1
|
Zhang X, Guo W, Du L, Yue J, Wang B, Li J, Wang S, Xia J, Wu Z, Zhao X, Gao Y. Deciphering the role of nonylphenol adsorption in soil by microplastics with different polarities and ageing processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117254. [PMID: 39486245 DOI: 10.1016/j.ecoenv.2024.117254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
In the soil environment, microplastics (MPs) commonly coexist with organic pollutants such as nonylphenol (NP), affecting the migration of NP through adsorption/desorption. However, few studies have focused on the interaction between NP and MPs in soil, especially for MPs of different types and ageing characteristics. In this study, non-polar polypropylene (PP) and polar polyamide (PA) MPs were aged either photochemically (144 h) or within soil (60 days), then used to determine the effect of 5 % MPs on the adsorption behaviour of NP (0.1-4.0 mg/L) in soil. Results showed that both ageing processes significantly promoted the conversion of -CH3 groups to C-O and CO on the surface of PPMPs, while PAMPs exhibited amide groups changes and a reduction in average particle size due to ageing. Additionally, both ageing processes promoted the adsorption of NP by soil containing PPMPs, due to an increase in oxygen-containing functional groups and specific surface area. In contrast, the NP adsorption capacity of soil containing PAMPs decreased by 15.4 % following photochemical ageing due to hydrolysis of amide groups, but increased by 21.15 % after soil ageing due to reorganization of amide groups, respectively. The soil-PAMPs systems exhibited a stronger affinity for NP compared to the soil-PPMPs systems, which was primarily attributed to the dominant role of hydrogen bonding. NP was found to be distributed mainly on soil particles in the soil-PPMPs systems, while it tended to be adsorbed by MPs in the soil-PAMPs systems, especially in the soil aged MPs system. This study provides a comprehensive analysis of the complex effects of MPs on coexisting pollutants in soil environments, highlighting the effect of MP characteristics on the adsorption of organic pollutants, which is essential for understanding the transport behaviour of organic pollutants.
Collapse
Affiliation(s)
- Xinyou Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Linzhu Du
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Junhui Yue
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Binyu Wang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuhang Wang
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Jiang Xia
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Zhihao Wu
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Xu Zhao
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| |
Collapse
|
2
|
Ding S, Du Z, Qu R, Wu M, Xiao R, Wang P, Chen X, Chu W. Reactivity, Pathways, and Iodinated Disinfection Byproduct Formation during Chlorination of Iodotyrosines Derived from Edible Seaweed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17999-18008. [PMID: 39322975 DOI: 10.1021/acs.est.4c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Iodine derived from edible seaweed significantly enhances the formation of iodinated disinfection byproducts (I-DBPs) during household cooking. Reactions of chlorine with monoiodotyrosine (MIT) and diiodotyrosine (DIT) derived from seaweed were investigated. Species-specific second-order rate constants (25 °C) for the reaction of hypochlorous acid with neutral and anionic MIT were calculated to be 23.87 ± 5.01 and 634.65 ± 75.70 M-1 s-1, respectively, while the corresponding rate constants for that with neutral and anionic DIT were determined to be 12.51 ± 19.67 and 199.12 ± 8.64 M-1 s-1, respectively. Increasing temperature facilitated the reaction of chlorine with MIT and DIT. Based on the identification of 59 transformation products/DBPs from iodotyrosines by HPLC/Q-Orbitrap HRMS, three dominant reaction pathways were proposed. Thermodynamic results of computational modeling using density functional theory revealed that halogen exchange reaction follows a stepwise addition-elimination pathway. Among these DBPs, 3,5-diiodo-4-hydroxy-benzaldehyde and 3,5-diiodo-4-hydroxy-benzacetonitrle exhibited high toxic risk. During chlorination of MIT and DIT, iodinated trihalomethanes and haloacetic acids became dominant species at common cooking temperature (80 °C). These results provide insight into the mechanisms of halogen exchange reaction and imply important implications for the toxic risk associated with the exposure of I-DBPs from household cooking with iodine-containing food.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu Province 210098, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Ruixin Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Huang D, Dong H, Li X, Li L, Deng J, Xiao J, Dong J, Xiao S. Transformation of dissolved organic matter leached from biodegradable and conventional microplastics under UV/chlorine treatment and the subsequent effect on contaminant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135994. [PMID: 39357355 DOI: 10.1016/j.jhazmat.2024.135994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The ultraviolet (UV)/chlorine process has been widely applied for water treatment. However, the transformation of microplastic-leached dissolved organic matter (MP-DOM) in advanced treatment of real wastewater remains unclear. Here, we investigated alterations in the photoproperties of MP-DOM leached from biodegradable and conventional microplastics (MPs) and their subsequent effects on the degradation of sulfamethazine (SMT) by the UV/chlorine process. Spectroscopy was used to assess photophysical properties, focusing on changes in light absorption capacity, functional groups, and fluorescence components, while photochemical properties were determined by calculating the apparent quantum yields of reactive intermediates (ΦRIs). For photophysical properties, our findings revealed that the degree of molecular structure modification, functional group changes, and fluorescence characteristics during UV/chlorine treatment are closely linked to the type of MPs. For photochemical properties, the ΦRIs increased with higher chlorine dosages due to the formation of new functionalities. Both singlet oxygen (1O2) and hydroxyl radicals (•OH) formation were strongly correlated with excited triplet state of DOM (3DOM*) in the UV/chlorine treatment. Additionally, we found that the four types of MP-DOM inhibit the degradation of SMT and elucidated the mechanisms behind this inhibition. We also proposed degradation pathways for SMT and assessed the ecotoxicity of the resulting intermediates. This study provides important insights into how the characteristics and transformation of MP-DOM affect contaminant degradation, which is critical for evaluating the practical application of UV-based advanced oxidation processes (UV-AOPs).
Collapse
Affiliation(s)
- Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Cheng X, Wu J, Yu B, Zhang M, Miao M, Mackey H, Li Y. Effects of UV light on physicochemical changes in thermoplastic polyurethanes: Mechanism and disinfection byproduct formation. CHEMOSPHERE 2024; 363:142761. [PMID: 38969215 DOI: 10.1016/j.chemosphere.2024.142761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The presence of microplastics (MPs) products and particles in the environment can significantly impact the human body. Most MPs that enter the environment also enter the water cycle. During sunlight light irradiation (especially ultraviolet (UV) part) or UV disinfection, many of these MPs, particularly those rich in surface functional groups like thermoplastic polyurethanes (TPU), undergo physicochemical changes that can affect the formation of disinfection byproducts (DBPs). This study investigates the physicochemical changes of TPU in water after exposure to UV irradiation and incubation in the dark, as well as the formation of DBPs after chlorination. The results show that TPU undergo chain breakage, oxidation, and cross-linking when exposed to UV irradiation in an aqueous system. This leads to fragmentation into smaller particles, which facilitates the synthesis of DBPs. Subsequent research has demonstrated that the TPU leaching solution produces a significantly higher DBP content than the chlorination of TPU MPs, particularly at high concentrations of CHCl3. Therefore, it is important to give greater consideration to the soluble DBP precursors released by TPU.
Collapse
Affiliation(s)
- Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Jiao Wu
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Bingqing Yu
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Hamish Mackey
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
5
|
Yang Y, Zhang X, Han J, Li W, Chang X, He Y, Yee Leung KM. Nanoplastics enhanced the developmental toxicity of aromatic disinfection byproducts to a marine polychaete at non-feeding early life stage. CHEMOSPHERE 2024; 364:143062. [PMID: 39127188 DOI: 10.1016/j.chemosphere.2024.143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Micro/nanoplastics can act as vectors for organic pollutants and enhance their toxicity, which has been attributed to the ingestion by organisms and the "Trojan horse effect". In this study, we disclosed a non-ingestion pathway for the toxicity enhancement effect of nanoplastics. Initially, the combined toxicity of polystyrene microplastics (40 μm) or nanoplastics (50 nm) with three disinfection byproducts (DBPs) to a marine polychaete, Platynereis dumerilii, was investigated. No toxic effect was observed for the micro/nanoplastics alone. The microplastics showed no effect on the toxicity of the three DBPs, whereas the nanoplastics significantly enhanced the toxicity of two aromatic DBPs when the polychaete was in its non-feeding early life stage throughout the exposure period. The microplastics showed no interaction with the P. dumerilii embryos, whereas the nanoplastics agglomerated strongly on the embryonic chorion and fully encapsulated the embryos. This could contribute to higher actual exposure concentrations in the microenvironment around the embryos, as the concentrations of the two aromatic DBPs on the nanoplastics were 1200 and 120 times higher than those in bulk solution. Our findings highlight an important and previously overlooked mechanism by which nanoplastics and organic pollutants, such as DBPs, pose a higher risk to marine species at their vulnerable early life stages. This study may contribute to a broader understanding of the environmental impacts of plastic pollution and underscore the necessity to mitigate their risks associated with DBPs.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xinyi Chang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuhe He
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Pan J, Zhang S, Qiu X, Ding L, Liang X, Guo X. Molecular Weights of Dissolved Organic Matter Significantly Affect Photoaging of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13973-13985. [PMID: 39046080 DOI: 10.1021/acs.est.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<1kDa) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<1kDa contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<1kDa was more actively involved in the increase of different reactive species yields by 50-290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.
Collapse
Affiliation(s)
- Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shilong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Liu X, Fang L, Gardea-Torresdey JL, Zhou X, Yan B. Microplastic-derived dissolved organic matter: Generation, characterization, and environmental behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174811. [PMID: 39032736 DOI: 10.1016/j.scitotenv.2024.174811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) represent a substantial and emerging class of pollutants distributed widely in various environments, sparking growing concerns about their environmental impact. In environmental systems, dissolved organic matter (DOM) is crucial in shaping the physical, chemical, and biological processes of pollutants while significantly contributing to the global carbon budget. Recent findings have revealed that microplastic-derived dissolved organic matter (MP-DOM) constitutes approximately 10 % of the DOM present on the ocean surface, drawing considerable attention. Hence, this study's primary objective is to explore, the generation, characterization, and environmental behaviors of MP-DOM. The formation and characteristics of MP-DOM are profoundly influenced by leaching conditions and types of MPs. This review delves into the mechanisms of the generation of MP-DOM and provides an overview of a wide array of analytical techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy, used to assess the MP-DOM characteristics. Furthermore, this review investigates the environmental behaviors of MP-DOM, including its impacts on organisms, photochemical processes, the formation of disinfection by-products (DBPs), adsorption behavior, and its interaction with natural DOM. Finally, the review outlines research challenges, perspectives for future MP-DOM research, and the associated environmental implications.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
9
|
Yao J, Qian H, Yan Z, Zhao X, Gao N, Zhang Z. Insight into the effect of UVC-based advanced oxidation processes on the interaction of typical microplastics and their derived disinfection byproducts during disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134597. [PMID: 38759281 DOI: 10.1016/j.jhazmat.2024.134597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The 10 µm polystyrene and polyethylene-terephthalate microplastics (MPs), prevalent in finished drink water, were employed to investigate the effect of normal dosage UVC-based advanced-oxidation-processes (UVC-AOPs) on the interaction between MPs and their derived disinfection-byproducts (DBPs) during subsequent chlorination-disinfection, in the presence of Br-, for the first time. The results indicated that UVC/H2O2 caused higher leaching of microplastic-derived dissolved-organic-matter (MP-DOM), with smaller and narrower molecular-weight-distribution than UVC and UVC/peroxymonosulfate (UVC/PMS). The trihalomethanes (as dominant DBPs) molar-formation-potentials (THMs-MFPs) for MP-DOM leached in different UVC-AOPs followed the order of UVC/H2O2>UVC/PMS>UVC. The adsorption of formed THMs, especially Br-THMs, back on MPs was observed in all MPs suspensions with or without UVC-AOPs pre-treatment. The Cl-THMs adsorption by MPs is more sensitive to UVC-AOPs than Br-THMs. The adsorption experiments showed that UVC-AOPs reduce the capacity but increase the rate of THMs adsorption by MPs, suggesting the halogen and hydrogen bonding forces governed the THMs adsorption rate while hydrophobic interaction determines their adsorption capacity. The UVC-AOPs pre-treatment sharply increased the total yield of THMs via both indirectly inducing MP-DOM leaching and directly increasing the THMs-MFPs of MPs by oxidation. 21.36-41.96% of formed THMs adsorbed back on the UVC-AOPs-pretreated MPs, which might increase the toxicity of MPs.
Collapse
Affiliation(s)
- Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
| | - Hanyang Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Zhihao Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Xiong Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| |
Collapse
|
10
|
Junaid M, Hamid N, Liu S, Abbas Z, Imran M, Haider MR, Wang B, Chen G, Khan HK, Yue Q, Xu N, Wang J. Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172213. [PMID: 38580116 DOI: 10.1016/j.scitotenv.2024.172213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zohaib Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Rizwan Haider
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Bin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hudda Khaleeq Khan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
11
|
Zhang T, Wang M, Han Y, Liu J, Zhang Z, Wang M, Liu P, Gao S. Particle sizes crucially affected the release of additives from tire wear particles during UV irradiation and mechanical abrasion. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134106. [PMID: 38552399 DOI: 10.1016/j.jhazmat.2024.134106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
In the environment, tire wear particles (TWPs) could release various additives to induce potential risk, while the effects of particle size on the additive release behavior and ecological risk from TWPs remain unknown. This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71-1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical abrasion and UV irradiation in water. Compared to mechanical abrasion, UV irradiation significantly increased the level of additives released from TWPs. Especially, the additive releasing characteristics were critically affected by the particle sizes of TWPs, manifested as the higher release in the smaller-size ones. After 60 d of UV irradiation, the concentration of antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) reached 10.79 mg/L in the leachate of small-sized TWPs, 2.78 and 5.36 times higher than that of medium-sized and large-sized TWPs. The leachate of the small-sized TWPs also showed higher cytotoxicity. •OH and O2•- were identified as the main reactive oxygen species (ROS), which exhibited higher concentrations and dramatic attack on small-sized TWPs to cause pronounced fragmentation and oxidation, finally inducing the higher release of additives. This paper sheds light on the crucial effects and mechanism of particle sizes in the release behavior of TWPs additives, provides useful information to assess the ecological risk of TWPs.
Collapse
Affiliation(s)
- Taishuo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mingjun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yingxuan Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Zhang M, Lü X, Yuan C, He W, Qiu C, Lan B, He J, Zhang L, Li Y. Impact of non-aged and UV-aged microplastics on the formation of halogenated disinfection byproducts during chlorination of drinking water and its mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123394. [PMID: 38266699 DOI: 10.1016/j.envpol.2024.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Microplastics (MPs) are ubiquitously present in source water and undergo ultraviolet (UV) aging in aquatic environments before entering drinking water treatment plants. The presence of MPs in drinking water can impact the formation of halogenated disinfection byproducts (DBPs) during chlorine disinfection, yet the exact effect of MPs on DBP formation remain unclear. In this study, we conducted an investigation into the influence of non-aged and UV-aged MPs on halogenated DBP formation in drinking water and unveiled the underlying mechanisms. In comparison to source water samples devoid of MPs, the total organic halogen concentration was reduced by 19%-43% and 4%-13% in the drinking water samples containing non-aged and aged MPs, respectively. The differing effects on halogenated DBP formation can be attributed to the alternation in physical and chemical characteristics of MPs following UV aging. Aged MPs exhibited larger surface area with signs of wear and tear, heightened hydrophilicity, surface oxidation, increased oxygen-containing functional groups and dechlorination during the UV aging process. Both non-aged and aged MPs possess the capability to adsorb natural organic matter, leading to a reduction in the concentration of DBP precursors in the source water. However, the release of organic compounds from aged MPs outweighed the adsorption of organics. Furthermore, as a result of the surface activation of MPs through the UV aging process, the aged MPs themselves can also serve as DBP precursors. Consequently, the presence of halogenated DBP precursors in source water increased, contributing to a higher level of DBP formation compared to source water containing non-aged MPs. Overall, this study illuminates the intricate relationship among MPs, UV aging, and DBP formation in drinking water. It highlights the potential risks posed by aged MPs in influencing DBP formation and offers valuable insights for optimizing water treatment processes.
Collapse
Affiliation(s)
- Meihui Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xianghong Lü
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Cheng Yuan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Weiting He
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chuyin Qiu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bingyan Lan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Junfeng He
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Liguo Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Zhang J, Hou X, Zhang K, Deng Y, Xiao Q, Gao Y, Zhou X, Yan B. Deciphering fluorescent and molecular fingerprint of dissolved organic matter leached from microplastics in water. WATER RESEARCH 2024; 250:121047. [PMID: 38154343 DOI: 10.1016/j.watres.2023.121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Despite extensive research into the presence and behavior of microplastics (MPs) in the environment, limited attention has been given to the investigation of the characteristics of dissolved organic matter (DOM) that leaches from MPs (MPs-DOM). Herein, two frequently encountered plastic particles in aquatic environments, specifically polyethylene terephthalate (PET)- and polyethylene (PE)-MPs, were subjected to leaching in the aquatic settings for seven days, both in the absence of light and under UV irradiation. Measurements of dissolved organic carbon (DOC) indicated that UV exposure enhanced the liberation of DOM from PET-MPs, while PE-MPs did not exhibit such leaching. After UV treatment for seven days, the DOM released from PET-MPs increased by 25 times, while that from PE-MPs remained almost unchanged. Then, the molecular diversity and the evolving formation of DOM originating from different MPs were comprehensively analyzed with fluorescence excitation-emission matrix (EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Specifically, both PET- and PE-DOM exhibited three fluorescence signatures, with the predominant C1 (tryptophan-like) component showing a decline in PET-DOM and a rise in PE-DOM during aging. The FT-ICR-MS analysis unveiled that PET-DOM grew more recalcitrant under UV exposure, while PE-DOM became increasingly labile. In brief, UV irradiation influences MPs-DOM release and transformation differently, depending on the plastic composition. This highlights the significance of exploring MPs-DOM transformation in securing environmental safety.
Collapse
Affiliation(s)
- Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xianfeng Hou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Youwei Deng
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Quanzhi Xiao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Gao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Na SH, Kim MJ, Kim J, Batool R, Cho K, Chung J, Lee S, Kim EJ. Fate and potential risks of microplastic fibers and fragments in water and wastewater treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132938. [PMID: 37948781 DOI: 10.1016/j.jhazmat.2023.132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Water and wastewater treatment plants (WWTPs) receive various types of microplastics (MPs), with fibers and fragments being dominant shapes. Here we investigated the removal behavior and transformation of MPs (polypropylene and polyethylene terephthalate fibers and fragments) in simulated water and wastewater treatment units, including activated sludge process, coagulation, sand filtration, and advanced oxidation/disinfection. Sand filtration demonstrated the highest average efficiency in removing MPs (98 %), followed by activated sludge process (61 %) and coagulation (55 %), which was associated with their physicochemical properties (shape, size, density, surface functional groups, etc). In activated sludge process and coagulation, the polymer type had a greater impact on the removal of MPs than the particle shape, while in sand filtration, the particle shape played a more important role. When subjected to the long-term operation and backwashing of sand filters, approximately 15 % of the initially filtered fragments broke through the sand media, with nearly no fibers escaping. UV-based advanced oxidation and chlorination induced the leaching of dissolved organic matters with different molecular characteristics from fragment MPs, resulting in varying levels of cytotoxicity and bacterial toxicity. Our study provides important information for predicting the fate of MPs and mitigating their impacts in WWTPs.
Collapse
Affiliation(s)
- Sang-Heon Na
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Min-Ji Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Jihee Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Rida Batool
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
15
|
Sun Y, Zhang J, Jiang Z, Wang Y, Duan P, Min W, Zhang W. Polystyrene microplastics enhance oxidative dissolution but suppress the aquatic acute toxicity of a commercial cadmium yellow pigment under simulated irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132881. [PMID: 37939558 DOI: 10.1016/j.jhazmat.2023.132881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Commercial cadmium yellow (CdS) pigment widely coexist with microplastics (MPs) in surface water, thus it is important to understand how MPs affect CdS pigment stability and toxicity under irradiation. Herein, the dissolution of CdS pigment (krelease = 0.118 h-1) under irradiation was visibly increased to 0.144 h-1 by polystyrene (PS) MPs, due to reactive species generation such as 1O2, •OH and 3PS* , while O2•- was unimportant to this process. The O2, humic acid, photoaging status of PS MPs could promote PS MPs-related CdS pigment dissolution rate by modifying reactive species generation. However, the CO32-, PO43- and alkaline condition significantly decreased the dissolution rate to 0.091, 0.053 and 0.094 h-1, respectively, through modifying free Cd2+ stability. Comparably, PS MPs-related CdS pigment dissolution was relatively slow in natural water samples (krelease = 0.075 h-1). PS MPs at environmental concentration can also promote CdS pigment dissolution and Cd2+ release, but suppress acute toxicity of CdS pigment to zebrafish larvae as increasing 10 h survival from 65% to 85% by adsorbing the Cd2+ and decreasing Cd2+ bioavailability. This study emphasized the environmental risks and human safety of CdS pigment should be carefully evaluated in the presence of PS MPs in aquatic environments.
Collapse
Affiliation(s)
- Yonghao Sun
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Jun Zhang
- School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhoujie Jiang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Yi Wang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modelingand Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, China
| | - Wei Min
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Weicheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
16
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
17
|
Chen L, Qi H, Yu K, Gao B. Increased bio-toxicity of leachates from polyvinyl chloride microplastics during the photo-aging process in the presence of dissolved organic matter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2465-2472. [PMID: 37966195 PMCID: wst_2023_339 DOI: 10.2166/wst.2023.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.
Collapse
Affiliation(s)
- Lei Chen
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Hangyu Qi
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Yu
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Buhong Gao
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Wang H, He Y, Zheng Q, Yang Q, Wang J, Zhu J, Zhan X. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132816. [PMID: 39491995 DOI: 10.1016/j.jhazmat.2023.132816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Photoaging-prone and additive-rich polyvinyl chloride microplastics (PVC-MPs) are abundant in the terrestrial environment, However, current knowledge about the effects of PVC-MPs on terrestrial plants is lacking. Herein, we investigated the physicochemical toxicity mechanisms of photoaged PVC-MP components, i.e. leachate (L), leached PVC-particles (P), and unleached PVC-MPs (UAMP), to wheat seedling roots. 108-h photoaged components were more detrimental to root growth than unaged ones, with root length decline by 3.56%- 7.45%, indicating enhanced ecotoxicity. Notably, 108-h aged UAMP displayed more pronounced inhibition to root architecture, nutrient content and root activity, and more significant stimulation on antioxidant systems compared to 108-h aged L and P. The abovementioned phenomena suggested the presence of a synergistic effect between physical damage from P and chemical harm from L. Surface adsorption experiments demonstrated that the adsorption of photoaging induced smaller particles caused physical damage to root system. Exposure treatment suggested that there was appreciable environmental risk posed by photoaged PVC-MP-derived additives, e.g., Irgafos 168-ox and Irganox 1076. Based on principal component analysis (PCA), additives from leachate played a greater role in UAMP ecotoxicity. Therefore, PVC-MP-derived additives require more consideration and put forward an important new aspect for the impact assessment of PVC-MPs in the environment.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|