1
|
Feng Y, Kong L, Zheng R, Wu X, Zhou J, Xu X, Liu S. Adjusted bacterial cooperation in anammox community to adapt to high ammonium in wastewater treatment plant. WATER RESEARCH X 2024; 25:100258. [PMID: 39381622 PMCID: PMC11460484 DOI: 10.1016/j.wroa.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Bacterial cooperation is very important for anammox bacteria which perform low-carbon and energy-efficient nitrogen removal, yet its variation to adapt to high NH4 +-N concentration in actual wastewater treatment plants (WWTPs) remains unclear. Here, we found wide and varied cross-feedings of anammox bacteria and symbiotic bacteria in the two series connected full-scale reactors with different NH4 +-N concentrations (297.95 ± 54.84 and 76.03 ± 34.01 mg/L) treating sludge digester liquor. The uptake of vitamin B6 as highly effective antioxidants secreted by the symbiotic bacteria was beneficial for anammox bacteria to resist the high NH4 +-N concentration and varied dissolved oxygen (DO). When NH4 +-N concentration in influent (1785.46 ± 228.5 mg/L) increased, anammox bacteria tended to reduce the amino acids supply to symbiotic bacteria to save metabolic costs. A total of 26.1% bacterial generalists switched to specialists to increase the stability and functional heterogeneity of the microbial community at high NH4 +-N conditions. V/A-type ATPase for anammox bacteria to adapt to the change of NH4 +-N was highly important to strive against cellular alkalization caused by free ammonia. This study expands the understanding of the adjusted bacterial cooperation within anammox consortia at high NH4 +-N conditions, providing new insights into bacterial adaptation to adverse environments from a sociomicrobiology perspective.
Collapse
Affiliation(s)
- Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Sciences and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| |
Collapse
|
2
|
He Y, Chen W, Xiang Y, Zhang Y, Xie L. Unveiling the effect of PFOA presence on the composting process: Roles of oxidation stress, carbon metabolism, and humification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135682. [PMID: 39236542 DOI: 10.1016/j.jhazmat.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 μg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.
Collapse
Affiliation(s)
- Yingying He
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weizhen Chen
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yuankun Xiang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yue Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Li Xie
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Cao T, Yang Y, Li X, Liu L, Fei X, Zhao Y, Zhang L, Lu Y, Zhou D. In-situ rapid cultivation of aerobic granular sludge in A/O bioreactor by using Ca(ClO) 2 pretreating sludge. BIORESOURCE TECHNOLOGY 2024; 410:131278. [PMID: 39151572 DOI: 10.1016/j.biortech.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.
Collapse
Affiliation(s)
- Tingting Cao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Yue Yang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaomeng Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Liu
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Xiyang Fei
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Yuanhang Zhao
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Leilei Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
5
|
Huang H, Lyu X, Xiao F, Fu J, Xu H, Wu J, Sun Y. Three-year field study on the temporal response of soil microbial communities and functions to PFOA exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135008. [PMID: 38943893 DOI: 10.1016/j.jhazmat.2024.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) poses a significant threat to soil ecosystem health, yet there remains a lack of understanding regarding the responses of soil microbial communities to prolonged PFAS exposure in field conditions. This study involved a three-year field investigation to track changes in microbial communities and functions in soil subjected to the contamination of a primary PFAS, perfluorooctanoic acid (PFOA). Results showed that PFOA exposure altered soil bacterial and fungal communities in terms of diversity, composition, and structure. Notably, certain bacterial communities with a delayed reaction to PFOA contamination showed the most significant response after one year of exposure. Fungal communities were sensitive to PFOA in soil, exhibiting significant responses within just four months of exposure. After two years, the impact of PFOA on both bacterial and fungal communities was lessened, likely due to the long-term adaptation of microbial communities to PFOA. Moreover, PFOA exposure notably inhibited alkaline phosphatase activity and reduced certain phosphorus cycling-related functional genes after three years of exposure, suggesting potential disruptions in soil fertility. These new insights advance our understanding of the long-term effects of PFOA on soil microbial communities and functions at a field scale.
Collapse
Affiliation(s)
- Hai Huang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Jiaju Fu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China.
| |
Collapse
|
6
|
Lu N, Du Z, Chu F, Xiao R, Wu Z, Wang M, Jia R, Chu W. Tracking the impact of perfluoroalkyl acid emissions on antibiotic resistance gene profiles in receiving water by metagenomic analysis. WATER RESEARCH 2024; 261:121931. [PMID: 38924952 DOI: 10.1016/j.watres.2024.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The ecological risks posed by perfluoroalkyl acids (PFAAs) to the aquatic environment have recently been of great concern. However, little information was available on the impact of PFAAs on antibiotic resistance genes (ARGs) profiles. In this study, the receiving river of the largest fluoropolymer production facility in China was selected to investigate the effects of PFAAs on ARGs profiles. The highest PFAAs concentration for water samples near the industrial effluent discharge point was 310.9 μg/L, which was thousands times of higher than the average concentration collected at upstream sites. Perfluorooctanoic acid accounted for more than 67.2 % of ∑PFAAs concentration in water samples collected at the downstream sites, followed by perfluorohexanoic acid (3.6 %-15.9 %). 145 ARG subtypes including high-risk ARGs were detected by metagenomic technology. The results indicated that the discharge of PFAA-containing effluents had a significant impact on the abundance and diversity of ARGs in receiving waters, and PFAAs and water quality parameters (e.g., pH, NH3N, CODMn, TP) could largely affect ARG profiles. Specifically, short-chain PFAAs had similar impacts on ARG profiles compared to the restricted long-chain PFAAs. This study confirmed the potential effects of PFAAs on ARGs in aquatic environment and provided more insights into the ecological risk raised by PFAAs.
Collapse
Affiliation(s)
- Nannan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Fumin Chu
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhengdi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mingquan Wang
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Song M, Yu R, Shang Y, Tashpulatov K, Sun H, Zeng J. Lanthanide metal-organic frameworks as ratiometric fluorescent probes for real-time monitoring of PFOA photocatalytic degradation process. CHEMOSPHERE 2024; 363:142946. [PMID: 39059635 DOI: 10.1016/j.chemosphere.2024.142946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The assessment of perfluorooctanoic acid (PFOA) photocatalytic degradation usually involves tedious pre-treatment and sophisticated instrumentation, making it impractical to evaluate the degradation process in real-time. Herein, we synthesized a series of lanthanide metal-organic frameworks (Ln-MOFs) with outstanding fluorescent sensing properties and applied them as luminescent probes in the photocatalytic degradation reaction of PFOA for real-time evaluation. As the catalytic reaction proceeds, the fluorescence color changes significantly from green to orange-red due to the different interaction mechanisms between the electron-deficient PFOA and smaller radius F- with the ratiometric fluorescent probe MOF-76 (Tb: Eu = 29:1). The limit of detection (LOD) was calculated to be 0.0127 mM for PFOA and 0.00746 mM for F-. In addition, the conversion rate of the catalytic reaction can be read directly based on the chromaticity value by establishing a three-dimensional relationship graph of G/R value-conversion rate-time (G/R indicates the ratio between green and red luminance values in the image.), allowing for real-time and rapid tracking of the PFOA degradation. The recoveries of PFOA and F- in the actual water samples were 99.3-102.7% (RSD = 2.2-4.4%) and 100.7-105.3% (RSD = 3.9-6.8%), respectively. Both theoretical calculations and experiments reveal that the detection mechanism was attributed to the photoinduced electron transfer and energy transfer between the analytes and the probe. This method simplifies the sample analysis process and avoids the use of bulky instruments, and thus has great potential on the design and development of quantitative time-resolved visualization methods to assess catalytic performance and reveal mechanisms.
Collapse
Affiliation(s)
- Mingzhe Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Ruyue Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | | | - Hongman Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| |
Collapse
|
8
|
Deligiannis M, Gkalipidou E, Gatidou G, Kostakis MG, Triantafyllos Gerokonstantis D, Arvaniti OS, Thomaidis NS, Vyrides I, Hale SE, Peter Arp H, Fountoulakis MS, Stasinakis AS. Study on the fate of per- and polyfluoroalkyl substances during thermophilic anaerobic digestion of sewage sludge and the role of granular activated carbon addition. BIORESOURCE TECHNOLOGY 2024; 406:131013. [PMID: 38901748 DOI: 10.1016/j.biortech.2024.131013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Limited information is available on the removal of per- and polyfluoroalkyl substances (PFAS) in anaerobic digestion (AD). Τhe fate of six PFAS was studied in thermophilic bioreactors in the presence of granular activated carbon (GAC) and voltage application. Reactors with GAC exhibited lower concentrations of volatile fatty acids and higher methane production compared to those with and without the application of voltage. Analysis of PFAS in dissolved and solid phase showed that their distribution was dependent on perfluorocarbon chain length and functional group. Mass balances showed that PFAS were not removed during conventional AD or after applying voltage; however, significant removal (up to 61 ± 8 %) was observed in bioreactors with GAC for perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS). Biomass characterization showed that in these bioreactors, the relative abundance of Acinetobacter and Pseudomonas was higher, indicating their potential role in PFAS biotransformation.
Collapse
Affiliation(s)
| | - Evdokia Gkalipidou
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - Georgia Gatidou
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - Marios G Kostakis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | | | - Olga S Arvaniti
- Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna 34400, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Limassol 3603, Cyprus
| | - Sarah E Hale
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Hans Peter Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806, Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | | |
Collapse
|
9
|
Lin Z, Zhou W, Ke Z, Wu Z. Ecotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate on aquatic plant Vallisneria natans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26646-26664. [PMID: 38451456 DOI: 10.1007/s11356-024-32705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Perfluorinated compounds (PFCs) are persistent organic contaminants that are highly toxic to the environment and bioaccumulate, but their ecotoxic effects on aquatic plants remain unclear. In this study, the submerged plant Vallisneria natans was treated with short-term (7 days) and long-term (21 days) exposures to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of 0, 0.01, 0.1, 1.0, 5.0, and 10 mg/L, respectively. The results showed that both high concentrations of PFOA and PFOS inhibited the growth of V. natans and triggered the increase in photosynthetic pigment content in leaves. The oxidative damage occurred mainly in leaves, but both leaves and roots gradually built up tolerance during the stress process without serious membrane damage. Both leaves and roots replied to short-term stress by activating superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO), while peroxidase (POD) was involved under high concentration stress with increasing exposure time. Leaves showed a dose-effect relationship in integrated biomarker response (IBR) values under short-term exposure, and the sensitivity of roots and leaves to PFOS was higher than that of PFOA. Our findings help to increase knowledge of the toxic effects of PFCs and have important reference value for risk assessment and environmental remediation of PFCs in the aquatic ecosystem.
Collapse
Affiliation(s)
- Zhen Lin
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wei Zhou
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhen Ke
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
10
|
Zhang J, Xu Z, Deng X, Zhang Q, Ruan Y, Ji XM. Deciphering behaviors of 6:2 chlorinated polyfluorinated ether sulfonate (alternative-PFOS) on anammox processes: Nitrogen removal efficiency and microbial adaptability. BIORESOURCE TECHNOLOGY 2024; 397:130500. [PMID: 38423487 DOI: 10.1016/j.biortech.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
This study investigates the behaviors and effects of F-53B, an alternative to perfluorooctane sulfonate on anaerobic ammonium oxidation (anammox) processes. Results showed that the nitrogen removal efficiency (NRE) reached 83.8 % at a F-53B concentration of 0.5 mg·L-1, while NRE decreased to 66.9 % with 5 mg·L-1 of F-53B. The defluorination rates of 17.8 % (0.5 mg·L-1) and 9.3 % (5 mg·L-1) were observed, respectively, suggesting the occurrence of F-53B degradation. The relative abundance of Ca. Kuenenia decreased from 26.1 % to 16.2 % with the F-53B concentration increasing from 0.5 mg·L-1 to 5 mg·L-1. Meanwhile, Denitratisoma was selectively enriched with a relative abundance of 40.7 % at an F-53B concentration of 0.5 mg·L-1. Ca. Kuenenia could reduce reactive oxygen species induced by F-53B to maintain the balance of oxidative stress. This study gains insight into the behaviors and metabolic mechanisms of F-53B in anammox consortia, suggesting the feasibility of anammox processes for industrial wastewater.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangqi Deng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Zhang
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yang Ruan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Tang Z, Vogel TM, Wang Q, Wei C, Ali M, Song X. Microbial defluorination of TFA, PFOA, and HFPO-DA by a native microbial consortium under anoxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133217. [PMID: 38101019 DOI: 10.1016/j.jhazmat.2023.133217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In this study, the biodegradability of trifluoroacetate (TFA), perfluorooctanoic acid (PFOA), and perfluoro-2-methyl-3-oxahexanoic acid (HFPO-DA) by a native microbial community was evaluated over a 10-month incubation period. The observed microbial defluorination ratios and removal efficiency were 3.46 ( ± 2.73) % and 8.03 ( ± 3.03) %, 8.44 ( ± 1.88) % and 13.52 ( ± 4.96) %, 3.02 ( ± 0.62) % and 5.45 ( ± 2.99) % for TFA, PFOA and HFPO-DA, respectively. The biodegradation intermediate products, TFA and pentafluoropropionic acid (PFA), of PFOA and HFPO-DA were detected in their biodegradation treatment groups. Furthermore, the concentrations of the PFOA metabolites, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA), in the aqueous solutions after incubation were quantified to be 0.21 and 4.14 µg/L. TFA, PFOA and HFPO-DA significantly reduced the microbial diversity and changed the structure of the community. The co-occurrence network analysis showed that low abundance species, such as Flexilinea flocculi, Bacteriovorax stolpii, and g_Sphingomonas, are positively correlated with the generation of fluoride ion, implying their potential collaborative functions contributing to the observed biodefluorination. The findings in this study can provide insights for the biodegradation of perfluoroalkyl carboxylic acids and their emerging alternatives by indigenous microorganisms in the environment.
Collapse
Affiliation(s)
- Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Timothy M Vogel
- Ecologie Microbienne, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changlong Wei
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhang C, Li S, Sun H, Li X, Fu L, Zhang C, Sun S, Zhou D. Assessing the impact of low organic loading on effluent safety in wastewater treatment: Insights from an activated sludge reactor study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133083. [PMID: 38181593 DOI: 10.1016/j.jhazmat.2023.133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
In this study, an organic loading (OL) of 300 mg/(L d) was set as the relative normal condition (OL-300), while 150 mg/(L d) was chosen as the condition reflecting excessively low organic loading (OL-150) to thoroughly assess the associated risks in the effluent of the biological wastewater treatment process. Compared with OL-300, OL-150 did not lead to a significant decrease in dissolved organic carbon (DOC) concentration, but it did improve dissolved organic nitrogen (DON) levels by ∼63 %. Interestingly, the dissolved organic matter (DOM) exhibited higher susceptibility to transformation into chlorinated disinfection by-products (Cl-DBPs) in OL-150, resulting in an increase in the compound number of Cl-DBPs by ∼16 %. Additionally, OL-150 induced nutrient stress, which promoted engendered human bacterial pathogens (HBPs) survival by ∼32 % and led to ∼51 % increase in the antibiotic resistance genes (ARGs) abundance through horizontal gene transfer (HGT). These findings highlight the importance of carefully considering the potential risks associated with low organic loading strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Haoran Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaoshuang Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Shijun Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
13
|
Luo P, Zhang Y, Peng Z, He Q, Zhao W, Zhang W, Yin D, Zhang Y, Tang J. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from water: A mini review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123212. [PMID: 38145640 DOI: 10.1016/j.envpol.2023.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) has drawn increasing attention as a highly persistent organic pollutant. The inherent stability, rigidity and potential toxicities characteristics make it a challenge to develop efficient technologies to eliminate it from water. Photocatalytic technology, as one advanced method, has been widely used in the degradation of PFOA in water. In this review, recent progress in the design of photocatalysts including doping, defects engineering, heterojunction and surface modification to boost the photocatalytic performance toward PFOA is summarized. The relevant degradation mechanisms were also discussed in detail. Finally, future prospect and challenges are proposed. This review may provide new guidelines for researchers to design much more efficient photocatalysts applied in the elimination of PFOA.
Collapse
Affiliation(s)
- Peiru Luo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yangyang Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qingyun He
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianwei Tang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
14
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
15
|
Gao J, Xing X, Cai W, Li Z, Shi G, Chen Y, Liang H, Chen C, Ma K, Chen J, Hu C. Effect of micropollutants on disinfection byproducts and antibiotic resistance genes in drinking water in the process of biological activated carbon treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132304. [PMID: 37748307 DOI: 10.1016/j.jhazmat.2023.132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/27/2023]
Abstract
The biofilm stress response of biological activated carbon (BAC) was investigated under prolonged exposure to sulfadiazine and 2,4-Dichlorophenoxyacetic acid, simulating complex emerging organic contaminants (EOCs) that are mainly involved in the formation of nitrogenous disinfection byproducts (N-DBPs) and antibiotic resistance genes (ARGs). Under trace complex EOCs condition (2 µg/L), N-DBP precursors and abundance of ARGs increased significantly in BAC effluent. The total formation potential of haloacetonitriles (HANs) and halonitromethanes (HNMs) was 751.47 ± 2.98 ng/L, which was much higher than the control group (440.67 ± 13.38 ng/L without EOCs). Similarly, the relative abundance of ARGs was more than twice that in the control group. The complex EOCs induce excessive extracellular polymeric substance secretion (EPS), thereby causing more N-DBP precursors and stronger horizontal gene transfer. Metagenome analysis revealed that functional amino acid and protein biosynthesis genes were overexpressed compared to the control group, causing more EPS to be secreted into the external environment. Complex EOCs promote Cobetia, Clostridium, and Streptomyces dominance, contributing to the production of N-DBP precursors and ARGs. For the first time, in addition to the direct hazards of the EOCs, this study successfully revealed the indirect water quality risks of complex EOCs from the microbial stress response during BAC treatment. Synergistic regulation of EOCs and microorganisms is important for tap water security.
Collapse
Affiliation(s)
- Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Ji B, Zhao Y. Interactions between biofilms and PFASs in aquatic ecosystems: Literature exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167469. [PMID: 37778566 DOI: 10.1016/j.scitotenv.2023.167469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been detected in most aquatic environments worldwide and are referred to as "forever chemicals" because of their extreme chemical and thermal stability. Biofilms, as basic aquatic bioresources, can colonize various substratum surfaces. Biofilms in the aquatic environment have to interact with the ubiquitous PFASs and have significant implications for both their behavior and destiny, which are still poorly understood. Here, we have a preliminary literature exploration of the interaction between PFASs and biofilms in the various aquatic environments and expect to provide some thoughts on further study. In this review, the biosorption properties of biofilms on PFASs and possible mechanisms are presented. The complex impact of PFASs on biofilm systems was further discussed in terms of the composition and electrical charges of extracellular polymeric substances, intracellular microbial communities, and overall contaminant purification functions. Correspondingly, the effects of biofilms on the redistribution of PFASs in the aqueous environment were analyzed. Finally, we propose that biofilm after adsorption of PFASs is a unique ecological niche that not only reflects the contamination level of PFASs in the aquatic environment but also offers a possible "microbial pool" for PFASs biodegradation. We outline existing knowledge gaps and potential future efforts for investigating how PFASs interact with biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
17
|
Yin H, Wang H, Wang M, Shi B. The interaction between extracellular polymeric substances and corrosion products in pipes shaped different bacterial communities and the effects of micropollutants. WATER RESEARCH 2023; 247:120822. [PMID: 37950951 DOI: 10.1016/j.watres.2023.120822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
There are growing concerns over the effects of micropollutants on biofilms formation and antibiotic resistance gene (ARGs) transmission in drinking water distribution pipes. However, there was no reports about the influence of the interaction between extracellular polymeric substances (EPS) and corrosion products on biofilms formation. Our results indicated that the abundance of quorum sensing (QS)-related genes, polysaccharide and amino acids biosynthesis genes of EPS was 6747-8055 TPM, 2221-2619 TPM, and 1461-1535 TPM in biofilms of cast iron pipes, respectively, which were higher than that of stainless steel pipes. The two-dimensional correlation spectroscopy (2D-COS) analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) results indicated that polysaccharide of EPS was more easily adsorbed onto the corrosion products of cast iron pipes. Therefore, more human pathogenic bacteria (HPB) carrying ARGs were formed in biofilms of cast iron pipes. The amide I and amide II components and phosphate moieties of EPS were more susceptible to the corrosion products of stainless steel pipes. Thus, more bacteria genera carrying mobile genetic elements (MGE)-ARG were formed in biofilms of stainless steel pipes due to more abundance of QS-related genes, amino acids biosynthesis genes of EPS and the functional genes related to lipid metabolism. The enrichment of dimethyl phthalate (DMP), perfluorooctanoic acid (PFOA) and sulfadiazine (SUL) in corrosion products induced upregulation of QS and EPS-related genes, which promoted bacteria carrying different ARGs growth in biofilms, inducing more microbial risks.
Collapse
Affiliation(s)
- Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Li Y, Wang H, Wang M, Wang Y, Shi B. The perfluoroalkyl substances influenced the distribution of bacterial communities and their functions from source water to tap water. WATER RESEARCH 2023; 247:120831. [PMID: 37950955 DOI: 10.1016/j.watres.2023.120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Perfluoroalkyl substances (PFASs) and antibiotic resistance genes (ARGs) in drinking water are environmental issues that require special attention. The objective of this study was to know the effects of PFASs on microbial communities and their functional genes from source water to tap water. PFASs were detected by mass-labeled internal standards method, and the microbial communities and functional genes were analyzed by metagenomics. Our results indicated that the concentration of total PFASs in the water ranged from 47.7 to 171.4 ng/L, with perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) being the dominant types. The PFASs concentration decreased slowly from source to tap water in some months. PFBA, PFOA, perfluorooctane sulfonic acid (PFOS) and perfluorohexanoic acid (PFHxA) influenced the functional genes related to two-component system, bacterial secretion system and flagellar assembly of Aquabacterium, Methylobacterium, and Curvibacter, which contributed significantly to macB and evgS. Therefore, the bacterial communities enhanced adaptation to fluctuating environments by upregulating some functional genes under the PFASs stress, with concomitant changes in the expression of ARGs. Moreover, PFASs also promoted the expression of functional genes associated with human diseases, such as shigellosis and tuberculosis, which increased the risk of human pathogenicity. The bench scale experiment results also suggested that PFOA and PFOS in drinking water can promote the ARGs proliferation and induce microbial risk. Therefore, it is necessary to take measures to prevent the risks caused by PFASs and ARGs in drinking water.
Collapse
Affiliation(s)
- Yukang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Jeong Y, Vyas K, Irudayaraj J. Toxicity of per- and polyfluoroalkyl substances to microorganisms in confined hydrogel structures. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131672. [PMID: 37236111 PMCID: PMC10330869 DOI: 10.1016/j.jhazmat.2023.131672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) as a group of environmentally persistent synthetic chemicals has been widely used in industrial and consumer products. Bioaccumulation studies have documented the adverse effects of PFAS in various living organisms. Despite the large number of studies, experimental approaches to evaluate the toxicity of PFAS on bacteria in a biofilm-like niche as structured microbial communities are sparse. This study suggests a facile approach to query the toxicity of PFOS and PFOA on bacteria (Escherichia coli K12 MG1655 strain) in a biofilm-like niche provided by hydrogel-based core-shell beads. Our study shows that E. coli MG1655 upon complete confinement in hydrogel beads exhibit altered physiological characteristics of viability, biomass, and protein expression, compared to their susceptible counterpart cultivated under planktonic conditions. We find that soft-hydrogel engineering platforms may provide a protective role for microorganisms from environmental contaminants, depending on the size or thickness of the protective/barrier layer. We expect our study to provide insights on the toxicity of environmental contaminants on organisms under encapsulated conditions that could potentially be useful for toxicity screening and in evaluating ecological risk of soil, plant, and mammalian microbiome.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Khushali Vyas
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, IL, USA.
| |
Collapse
|
20
|
Morán-Valencia M, Huerta-Aguilar CA, Mora A, Mahlknecht J, Saber AN, Cervantes-Avilés P. Influence of PFDA on the nutrient removal from wastewater by hydrogels containing microalgae-bacteria. Heliyon 2023; 9:e17586. [PMID: 37408922 PMCID: PMC10319196 DOI: 10.1016/j.heliyon.2023.e17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
PFAS have demonstrated to affect some aerobic microorganisms applied for wastewater treatment. This study evaluated the nutrient removal of three types of hydrogels containing a consortium of microalgae-bacteria (HB), activated carbon (HC), or both (HBC) in presence of perfluorodecanoic acid (PFDA). The nutrients evaluated were ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), phosphate (PO4), and chemical oxygen demand (COD). Fluorine (F-) concentration and the integrity of HB exposed to PFDA were also determined at the end of experiments to understand the potential sorption and effects of PFDA on hydrogel. The results indicated that the presence of PFDA did affect the nitrification process, 13% and 36% to HB and HBC, respectively. Mass balance confirmed negative impact of PFDA on nitrogen consumption in HB (-31.37%). However, NH4-N was removed by all types of hydrogels in a range of 61-79%, while PO4 was mainly removed by hydrogels containing activated carbon (AC), 37.5% and 29.2% for HC and HBC, respectively. The removal of both NH4 and PO4, was mainly attributed to sorption processes in hydrogels, which was enhanced by the presence of AC. PFDA was also adsorbed in hydrogels, decreasing its concentration between 18% and 28% from wastewater, and up to 39% using HC. Regarding COD concentration, this increased overtime but was not related to hydrogel structure, since Transmission Electron Microscopy imaging revealed that their structure was preserved in presence of PFDA. COD increasement could be attributed to soluble algal products as well as to PVA leaching from hydrogels. In general, the presence of AC in hydrogels can contribute to mitigate the toxic effect of PFDA over microorganisms involved in biological nutrient removal, and hydrogels can be a technique to partially remove this contaminant from aqueous matrices.
Collapse
Affiliation(s)
- Marien Morán-Valencia
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Carlos Alberto Huerta-Aguilar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, México
| | - Ayman N Saber
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Egypt
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Puebla, México
| |
Collapse
|
21
|
Chen C, Fang Y, Zhou D. Selective pressure of PFOA on microbial community: Enrichment of denitrifiers harboring ARGs and the transfer of ferric-electrons. WATER RESEARCH 2023; 233:119813. [PMID: 36863277 DOI: 10.1016/j.watres.2023.119813] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA), a class of permanent organic pollutants, is frequently detected in surface and ground water, with the latter made up primarily of porous media (such as soils, sediments, and aquifers) that harbor microbial communities. Therefore, we investigated the effects of PFOA on water ecosystems and found that, under stimulation by 2.4 μM PFOA, denitrifiers were significantly enriched due to their hosting antibiotic resistant genes (ARGs), which were 1.45 times more abundant than the control. Furthermore, denitrifying metabolism was enhanced by Fe(II) electron donation. Specifically, 2.4 μM PFOA significantly enhanced the removal of total inorganic nitrogen by 178.6%. The microbial community became predominated by denitrifying bacteria (67.8% abundance). Notably, the nitrate-reduction ferrous-oxidizing (NRFO) bacteria Dechloromonas, Acidovorax, Bradyrhizorium, etc. were significantly enriched. The selective pressures of PFOA driving the enrichment of denitrifiers were twofold. First, the toxic PFOA induced denitrifying bacteria to produce ARGs, mainly including the efflux (occupying 55.4%) and antibiotic inactivation (occupying 41.2%) types, which improved microbial tolerance to PFOA. The risk of horizontal ARGs transmission was elevated as the overall number of horizontally transmissible ARGs increased by 47.1%. Second, Fe(II) electrons were transported via the porin-cytochrome c extracellular electrons transfer system (EET), promoting the expression of nitrate reductases, which in turn further enhanced denitrification. In summary, PFOA regulated the microbial community structure and influenced microbial TN removal functions and increased the contribution of ARGs by the denitrifier hosts, but the PFOA-induced production of ARGs may pose a serious ecological threat that needs to be comprehensively investigated.
Collapse
Affiliation(s)
- Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
22
|
Wei Z, Lai Y, Li W, Cui X, Zhou D, Zhang C, Chen C, Fang Y. Accumulation of nitrite after reclaimed water recharge due to the disinfection byproduct chlorite. CHEMOSPHERE 2023; 321:138119. [PMID: 36804496 DOI: 10.1016/j.chemosphere.2023.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Due to its toxicity, the disinfection byproduct chlorite in drinking water is strictly regulated to be ≤ 1.0 mg/L, but in reclaimed, non-drinking water chlorite is unregulated and rarely considered. However, chlorite is cytotoxic and has a high oxidation potential. Therefore, as reclaimed water infiltrates soil and groundwater, it may alter the soil environment and microbial community, which may affect the degradation of organic matter and the transformation of the N element. In this study, the effects of reclaimed water containing chlorite on soil microorganisms were investigated by simulating subsurface infiltration. It was found that chlorite improved the conversion of nitrate nitrogen to nitrite nitrogen, but inhibited further conversion of nitrite nitrogen. The nitrite nitrogen in the effluent reached 4.61 mg/L when chlorite was present, while only 0.16 mg/L was found in the control system. The chlorite produced obvious oxidative stress reactions in cells, inhibited the EPSs production, in which the contents of polysaccharides and proteins reduced by nearly 41% and 62%, respectively. Besides, chlorite resulted in the enrichment of efflux resistance genes in the microbial community, mainly adeF and cmlB1. Self-protection against chlorite is achieved mainly using efflux pump related genes. Metagenomics data analysis showed that Delftia became the dominant genus when exposed to chlorite, with the greatest abundance at 17.9%. Chlorite also resulted in the upregulated expression of nar genes (by more than 149%) and downregulation of nir gene expression (by more than 62%). This study reveals the effects of the disinfection byproduct chlorite on a soil microecosystem, providing important information for the management and reuse of reclaimed water.
Collapse
Affiliation(s)
- Ziyao Wei
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Yingnan Lai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Wenjing Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Xiaochun Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|