
- School of Civil Engineering, Chang'an University, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
27
|
Huang F, Hu J, Chen L, Wang Z, Sun S, Zhang W, Jiang H, Luo Y, Wang L, Zeng Y, Fang L. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130887. [PMID: 36731321 DOI: 10.1016/j.jhazmat.2023.130887] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) are widely distributed in soil ecosystems, posing a potential threat to agricultural production and human health. However, the coupled effects of MPs and Cd in soil-plant systems remain largely unknown, especially on a large scale. In this study, a meta-analysis was conducted to evaluate the influence of MPs on plant growth and Cd accumulation under the Cd contamination conditions. Our results showed that MPs had significantly negative effects on shoot biomass (a decrease of 11.8 %) and root biomass (a decrease of 8.79 %). MPs also significantly increased Cd accumulation in the shoots and roots by 14.6 % and 13.5 %, respectively, revealing that MPs promote plant Cd uptake. Notably, polyethylene displayed a stronger promoting effect (an increase of 29.4 %) on Cd accumulation among these MP types. MPs induced a significantly increase (9.75 %) in concentration of soil available Cd and a slight decrease in soil pH, which may be the main driver promoting plant Cd uptake. MP addition posed physiological toxicity risks to plants by inhibiting photosynthesis and enhancing oxidative damage, directly demonstrating that MPs in combination with Cd can pose synergetic toxicity risks to plants. We further noted that MPs altered microbial diversity, likely influencing Cd bioavailability in soil-plant systems. Overall, our study has important implications for the combined impacts of Cd and MPs on plants and provides new insights into developing guidelines for the sustainable use of MPs in agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jinzhao Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Wanming Zhang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Hu Jiang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Ying Luo
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Lei Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
28
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
29
|
Liu R, Ji W, Lee K, Boufadel M. Modeling the Breakup of Oil-Particle Aggregates in Turbulent Environments for Projectile Penetration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2808-2817. [PMID: 36763097 DOI: 10.1021/acs.langmuir.2c03312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
After an oil spill incident, the spilled oil slicks are observed to migrate to the shoreline area. Under the turbulent conditions, they break into small droplets and are suspended in the water column. The dispersed droplets are expected to interact with the suspended particles and form the oil-particle aggregates (OPAs), which significantly changes the transport of the oil. Instead of an earlier assumption that particles cover the oil surface, thus preventing further breakage or aggregation of OPAs, recent studies demonstrated that particles act like projectiles penetrating the oil droplets, resulting in the breakage of OPAs over a longer period of time. A model looking into the OPA breakup through two breakup mechanisms was proposed for the first time. The first method depicted the breakup of one large OPA into two daughter droplets owing to the turbulent nature, while the second method demonstrated the tear of the OPA surface layer caused by particle uprooting. The model was then calibrated by an experimental study targeting crude oil with varied viscosities, along with previous experimental investigations. Three key factors were identified accounting for the breakage of OPAs, where the increase in particle concentration in the natural environment and the increase in turbulent energy of the surrounding flows benefited the breakage of OPAs, and the increase in oil viscosity suppressed the breakage due to large resistance to shear stress. Besides these elements, the impact of the particle shape on the penetration depth was discussed. The model serves as a fundamental theory to describe the evolution of OPAs for fragmentation behavior.
Collapse
Affiliation(s)
- Ruixue Liu
- Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Ji
- Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kenneth Lee
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada
| | - Michel Boufadel
- Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
30
|
Ji W, Abou-Khalil C, Parameswarappa Jayalakshmamma M, Boufadel M, Lee K. Post-Formation of Oil Particle Aggregates: Breakup and Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2341-2350. [PMID: 36723450 DOI: 10.1021/acs.est.2c05866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spilled oil slicks are likely to break into droplets in the subtidal and intertidal zones of seashores due to wave energy. The nonliving suspended fine particles in coastal ecosystems can interact with the dispersed oil droplets, resulting in the formation of Oil Particle Aggregates (OPAs). Many investigations assumed that these aggregates will settle due to the particles' high density. Recent studies, however, reported that some particles penetrate the oil droplets, which results in further breakup while forming smaller OPAs that remain suspended in the water column. Here, we investigated the interaction of crude oil droplets with intertidal and subtidal sediments, as well as artificial pure kaolinite, in natural seawater. Results showed that the interaction between oil droplets and intertidal sediments was not particularly stable, with an Oil Trapping Efficiency (OTE) < 25%. When using subtidal sediments, OTE reached 56%. With artificial kaolinite, OPA formation and breakup were more significant (OTE reaching up to 67%) and occurred faster (within 12 h). Oil chemistry analysis showed that the biodegradation of oil in seawater (half-life of 485 h) was significantly enhanced with the addition of sediments, with half-lives of 305, 265, and 150 h when adding intertidal sediments, subtidal sediments, and pure kaolinite, respectively. Such results reveal how the sediments' shape and size affect the various oil-sediment interaction mechanisms, and the subsequent impact on the microbial degradation of petroleum hydrocarbons. Future studies should consider investigating the application of fine (several microns) and sharp (elongated-sheeted) sediments as a nondestructive and nontoxic technique for dispersing marine oil spills.
Collapse
Affiliation(s)
- Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Meghana Parameswarappa Jayalakshmamma
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, New Jersey07102, United States
| | - Kenneth Lee
- Department of Fisheries and Oceans, Dartmouth, NSB2Y 4A2, Canada
| |
Collapse
|