1
|
Feng K, Ye G, Wang H, Li S, Wen X, Chen M. Research on the mechanism of TWSG1 in the malignant progression of glioma cells and tumor-associated macrophage infiltration. J Neuropathol Exp Neurol 2024; 83:843-852. [PMID: 38950414 DOI: 10.1093/jnen/nlae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Gliomas are malignant tumors of the central nervous system; current treatment methods have low efficacy. Twisted gastrulation BMP signaling modulator 1 (TWSG1) has been shown to play a role in gliomas but it is not known whether TWSG1 participates in glioma pathogenesis and macrophage immune regulation. This study identified a total of 24 differentially expressed genes with survival differences in gliomas using bioinformatics analysis. Among them, TWSG1 exhibited the strongest correlation with gliomas and was positively correlated with macrophage enrichment. The results showed that TWSG1 was highly expressed in various glioma cell lines, with the highest expression observed in the A172 cell line. Silencing TWSG1 significantly decreased the viability, migration, and invasion of A172 cells in vitro and tumor growth in a mouse xenograft model in vivo. It also reduced the expression of the matrix metalloproteinases MMP2 and MMP9 both in vivo and in vitro. Silencing TWSG1 significantly reduced the expression of M2 macrophage makers and upregulated the expression of M1 macrophage markers in A172 cells and tumor tissues. These data suggest that interference with TWSG1 suppressed the progression of A172 glioma cells and regulated immune infiltration.
Collapse
Affiliation(s)
- Kuan Feng
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Shiwei Li
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuebin Wen
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zhang C, Zhao J, Mi W, Zhang Y, Zhong X, Tan G, Li F, Li X, Xu Y, Zhang Y. Comprehensive analysis of microglia gene and subpathway signatures for glioma prognosis and drug screening: linking microglia to glioma. Lab Invest 2022; 20:277. [PMID: 35729639 PMCID: PMC9210642 DOI: 10.1186/s12967-022-03475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022]
Abstract
Glioma is the most common malignant tumors in the brain. Previous studies have revealed that, as the innate immune cells in nervous system, microglia cells were involved in glioma pathology. And, the resident microglia displayed its specific biological roles which distinguished with peripheral macrophages. In this study, an integrated analysis was performed based on public resource database to explore specific biological of microglia within glioma. Through comprehensive analysis, the biological characterization underlying two conditions, glioma microglia compared to glioma macrophage (MicT/MacT) as well as glioma microglia compared to normal microglia (MicT/MicN), were revealed. Notably, nine core MicT/MicN genes displayed closely associations with glioma recurrence and prognosis, such as P2RY2, which was analyzed in more than 2800 glioma samples from 25 studies. Furthermore, we applied a random walk based strategy to identify microglia specific subpathways and developed SubP28 signature for glioma prognostic analysis. Multiple validation data sets confirmed the predictive performance of SubP28 and involvement in molecular subtypes. The associations between SuP28 score and microglia M1/M2 polarization were also explored for both GBM and LGG types. Finally, a comprehensive drug-subpathway network was established for screening candidate medicable molecules (drugs) and identifying therapeutic subpathway targets. In conclusions, the comprehensive analysis of microglia related gene and functional signatures in glioma pathobiologic events by large-scale data sets displayed a framework to dissect inner connection between microglia and glioma, and identify robust signature for glioma clinical implications.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaxin Zhao
- Center of Cerebrovascular Disease, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuxi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Krane GA, O'Dea CA, Malarkey DE, Miller AD, Miller CR, Tokarz DA, Jensen HL, Janardhan KS, Shockley KR, Flagler N, Rainess BA, Mariani CL. Immunohistochemical evaluation of immune cell infiltration in canine gliomas. Vet Pathol 2021; 58:952-963. [PMID: 34196247 PMCID: PMC11404454 DOI: 10.1177/03009858211023946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells (P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 (P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors (P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.
Collapse
Affiliation(s)
- Gregory A Krane
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | | | - David E Malarkey
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | | | - Debra A Tokarz
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, USA
| | - Heather L Jensen
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | - Keith R Shockley
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Norris Flagler
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | - Brittani A Rainess
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | - Christopher L Mariani
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13153686. [PMID: 34359588 PMCID: PMC8345045 DOI: 10.3390/cancers13153686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) accounts for more than 50% of all primary malignancies of the brain. Current standard treatment regimen for GBM includes maximal surgical resection followed by radiation and adjuvant chemotherapy. However, due to the heterogeneity of the tumor cells, tumor recurrence is often inevitable. The prognosis of patients with glioma is, thus, dismal. Glioma is a highly angiogenic tumor yet immunologically cold. As such, evolving studies have focused on designing strategies that specifically target the tyrosine kinase receptors of angiokines and encourage immune infiltration. Recent promising results from immunotherapies on other cancer types have prompted further investigations of this therapy in GBM. In this article, we reviewed the pathological angiogenesis and immune reactivity in glioma, as well as its target for drug development, and we discussed future directions in glioma therapy.
Collapse
|
5
|
Distinction of Microglia and Macrophages in Glioblastoma: Close Relatives, Different Tasks? Int J Mol Sci 2020; 22:ijms22010194. [PMID: 33375505 PMCID: PMC7794706 DOI: 10.3390/ijms22010194] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
For decades, it has been known that the tumor microenvironment is significant for glioma progression, namely the infiltration of myeloid cells like microglia and macrophages. Hence, these cell types and their specific tasks in tumor progression are subject to ongoing research. However, the distribution of the brain resident microglia and the peripheral macrophages within the tumor tissue and their functional activity are highly debated. Results depend on the method used to discriminate between microglia and macrophages, whereby this specification is already difficult due to limited options to distinguish between these both cell populations that show mostly the same surface markers and morphology. Moreover, there are indications about various functions of microglia and macrophages but again varying on the method of discrimination. In our review, we summarize the current literature to determine which methods have been applied to differentiate the brain resident microglia from tumor-infiltrated macrophages. Furthermore, we compiled data about the proportion of microglia and macrophages in glioma tissues and ascertained if pro- or anti-tumoral effects could be allocated to one or the other myeloid cell population. Recent research made tremendous efforts to distinguish microglia from recruited macrophages. For future studies, it could be essential to verify which role these cells play in brain tumor pathology to proceed with novel immunotherapeutic strategies.
Collapse
|
6
|
Felsenstein M, Blank A, Bungert AD, Mueller A, Ghori A, Kremenetskaia I, Rung O, Broggini T, Turkowski K, Scherschinski L, Raggatz J, Vajkoczy P, Brandenburg S. CCR2 of Tumor Microenvironmental Cells Is a Relevant Modulator of Glioma Biology. Cancers (Basel) 2020; 12:cancers12071882. [PMID: 32668709 PMCID: PMC7408933 DOI: 10.3390/cancers12071882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) shows a high influx of tumor-associated macrophages (TAMs). The CCR2/CCL2 pathway is considered a relevant signal for the recruitment of TAMs and has been suggested as a therapeutic target in malignant gliomas. We found that TAMs of human GBM specimens and of a syngeneic glioma model express CCR2 to varying extents. Using a Ccr2-deficient strain for glioma inoculation revealed a 30% reduction of TAMs intratumorally. This diminished immune cell infiltration occurred with augmented tumor volumes likely based on increased cell proliferation. Remaining TAMs in Ccr2-/- mice showed comparable surface marker expression patterns in comparison to wildtype mice, but expression levels of inflammatory transcription factors (Stat3, Irf7, Cox2) and cytokines (Ifnβ, Il1β, Il12α) were considerably affected. Furthermore, we demonstrated an impact on blood vessel integrity, while vascularization of tumors appeared similar between mouse strains. The higher stability and attenuated leakiness of the tumor vasculature imply improved sustenance of glioma tissue in Ccr2-/- mice. Additionally, despite TAMs residing in the perivascular niche in Ccr2-/- mice, their pro-angiogenic activity was reduced by the downregulation of Vegf. In conclusion, lacking CCR2 solely on tumor microenvironmental cells leads to enhanced tumor progression, whereby high numbers of TAMs infiltrate gliomas independently of the CCR2/CCL2 signal.
Collapse
Affiliation(s)
- Matthäus Felsenstein
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Anne Blank
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Alexander D. Bungert
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Annett Mueller
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Adnan Ghori
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Olga Rung
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Thomas Broggini
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Kati Turkowski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Lea Scherschinski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Jonas Raggatz
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
- Department of Neurosurgery Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-560-002
| | - Susan Brandenburg
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| |
Collapse
|
7
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Multifaceted Functional Role of Semaphorins in Glioblastoma. Int J Mol Sci 2019; 20:ijms20092144. [PMID: 31052281 PMCID: PMC6539029 DOI: 10.3390/ijms20092144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.
Collapse
|
9
|
Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio e Spohr TCL, Matias D, de Camargo Magalhães ES, do Amaral RF, da Rosa BG, Grimaldi I, Leser FS, Janeiro JM, Macharia L, Wanjiru C, Pereira CM, Moura-Neto V, Freitas C, Lima FRS. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019; 5:46-65. [DOI: 10.1016/j.trecan.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
10
|
Brandenburg S, Turkowski K, Mueller A, Radev YT, Seidlitz S, Vajkoczy P. Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunol Res 2018; 65:757-768. [PMID: 28367602 DOI: 10.1007/s12026-017-8915-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme is characterized by high accumulation of microglia/macrophages. The function of these tumor-infiltrating myeloid cells is not sufficiently elucidated. Therefore, a better understanding of the precise immune cell composition and function in brain tumors is required. In rodent glioma models, two different myeloid cell populations exist, determined by the expression level of CD45, namely CD11b+CD45low and CD11b+CD45high. Previous analyses of cytokine and marker expression profiles were almost exclusively performed on the entire myeloid cell fraction. Consequently, described pro- and anti-tumoral characteristics were not assigned to the evident subpopulations. In the present study, we used a syngeneic glioblastoma mouse model and subsequent flow cytometric analyses to demonstrate the distinct properties of CD11b+CD45high and the CD11b+CD45low cells. First, the majority of CD11b+CD45high cells expressed high level of GR1 and around 6% of IL10 representing in part features of myeloid-derived suppressor cells, while the CD11b+CD45low fraction displayed no upregulation of these molecules. Second, we detected that specifically the CD11b+CD45high population showed antigen-presenting, co-stimulatory, and inflammatory features. Here, we identified up to 80% of MHCII and approximately 50% of CD86 and TNFα-expressing cells. Investigation of MHCI and CD80 revealed a moderate upregulation. By contrast, in the CD11b+CD45low cell fraction, merely MHCII and TNFα were marginally overexpressed. In summary, these data emphasize the specific phenotype of CD11b+CD45high cells in glioma with suppressive as well as pro-inflammatory characteristics whereas the CD11b+CD45low cells were almost unaffected. Hence, primarily, the subpopulation consisting of CD45high-expressing cells is activated by the tumor and should be considered as therapeutic target.
Collapse
Affiliation(s)
- Susan Brandenburg
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kati Turkowski
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Mueller
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yordan T Radev
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Seidlitz
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Turkowski K, Brandenburg S, Mueller A, Kremenetskaia I, Bungert AD, Blank A, Felsenstein M, Vajkoczy P. VEGF as a modulator of the innate immune response in glioblastoma. Glia 2017; 66:161-174. [DOI: 10.1002/glia.23234] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kati Turkowski
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Susan Brandenburg
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Annett Mueller
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Alexander D. Bungert
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Anne Blank
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Matthäus Felsenstein
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
- Department of Neurosurgery; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1; Berlin 10117 Germany
| |
Collapse
|
12
|
Zhang I, Alizadeh D, Liang J, Zhang L, Gao H, Song Y, Ren H, Ouyang M, Wu X, D’Apuzzo M, Badie B. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages. PLoS One 2016; 11:e0165118. [PMID: 27936099 PMCID: PMC5147798 DOI: 10.1371/journal.pone.0165118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/06/2016] [Indexed: 11/26/2022] Open
Abstract
Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors.
Collapse
Affiliation(s)
- Ian Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Darya Alizadeh
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Junling Liang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Hang Gao
- Department of Bone and Joint Surgery, No.1 Hospital of Jilin University, Changchun, Jilin Province, P. R. China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, P. R. China
| | - Hui Ren
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, P. R. China
| | - Mao Ouyang
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha Hunan, P. R. China
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Massimo D’Apuzzo
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wang Y, Liu T, Yang N, Xu S, Li X, Wang D. Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep 2016; 36:3522-3528. [DOI: 10.3892/or.2016.5171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
|
14
|
Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella-Branger D, Rougon G, Malissen M, Debarbieux F. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep 2016; 6:26381. [PMID: 27193333 PMCID: PMC4872227 DOI: 10.1038/srep26381] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory cells, an integral component of tumor evolution, are present in Glioblastomas multiforme (GBM). To address the cellular basis and dynamics of the inflammatory microenvironment in GBM, we established an orthotopic syngenic model by grafting GL261-DsRed cells in immunocompetent transgenic LysM-EGFP//CD11c-EYFP reporter mice. We combined dynamic spectral two-photon imaging with multiparametric cytometry and multicolor immunostaining to characterize spatio-temporal distribution, morphology and activity of microglia and blood-derived infiltrating myeloid cells in live mice. Early stages of tumor development were dominated by microglial EYFP+ cells invading the tumor, followed by massive recruitment of circulating LysM-EGFP+ cells. Fluorescent invading cells were conventional XCR1+ and monocyte-derived dendritic cells distributed in subpopulations of different maturation stages, located in different areas relative to the tumor core. The lethal stage of the disease was characterized by the progressive accumulation of EGFP+/EYFP+ monocyte-derived dendritic cells. This local phenotypic regulation of monocyte subtypes marked a transition in the immune response.
Collapse
Affiliation(s)
- Clément Ricard
- Institut des Neurosciences de la Timone, Marseille, Aix-Marseille Université and CNRS UMR7289, France.,Services d'Anatomie Pathologique-Neuropathologique et de Pharmacie, Assistance Publique - Hopitaux de Marseille, Marseille, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France.,Centre de Recherche en Oncobiologie et Oncopharmacologie, INSERM UMR911 and Aix-Marseille Université, Marseille, France
| | - Aurélie Tchoghandjian
- Services d'Anatomie Pathologique-Neuropathologique et de Pharmacie, Assistance Publique - Hopitaux de Marseille, Marseille, France.,Centre de Recherche en Oncobiologie et Oncopharmacologie, INSERM UMR911 and Aix-Marseille Université, Marseille, France
| | - Hervé Luche
- Centre d'Immunophénomique, Aix-Marseille Université UM2, INSERM, US012, CNRS UMS3367, Marseille, France
| | - Pierre Grenot
- Centre d'Immunophénomique, Aix-Marseille Université UM2, INSERM, US012, CNRS UMS3367, Marseille, France
| | - Dominique Figarella-Branger
- Services d'Anatomie Pathologique-Neuropathologique et de Pharmacie, Assistance Publique - Hopitaux de Marseille, Marseille, France.,Centre de Recherche en Oncobiologie et Oncopharmacologie, INSERM UMR911 and Aix-Marseille Université, Marseille, France
| | - Geneviève Rougon
- Institut des Neurosciences de la Timone, Marseille, Aix-Marseille Université and CNRS UMR7289, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France
| | - Marie Malissen
- Centre d'Immunophénomique, Aix-Marseille Université UM2, INSERM, US012, CNRS UMS3367, Marseille, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille, France
| | - Franck Debarbieux
- Institut des Neurosciences de la Timone, Marseille, Aix-Marseille Université and CNRS UMR7289, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille Université, Marseille, France
| |
Collapse
|
15
|
Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, Schoen MK, McCracken MN, Majeti R, Weissman I, Mitra SS, Cheshier SH. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. PLoS One 2016; 11:e0153550. [PMID: 27092773 PMCID: PMC4836698 DOI: 10.1371/journal.pone.0153550] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo.
Collapse
Affiliation(s)
- Michael Zhang
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gregor Hutter
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suzana A. Kahn
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tej D. Azad
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sharareh Gholamin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea Y. Xu
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Achal S. Achrol
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chase Richard
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Pia Sommerkamp
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew Kenneth Schoen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
| | - Melissa N. McCracken
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ravi Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Siddhartha S. Mitra
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (SHC); (SSM)
| | - Samuel H. Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (SHC); (SSM)
| |
Collapse
|
16
|
van der Vos KE, Abels ER, Zhang X, Lai C, Carrizosa E, Oakley D, Prabhakar S, Mardini O, Crommentuijn MHW, Skog J, Krichevsky AM, Stemmer-Rachamimov A, Mempel TR, El Khoury J, Hickman SE, Breakefield XO. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 2016; 18:58-69. [PMID: 26433199 PMCID: PMC4677420 DOI: 10.1093/neuonc/nov244] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. METHODS Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. RESULTS Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. CONCLUSIONS Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs.
Collapse
Affiliation(s)
- Kristan E van der Vos
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Xuan Zhang
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Charles Lai
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Esteban Carrizosa
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Derek Oakley
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Shilpa Prabhakar
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Osama Mardini
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Matheus H W Crommentuijn
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Johan Skog
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Anna M Krichevsky
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Anat Stemmer-Rachamimov
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Thorsten R Mempel
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Joseph El Khoury
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Suzanne E Hickman
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts (K.E.v.d.V., E.R.A., X.Z., C.L., S.P., O.M., M.H.W.C., J.S., X.O.B.); Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts (E.C., T.R.M., J.E.K., S.E.H.); Neuropathology Service, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts (D.O., A.S-R.); Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K.); Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands (K.E.v.d.V.)
| |
Collapse
|
17
|
Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 2015; 30:1357-65. [PMID: 25794592 DOI: 10.1007/s10103-015-1742-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Gold-based nanoparticles have been used in a number of therapeutic and diagnostic applications. The purpose of this study was to investigate the efficacy of gold-silica nanoshells (AuNS) in photothermal therapy (PTT) of rat gliomas. Rat alveolar macrophages (Ma) were used as nanoparticle delivery vectors. Uptake of AuNS (bare and PEGylated) was investigated in Ma. AuNS were incubated with Ma for 24 h. Phase contrast microscopy was used to visualize the distribution of loaded Ma in three-dimensional glioma spheroids. PTT efficacy was evaluated for both empty (Ma) and AuNS-loaded Ma (Ma(NS)) in both monolayers and spheroids consisting of C6 rat glioma cells and Ma. Monolayers/spheroids were irradiated for 5 min with light from an 810-nm diode laser at irradiances ranging from 7 to 28 W cm(-2). Monolayer survival was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay while PTT efficacy in spheroids was determined from growth kinetics and live/dead fluorescence microscopy. PTT efficacy was investigated in vivo using a Sprague-Dawley rat glioma model. Five rats received direct intracranial injection of a mixture of 10(4) C6 glioma cells and, 2 days later, an equal number of Ma(NS). Three rats received laser treatment (810 nm; 10 min; 1 W) while the remaining two served as controls (no laser treatment). The uptake ratio of bare to PEGylated AuNS by Ma was 4:1. A significant photothermal effect was observed in vitro, albeit at relatively high radiant exposures (2.1-4.2 kJ cm(-2)). PTT proved effective in vivo in preventing or delaying tumor development in the PTT-treated animals.
Collapse
|
18
|
Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 2014; 76:39-59. [PMID: 25016083 DOI: 10.1016/j.addr.2014.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/18/2022]
Abstract
One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors.
Collapse
|
19
|
Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells. ASN Neuro 2014; 6:171-83. [PMID: 24689533 PMCID: PMC4013688 DOI: 10.1042/an20130045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b), with up-regulation of iNOS (inducible nitric oxide synthase), ARG (arginase) and IL (interleukine)-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide)–IFNγ (interferon γ) conditioned media] and C-CM (control-conditioned media) induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well. We have characterized the influence of glioma-soluble factors on microglial, comparing the effects of media harvested under-basal conditions to those of media obtained after inducing a pro-inflammatory activation in glioma cells. Our data suggest that microglia might exert different effects on glioma depending on the stage of disease.
Collapse
|
20
|
Dejaegher J, Van Gool S, De Vleeschouwer S. Dendritic cell vaccination for glioblastoma multiforme: review with focus on predictive factors for treatment response. Immunotargets Ther 2014; 3:55-66. [PMID: 27471700 PMCID: PMC4918234 DOI: 10.2147/itt.s40121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive type of primary brain cancer. Since median overall survival with multimodal standard therapy is only 15 months, there is a clear need for additional effective and long-lasting treatments. Dendritic cell (DC) vaccination is an experimental immunotherapy being tested in several Phase I and Phase II clinical trials. In these trials, safety and feasibility have been proven, and promising clinical results have been reported. On the other hand, it is becoming clear that not every GBM patient will benefit from this highly personalized treatment. Defining the subgroup of patients likely to respond to DC vaccination will position this option correctly amongst other new GBM treatment modalities, and pave the way to incorporation in standard therapy. This review provides an overview of GBM treatment options and focuses on the currently known prognostic and predictive factors for response to DC vaccination. In this way, it will provide the clinician with the theoretical background to refer patients who might benefit from this treatment.
Collapse
Affiliation(s)
| | - Stefaan Van Gool
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
21
|
Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013; 2013:264124. [PMID: 23864876 PMCID: PMC3707269 DOI: 10.1155/2013/264124] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023]
Abstract
Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.
Collapse
|