1
|
Liu X, Li Z, Tong J, Wu F, Jin H, Liu K. Characterization of the Expressions and m6A Methylation Modification Patterns of mRNAs and lncRNAs in a Spinal Cord Injury Rat Model. Mol Neurobiol 2024:10.1007/s12035-024-04297-z. [PMID: 38907070 DOI: 10.1007/s12035-024-04297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease with no effective treatment strategy presently due to its complex pathogenic mechanism. N6-methyladenosine (m6A) methylation modification plays an important role in diverse physiological and pathological processes. However, our understanding of the potential mechanisms of messenger RNA (mRNA) and long non-coding RNAs (lncRNA) m6A methylation in SCI is currently limited. Here, comprehensive m6A profiles and gene expression patterns of mRNAs and lncRNAs in spinal cord tissues after SCI were identified using microarray analysis of immunoprecipitated methylated RNAs. A total of 3745 mRNAs (2343 hypermethylated and 1402 hypomethylated) and 738 lncRNAs (488 hypermethylated and 250 hypomethylated) were differentially methylated with m6A modifications in the SCI and sham rats. Functional analysis revealed that differentially m6A-modified mRNAs were mainly involved in immune inflammatory response, nervous system development, and focal adhesion pathway. In contrast, differentially m6A-modified lncRNAs were mainly related to antigen processing and presentation, the apoptotic process, and the mitogen-activated protein kinases (MAPKs) signaling pathway. In addition, combined analysis of m6A methylation and RNA expression results revealed that 1636 hypermethylated mRNAs and 262 hypermethylated lncRNAs were up-regulated, and 1571 hypomethylated mRNAs and 204 lncRNAs were down-regulated. Furthermore, we validated the altered levels of m6A methylation and RNA expression of five mRNAs (CD68, Gpnmb, Lilrb4, Lamp5, and Snap25) and five lncRNAs (XR_360518, uc.393 + , NR_131064, uc.280 - , and XR_597251) using MeRIP-qPCR and qRT-PCR. This study expands our understanding of the molecular mechanisms underlying m6A modification in SCI and provides novel insights to promote functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, Guangdong, China
| | - Zhiling Li
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Juncheng Tong
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Fan Wu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Hui Jin
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
- Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Kaiqing Liu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
3
|
Bridging the electrode-neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear. Acta Biomater 2022; 151:360-378. [PMID: 36007779 DOI: 10.1016/j.actbio.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Although cochlear implant (CI) technology has allowed for the partial restoration of hearing over the last few decades, persistent challenges (e.g., poor performance in noisy environments and limited ability to decode intonation and music) remain. The "electrode-neuron gap" is inherent to these challenges and poses the most significant obstacle to advancing past the current plateau in CI performance. We propose the development of a "neuro-regenerative nexus"-a biological interface that doubly preserves native spiral ganglion neurons (SGNs) while precisely directing the growth of neurites arising from transplanted human pluripotent stem cell (hPSC)-derived otic neuronal progenitors (ONPs) toward the native SGN population. We hypothesized that the Polyhedrin Delivery System (PODS®-recombinant human brain-derived neurotrophic factor [rhBDNF]) could stably provide the adequate BDNF concentration gradient to hPSC-derived late-stage ONPs to facilitate otic neuronal differentiation and directional neurite outgrowth. To test this hypothesis, a finite element model (FEM) was constructed to simulate BDNF concentration profiles generated by PODS®-rhBDNF based on initial concentration and culture device geometry. For biological validation of the FEM, cell culture experiments assessing survival, differentiation, neurite growth direction, and synaptic connections were conducted using a multi-chamber microfluidic device. We were able to successfully generate the optimal BDNF concentration gradient to enable survival, neuronal differentiation toward SGNs, directed neurite extension of hPSC-derived SGNs, and synaptogenesis between two hPSC-derived SGN populations. This proof-of-concept study provides a step toward the next generation of CI technology. STATEMENT OF SIGNIFICANCE: Our study demonstrates that the generation of in vitro neurotrophin concentration gradients facilitates survival, neuronal differentiation toward auditory neurons, and directed neurite extension of human pluripotent stem cell-derived auditory neurons. These findings are indispensable to designing a bioactive cochlear implant, in which stem cell-derived neurons are integrated into a cochlear implant electrode strip, as the strategy will confer directional neurite growth from the transplanted cells in the inner ear. This study is the first to present the concept of a "neuro-regenerative nexus" congruent with a bioactive cochlear implant to eliminate the electrode-neuron gapthe most significant barrier to next-generation cochlear implant technology.
Collapse
|
4
|
Pinelli F, Pizzetti F, Veneruso V, Petillo E, Raghunath M, Perale G, Veglianese P, Rossi F. Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines 2022; 10:biomedicines10071673. [PMID: 35884981 PMCID: PMC9313204 DOI: 10.3390/biomedicines10071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Valeria Veneruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Emilia Petillo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| |
Collapse
|
5
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
6
|
Activation of Three Major Signaling Pathways After Endurance Training and Spinal Cord Injury. Mol Neurobiol 2021; 59:950-967. [PMID: 34811634 PMCID: PMC8857148 DOI: 10.1007/s12035-021-02628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023]
Abstract
We aimed to investigate the effects of endurance training on expression of growth factors (GFs) and stimulation of neurotrophin-dependent signaling pathways (PI3k/Akt, PLCγ/PKC, PLCγ/CAMKII, Ras-Erk1/2 and Rac1-Cdc42) responsible for neuroplasticity, neuroregeneration, survival and growth after spinal cord injury (SCI). Wistar rats were divided into four groups: (i) intact controls; (ii) 6 weeks of endurance training; (iii) SCI; (iv) pre-training + SCI. The animals survived for 6 weeks after SCI. Firstly, endurance training markedly upregulated mRNA expression and protein levels (up to four times) of growth factors (BDNF, GDNF) and their receptors (TrkB, Gfrα) in low thoracic segments (Th8–Th10) compared to levels in untrained animals. Secondly, we found that spontaneous neuroplasticity seen in the SCI alone group was GF-specific and was activated through both PLCγ-PKC and PLC-CAMKII signaling pathways. In addition, training prior to SCI markedly increased the activity of PLCγ-PKC signaling at both transcript and protein levels at and around the lesion site. Similar effects were seen in expression of PI3k/Akt and Ras/Erk1/2 signaling responsible for cell survival and regeneration. Thirdly, rats which underwent physical activity prior to SCI were more active and had significantly better neurological scores at the 14th and 42nd days of survival. These results suggest that regular physical activity could play an important role after SCI, as it maintains increased expression of GFs in spinal cord tissue 6 weeks post-SCI. The BDNF- and/or BDNF + GDNF-dependent signaling pathways were significantly affected in pre-trained SCI animals. In contrast, GDNF-dependent Rac1-Cdc42 signaling was not involved in training-affected SCI response.
Collapse
|
7
|
Stem Cell Secretome for Spinal Cord Repair: Is It More than Just a Random Baseline Set of Factors? Cells 2021; 10:cells10113214. [PMID: 34831436 PMCID: PMC8625005 DOI: 10.3390/cells10113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Hundreds of thousands of people suffer spinal cord injuries each year. The experimental application of stem cells following spinal cord injury has opened a new era to promote neuroprotection and neuroregeneration of damaged tissue. Currently, there is great interest in the intravenous administration of the secretome produced by mesenchymal stem cells in acute or subacute spinal cord injuries. However, it is important to highlight that undifferentiated neural stem cells and induced pluripotent stem cells are able to adapt to the damaged environment and produce the so-called lesion-induced secretome. This review article focuses on current research related to the secretome and the lesion-induced secretome and their roles in modulating spinal cord injury symptoms and functional recovery, emphasizing different compositions of the lesion-induced secretome in various models of spinal cord injury.
Collapse
|
8
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
9
|
Yakout DW, Shree N, Mabb AM. Effect of pharmacological manipulations on Arc function. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100013. [PMID: 34909648 PMCID: PMC8663979 DOI: 10.1016/j.crphar.2020.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a brain-enriched immediate early gene that regulates important mechanisms implicated in learning and memory. Arc levels are controlled through a balance of induction and degradation in an activity-dependent manner. Arc further undergoes multiple post-translational modifications that regulate its stability, localization and function. Recent studies demonstrate that these features of Arc can be pharmacologically manipulated. In this review, we discuss some of these compounds, with an emphasis on drugs of abuse and psychotropic drugs. We also discuss inflammatory states that regulate Arc.
Collapse
Affiliation(s)
- Dina W. Yakout
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
11
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
12
|
Batty NJ, Torres-Espín A, Vavrek R, Raposo P, Fouad K. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Exp Neurol 2019; 324:113136. [PMID: 31786212 DOI: 10.1016/j.expneurol.2019.113136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abel Torres-Espín
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Hassanpour Golakani M, Mohammad MG, Li H, Gamble J, Breit SN, Ruitenberg MJ, Brown DA. MIC-1/GDF15 Overexpression Is Associated with Increased Functional Recovery in Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3410-3421. [PMID: 31232176 DOI: 10.1089/neu.2019.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) has devastating consequences, with limited therapeutic options; therefore, improving its functional outcome is a major goal. The outcome of SCI is contributed to by neuroinflammation, which may be a target for improved recovery and quality of life after injury. Macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15) has been identified as a potential novel therapy for central nervous system (CNS) injury because it is an immune regulatory cytokine with neurotrophic properties. Here we used MIC-1/GDF15 knockout (KO) and overexpressing/transgenic (Tg) and wild type (WT) animals to explore its putative therapeutic benefits in a mouse model of contusive SCI. MIC-1/GDF15 Tg mice had superior locomotor recovery and reduced secondary tissue loss at 28 days compared with their KO and WT counterparts. Overexpression of MIC-1/GDF15 coincided with increased expression of monocyte chemoattractant protein-1 (MCP-1)/C-C Motif Chemokine Ligand 2 (CCL2) at the lesion site (28 days post-SCI) and enhanced recruitment of inflammatory cells to the injured spinal cord. This inflammatory cellular infiltrate included an increased frequency of macrophages and dendritic cells (DCs) that mostly preceded recruitment of cluster of differentiation (CD)4+ and CD8+ T cells. Collectively, our findings suggest hat MIC-1/GDF15 is associated with beneficial changes in the clinical course of SCI that are characterized by altered post-injury inflammation and improved functional outcome. Further investigation of MIC-1/GDF15 as a novel therapeutic target for traumatic SCI appears warranted.
Collapse
Affiliation(s)
- Masoud Hassanpour Golakani
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Mohammad G Mohammad
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates. Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hui Li
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Joanne Gamble
- The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Samuel N Breit
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David A Brown
- St. Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital and University of New South Wales (UNSW), Sydney, New South Wales, Australia.,The Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Allahdadi KJ, de Santana TA, Santos GC, Azevedo CM, Mota RA, Nonaka CK, Silva DN, Valim CXR, Figueira CP, dos Santos WLC, do Espirito Santo RF, Evangelista AF, Villarreal CF, dos Santos RR, de Souza BSF, Soares MBP. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 2019; 10:146. [PMID: 31113444 PMCID: PMC6530133 DOI: 10.1186/s13287-019-1223-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Survival and therapeutic actions of bone marrow-derived mesenchymal stem cells (BMMSCs) can be limited by the hostile microenvironment present during acute spinal cord injury (SCI). Here, we investigated whether BMMSCs overexpressing insulin-like growth factor 1 (IGF-1), a cytokine involved in neural development and injury repair, improved the therapeutic effects of BMMSCs in SCI. METHODS Using a SCI contusion model in C57Bl/6 mice, we transplanted IGF-1 overexpressing or wild-type BMMSCs into the lesion site following SCI and evaluated cell survival, proliferation, immunomodulation, oxidative stress, myelination, and functional outcomes. RESULTS BMMSC-IGF1 transplantation was associated with increased cell survival and recruitment of endogenous neural progenitor cells compared to BMMSC- or saline-treated controls. Modulation of gene expression of pro- and anti-inflammatory mediators was observed after BMMSC-IGF1 and compared to saline- and BMMSC-treated mice. Treatment with BMMSC-IGF1 restored spinal cord redox homeostasis by upregulating antioxidant defense genes. BMMSC-IGF1 protected against SCI-induced myelin loss, showing more compact myelin 28 days after SCI. Functional analyses demonstrated significant gains in BMS score and gait analysis in BMMSC-IGF1, compared to BMMSC or saline treatment. CONCLUSIONS Overexpression of IGF-1 in BMMSC resulted in increased cell survival, immunomodulation, myelination, and functional improvements, suggesting that IGF-1 facilitates the regenerative actions of BMMSC in acute SCI.
Collapse
Affiliation(s)
- Kyan James Allahdadi
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Thaís Alves de Santana
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Girlaine Café Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Carine Machado Azevedo
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
| | - Roberta Alves Mota
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Carolina Kymie Nonaka
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Daniela Nascimento Silva
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | - Cláudio Pereira Figueira
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
| | - Washington Luis Conrado dos Santos
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Renan Fernandes do Espirito Santo
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | | | - Cristiane Flora Villarreal
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Ricardo Ribeiro dos Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
| | - Bruno Solano Freitas de Souza
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
| |
Collapse
|
15
|
Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front Neurol 2019; 10:27. [PMID: 30761068 PMCID: PMC6361789 DOI: 10.3389/fneur.2019.00027] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Spinal Cord Injury (SCI) is a major challenge in Neurotrauma research. Complex pathophysiological processes take place immediately after the injury and later on as the chronic injury develops. Moreover, SCI is usually accompanied by traumatic injuries because the most common modality of injury is road traffic accidents and falls. Patients develop significant permanent neurological deficits that depend on the extent and the location of the injury itself and in time they develop further neurological and body changes that may risk their mere survival. In our review, we explored the recent updates with regards to SCI biomarkers. We observed two methods that may lead to the appearance of biomarkers for SCI. First, during the first few weeks following the injury the Blood Spinal Cord Barrier (BSCB) disruption that releases several neurologic structure components from the injured tissue. These components find their way to Cerebrospinal Fluid (CSF) and the systemic circulation. Also, as the injury develops several components of the pathological process are expressed or released such as in neuroinflammation, apoptosis, reactive oxygen species, and excitotoxicity sequences. Therefore, there is a growing interest in examining any correlations between these components and the degrees or the outcomes of the injury. Additionally, some of the candidate biomarkers are theorized to track the progressive changes of SCI which offers an insight on the patients' prognoses, potential-treatments-outcomes assessment, and monitoring the progression of the complications of chronic SCI such as Pressure Ulcers and urinary dysfunction. An extensive literature review was performed covering literature, published in English, until February 2018 using the Medline/PubMed database. Experimental and human studies were included and titles, PMID, publication year, authors, biomarkers studies, the method of validation, relationship to SCI pathophysiology, and concluded correlation were reported. Potential SCI biomarkers need further validation using clinical studies. The selection of the appropriate biomarker group should be made based on the stage of the injuries, the accompanying trauma and with regards to any surgical, or medical interference that might have been done. Additionally, we suggest testing multiple biomarkers related to the several pathological changes coinciding to offer a more precise prediction of the outcome.
Collapse
Affiliation(s)
- Ahmed A. Albayar
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Abigail Roche
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Przemyslaw Swiatkowski
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Antar
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nouran Ouda
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Emara
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Douglas H. Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Ali K. Ozturk
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Basem I. Awad
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Zhou X, Shi G, Fan B, Cheng X, Zhang X, Wang X, Liu S, Hao Y, Wei Z, Wang L, Feng S. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomedicine 2018; 13:6265-6277. [PMID: 30349249 PMCID: PMC6186894 DOI: 10.2147/ijn.s175914] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) is a traumatic disease of the central nervous system, accompanied with high incidence and high disability rate. Tissue engineering scaffold can be used as therapeutic systems to provide effective repair for SCI. Purpose In this study, a novel tissue engineering scaffold has been synthesized in order to explore the effect of nerve repair on SCI. Patients and methods Polycaprolactone (PCL) scaffolds loaded with actived Schwann cells (ASCs) and induced pluripotent stem cells -derived neural stem cells (iPSC-NSCs), a combined cell transplantation strategy, were prepared and characterized. The cell-loaded PCL scaffolds were further utilized for the treatment of SCI in vivo. Histological observation, behavioral evaluation, Western-blot and qRT-PCR were used to investigate the nerve repair of Wistar rats after scaffold transplantation. Results The iPSCs displayed similar characteristics to embryonic stem cells and were efficiently differentiated into neural stem cells in vitro. The obtained PCL scaffolds werê0.5 mm in thickness with biocompatibility and biodegradability. SEM results indicated that the ASCs and (or) iPS-NSCs grew well on PCL scaffolds. Moreover, transplantation reduced the volume of lesion cavity and improved locomotor recovery of rats. In addition, the degree of spinal cord recovery and remodeling maybe closely related to nerve growth factor and glial cell-derived neurotrophic factor. In summary, our results demonstrated that tissue engineering scaffold treatment could increase tissue remodeling and could promote motor function recovery in a transection SCI model. Conclusion This study provides preliminary evidence for using tissue engineering scaffold as a clinically viable treatment for SCI in the future.
Collapse
Affiliation(s)
- XianHu Zhou
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China,
| | - GuiDong Shi
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China,
| | - BaoYou Fan
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - Xin Cheng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - XiaoLei Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - Xu Wang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - Shen Liu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - Yan Hao
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - ZhiJian Wei
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| | - LianYong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China,
| | - ShiQing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People's Republic of China,
| |
Collapse
|
17
|
Collagen-Binding Hepatocyte Growth Factor (HGF) alone or with a Gelatin- furfurylamine Hydrogel Enhances Functional Recovery in Mice after Spinal Cord Injury. Sci Rep 2018; 8:917. [PMID: 29343699 PMCID: PMC5772669 DOI: 10.1038/s41598-018-19316-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a significant challenge. Hepatocyte growth factor (HGF) is a multipotent neurotrophic and neuroregenerative factor that can be beneficial for the treatment of SCI. However, immobilized HGF targeted to extracellular matrix may be more effective than diffusible, unmodified HGF. In this study, we evaluated the neurorestorative effects of an engineered HGF with a collagen biding domain (CBD-HGF). CBD-HGF remained in the spinal cord for 7 days after a single administration, while unmodified HGF was barely seen at 1 day. When a gelatin-furfurylamine (FA) hydrogel was applied on damaged spinal cord as a scaffold, CBD-HGF was retained in gelatin-FA hydrogel for 7 days, whereas HGF had faded by 1 day. A single administration of CBD-HGF enhanced recovery from spinal cord compression injury compared with HGF, as determined by motor recovery, and electrophysiological and immunohistochemical analyses. CBD-HGF alone failed to improve recovery from a complete transection injury, however CBD-HGF combined with gelatin-FA hydrogel promoted endogenous repair and recovery more effectively than HGF with hydrogel. These results suggest that engineered CBD-HGF has superior therapeutic effects than naïve HGF. CBD-HGF combined with hydrogel scaffold may be promising for the treatment of serious SCI.
Collapse
|
18
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Galieva LR, Mukhamedshina YO, Arkhipova SS, Rizvanov AA. Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies. Front Pharmacol 2017; 8:628. [PMID: 28951720 PMCID: PMC5599779 DOI: 10.3389/fphar.2017.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
At present there is no effective treatment of pathologies associated with the death of neurons and glial cells which take place as a result of physical trauma or ischemic lesions of the nervous system. Thus, researchers have high hopes for a treatment based on the use of stem cells (SC), which are potentially able to replace dead cells and synthesize neurotrophic factors and other molecules that stimulate neuroregeneration. We are often faced with ethical issues when selecting a source of SC. In addition to precluding these, human umbilical cord blood (hUCB) presents a number of advantages when compared with other sources of SC. In this review, we consider the key characteristics of hUCB, the results of various studies focused on the treatment of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis), ischemic (stroke) and traumatic injuries of the nervous system and the molecular mechanisms of hUCB-derived mononuclear and stem cells.
Collapse
Affiliation(s)
- Luisa R Galieva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical UniversityKazan, Russia
| | - Svetlana S Arkhipova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
20
|
Wang X, Ju S, Chen S, Gao W, Ding J, Wang G, Cao H, Tian H, Li X. Effect of Electro-Acupuncture on Neuroplasticity of Spinal Cord-Transected Rats. Med Sci Monit 2017; 23:4241-4251. [PMID: 28865235 PMCID: PMC5592974 DOI: 10.12659/msm.903056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of electro-acupuncture (EA) on neuroplasticity associated with the expressions of neurotrophic factors (NTFs) and their receptors in rats subjected to spinal cord transection (SCT). MATERIAL AND METHODS A total of 144 rats were randomly divided into 3 groups (n=48 per group): sham-operated group, SCT group, and EA (electro-acupuncture) group. Rats in SCT and EA groups received spinal cord transection at T10-T11 vertebral levels. Then, EA group rats received EA treatment. Reverse transcription polymerase chain reaction was used to detect NTFs and receptors at the mRNA level. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect the expression of NTFs and their receptors. Basso, Beattie, Bresnahan (BBB) scores and cortical somato-sensory evoked potentials (CSEP) were evaluated to assess the recovery of motor and sensory functions. We also measured BDA (Biotinylated dextran amine) axonal tracing, CGRP (Calcitonin gene-related peptide), GAP-43 (Growth-associated protein), and synaptophysin immunohistochemistry (IHC). RESULTS EA treatment led to obvious improvement in hindlimb locomotor and sensory functions. CNTF, FGF-2, and TrkB mRNA were significantly upregulated, while NGF, PDGF, TGF-b1, IGF-1, TrkA, and TrkC mRNA were concomitantly downregulated in the caudal spinal segment (CSS) following EA. Immunohistochemistry demonstrated an increased number of CGRP fibers, GAP-43, and synaptophysin profiles in the CSS in the EA rats. CONCLUSIONS EA may promote the recovery of neuroplasticity in rats subjected to SCT. This could be attributed to the systematic regulation of NTFs and their receptors after EA.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Wenwei Gao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Gan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Heli Cao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Xiaoli Li
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
21
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
22
|
Tu WZ, Jiang SH, Zhang L, Li SS, Gu PP, He R, Hu J, Gao LP, Sun QS. Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med 2017:10.1007/s11655-017-2968-9. [PMID: 28762132 DOI: 10.1007/s11655-017-2968-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the effects of electro-acupuncture (EA) at Governor Vessel (GV) on the locomotor function in spinal cord injury (SCI) rats and explore the underlying mechanism. METHODS Thirtytwo male Sprague-Dawley rats were randomly divided into four groups namely: the sham group (with sham operation); the untreated group (without treatment after spinal cord impact); the EA-1 group [EA applied at Baihui (GV 20) and Fengfu (GV 16) after spinal cord impact] and the EA-2 group [with EA applied at Dazhui (GV 14) and Mingmen (GV 4) after spinal cord impact]. Real-time quantitative-polymerase chain reaction (RT-PCR) and Western Blotting were used to assess changes in the mRNA and protein expression levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) at 7 weeks following EA administration. In addition, the Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale was assessed at 1 day, 1 week, 3 weeks and 7 weeks post-injury. RESULTS The results showed that EA stimulation induced neuroprotective effects after SCI correlated with the up-regulation of BDNF and NT-3 (P<0.05). Furthermore, EA stimulation at GV 14 and GV 4 could significantly promote the recovery of locomotor function and this may be linked to the up-regulation of BDNF and NT-3 (P<0.05). CONCLUSIONS EA treatment applied at GV acupoints either within the injury site or adjacent undamaged regions near the brain can improve functional recovery, which may be correlated with the upregulation of BDNF and NT-3. In addition, it would be more effective to administer EA at GV 14 and GV 4 near the injury site of the SCI rats.
Collapse
Affiliation(s)
| | - Song-He Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li Zhang
- Department of Rehabilitation, Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, China
| | - Si-Si Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Peng-Peng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Rong He
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jie Hu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li-Ping Gao
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qiang-San Sun
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
23
|
Zilony N, Rosenberg M, Holtzman L, Schori H, Shefi O, Segal E. Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. J Control Release 2017; 257:51-59. [DOI: 10.1016/j.jconrel.2016.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
|
24
|
Abstract
Spinal cord injury (SCI) represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS) impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs) has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.
Collapse
|
25
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
26
|
Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 2016; 652:56-63. [PMID: 27989572 DOI: 10.1016/j.neulet.2016.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/23/2023]
Abstract
Injured neurons in the adult mammalian central nervous system (CNS) have a very limited capacity for axonal regeneration and neurite outgrowth. This inability to grow new axons or to regrow injured axons is due to the presence of molecules that inhibit axonal growth, and age related changes in the neuron's innate growth capabilities. Available levels of cAMP are thought to have an important role in linking both of these factors. Elevated levels of cAMP in the developing nervous system are important for the guidance and stability of growth cones. As the nervous system matures, cAMP levels decline and the growth promoting effects of cAMP diminish. It has frequently been demonstrated that increasing neuronal cAMP can enhance neurite growth and regeneration. Some methods used to increase cAMP include administration of cAMP agonists, conditioning lesions, or electrical stimulation. Furthermore, it has been proposed that multiple stages of cAMP induced growth exist, one directly caused by its downstream effector Protein Kinase A (PKA) and one caused by the eventual upregulation of gene transcription. Although the role cAMP in promoting axon growth is well accepted, the downstream pathways that mediate cAMP-mediated axonal growth are less clear. This is partly because various key studies that explored the link between PKA and axonal outgrowth relied on the PKA inhibitors KT5720 and H89. More recent studies have shown that both of these drugs are less specific than initially thought and can inhibit a number of other signalling molecules including the Exchange Protein Activated by cAMP (EPAC). Consequently, it has recently been shown that a number of intracellular signalling pathways previously attributed to PKA can now be attributed solely to activation of EPAC specific pathways, or the simultaneous co-activation of PKA and EPAC specific pathways. These new studies open the door to new potential treatments for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada.
| |
Collapse
|
27
|
Mandadi S, Leduc-Pessah H, Hong P, Ejdrygiewicz J, Sharples SA, Trang T, Whelan PJ. Modulatory and plastic effects of kinins on spinal cord networks. J Physiol 2016; 594:1017-36. [PMID: 26634895 DOI: 10.1113/jp271152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Inflammatory kinins are released following spinal cord injury or neurotrauma. The effects of these kinins on ongoing locomotor activity of central pattern generator networks are unknown. In the present study, kinins were shown to have short- and long-term effects on motor networks. The short-term effects included direct depolarization of interneurons and motoneurons in the ventral horn accompanied by modulation of transient receptor potential vanilloid 1-sensitive nociceptors in the dorsal horn. Over the long-term, we observed a bradykinin-mediated effect on promoting plasticity in the spinal cord. In a model of spinal cord injury, we observed an increase in microglia numbers in both the dorsal and ventral horn and, in a microglia cell culture model, we observed bradykinin-induced expression of glial-derived neurotrophic factor. ABSTRACT The expression and function of inflammatory mediators in the developing spinal cord remain poorly characterized. We discovered novel, short and long-term roles for the inflammatory nonapeptide bradykinin (BK) and its receptor bradykinin receptor B2 (B2R) in the neuromodulation of developing sensorimotor networks following a spinal cord injury (SCI), suggesting that BK participates in an excitotoxic cascade. Functional expression of B2R was confirmed by a transient disruptive action of BK on fictive locomotion generated by a combination of NMDA, 5-HT and dopamine. The role of BK in the dorsal horn nociceptive afferents was tested using spinal cord attached to one-hind-limb (HL) preparations. In the HL preparations, BK at a subthreshold concentration induced transient disruption of fictive locomotion only in the presence of: (1) noxious heat applied to the hind paw and (2) the heat sensing ion channel transient receptor potential vanilloid 1 (TRPV1), known to be restricted to nociceptors in the superficial dorsal horn. BK directly depolarized motoneurons and ascending interneurons in the ventrolateral funiculus. We found a key mechanism for BK in promoting long-term plasticity within the spinal cord. Using a model of neonatal SCI and a microglial cell culture model, we examined the role of BK in inducing activation of microglia and expression of glial-derived neurotrophic factor (GDNF). In the neonatal SCI model, we observed an increase in microglia numbers and increased GDNF expression restricted to microglia. In the microglia cell culture model, we observed a BK-induced increased expression of GDNF via B2R, suggesting a novel mechanism for BK spinal-mediated plasticity.
Collapse
Affiliation(s)
- S Mandadi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - H Leduc-Pessah
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P Hong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - J Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Trang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Chen S, Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S. Metabolic profile of injured human spinal cord determined using surface microdialysis. J Neurochem 2016; 139:700-705. [PMID: 27664973 DOI: 10.1111/jnc.13854] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022]
Abstract
The management of patients having traumatic spinal cord injury would benefit from understanding and monitoring of spinal cord metabolic states. We hypothesized that the metabolism of the injured spinal cord could be visualized using Kohonen self-organizing maps. Sixteen patients with acute, severe spinal cord injuries were studied. Starting within 72 h of the injury, and for up to a week, we monitored the injury site hourly for tissue glucose, lactate, pyruvate, glutamate, and glycerol using microdialysis as well as intraspinal pressure and spinal cord perfusion pressure. A Kohonen map, which is an unsupervised, self-organizing topology-preserving neural network, was used to analyze 3366 h of monitoring data. We first visualized the different spinal cord metabolic states. Our data show that the injured cord assumes one or more of four metabolic states. On the basis of their metabolite profiles, we termed these states near-normal, ischemic, hypermetabolic, and distal. We then visualized how patients' intraspinal pressure and spinal cord perfusion pressure affect spinal cord metabolism. This revealed that for more than 60% of the time, spinal cord metabolism is patient-specific; periods of high intraspinal pressure or low perfusion pressure are not associated with specific spinal cord metabolic patterns. Finally, we determined relationships between spinal cord metabolism and neurological status. Patients with complete deficits have shorter periods of near-normal spinal cord metabolic states (7 ± 4% vs. 58 ± 12%, p < 0.01, mean ± standard error) and more variable injury site metabolic responses (metabolism spread in 70 ± 11 vs. 40 ± 6 hexagons, p < 0.05), compared with patients who have incomplete neurological deficits. We conclude that Kohonen maps allow us to visualize the metabolic responses of the injured spinal cord and may thus aid us in treating patients with acute spinal cord injuries.
Collapse
Affiliation(s)
- Suliang Chen
- Academic Neurosurgery Unit, St. George's, University of London, London, UK
| | - Isaac Phang
- Academic Neurosurgery Unit, St. George's, University of London, London, UK
| | | | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, UK
| |
Collapse
|
29
|
Krityakiarana W, Sompup K, Jongkamonwiwat N, Mukda S, Pinilla FG, Govitrapong P, Phansuwan-Pujito P. Effects of melatonin on severe crush spinal cord injury-induced reactive astrocyte and scar formation. J Neurosci Res 2016; 94:1451-1459. [PMID: 27717042 DOI: 10.1002/jnr.23930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
The present work aimed at analyzing the effects of melatonin on scar formation after spinal cord injury (SCI). Upregulation of reactive astrocyte under SCI pathological conditions has been presented in several studies. It has been proved that the crucial factor in triggering this upregulation is proinflammatory cytokines. Moreover, scar formation is an important barrier to axonal regeneration through the lesion area. Melatonin plays an important role in reducing inflammation, but its effects on scar formation in the injured spinal cord remain unknown. Hence, we used the model of severe crush injury in mice to investigate the effects of melatonin on scar formation. Mice were randomly separated into four groups; SCI, SCI+Melatonin 1 (single dose), SCI+Melatonin 14 (14 daily doses), and control. Melatonin was administered by intraperitoneal injection (10 mg/kg) after injury. Immunohistochemical analysis, Western blot, and behavioral evaluation were used to explore the effects of melatonin after SCI for 14 days. The melatonin-treated mice presented higher expression of neuronal markers (P < 0.001). Remarkably, the inflammatory response appeared to be greatly reduced in the SCI+Melatonin 14 group (P < 0.001), which also displayed less scar formation (P < 0.05). These findings suggest that melatonin inhibits scar formation by acting on inflammatory cytokines after SCI. Overall, our results suggest that melatonin is a promising treatment strategy after SCI that deserves further investigation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Warin Krityakiarana
- Division of Physical Therapy, Faculty of Health Science, Srinakharinwirot University, Nakhon-Nayok, Thailand. .,Department of Rehabilitation for Persons with Disabilities, Ratchasuda College, Mahidol University, Nakhonpathom, Thailand.
| | - Kamonrapat Sompup
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Nopporn Jongkamonwiwat
- Division of Physical Therapy, Faculty of Health Science, Srinakharinwirot University, Nakhon-Nayok, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Fernando Gomez Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand.,Center for Neuroscience and Department for Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
30
|
Breen BA, Kraskiewicz H, Ronan R, Kshiragar A, Patar A, Sargeant T, Pandit A, McMahon SS. Therapeutic Effect of Neurotrophin-3 Treatment in an Injectable Collagen Scaffold Following Rat Spinal Cord Hemisection Injury. ACS Biomater Sci Eng 2016; 3:1287-1295. [DOI: 10.1021/acsbiomaterials.6b00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | - Timothy Sargeant
- Covidien LLC, 60 Middletown Avenue, North Haven, Connecticut 06473, United States
| | | | | |
Collapse
|
31
|
Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury. Crit Care Med 2016; 44:e146-57. [PMID: 26491860 DOI: 10.1097/ccm.0000000000001351] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Leucine-rich repeat and immunoglobulin domain-containing protein (LINGO)-1 is expressed in neural stem cells, and its neutralization results in sustained neuronal immaturity. Thus, targeted inhibition of LINGO-1 via RNA interference may enhance transplanted neural stem cell survival and neuronal differentiation in vivo. Furthermore, LINGO-1 RNA interference in neural stem cells represents a potential therapeutic strategy for spinal cord injury. DESIGN Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University. SETTING Translational Medicine Center Research Laboratory, First Affiliated Hospital of Sun Yat-sen University. SUBJECTS Female Sprague-Dawley rats. INTERVENTIONS The animals were divided into three groups that underwent laminectomy and complete spinal cord transection accompanied by transplantation of control-RNA interference-treated or LINGO-1-RNA interference-treated neural stem cells at the injured site in vivo. In vitro, neural stem cells were divided into four groups for the following treatments: control, control RNA interference lentivirus, LINGO-1 RNA interference lentivirus and LINGO-1 complementary DNA lentivirusand the Key Projects of the Natural Science Foundation of Guangdong Province (No. S2013020012818). MEASUREMENTS AND MAIN RESULTS Neural stem cells in each treatment group were examined for cell survival and neuronal differentiation in vitro and in vivo via immunofluorescence and Western blot analysis. Axonal regeneration and tissue repair were assessed via retrograde tracing using Fluorogold, electron microscopy, hematoxylin-eosin staining and MRI. Rats were also examined for functional recovery based on the measurement of spinal cord-evoked potentials and the Basso-Beattie-Bresnahan score. LINGO-1-RNA interference-treated neural stem cell transplantation increased tissue repair and functional recovery of the injured spinal cord in rats. Similarly, LINGO-1 RNA interference increased neural stem cell survival and neuronal differentiation in vitro. The mechanism underlying the effect of LINGO-1 RNA interference on the injured rat spinal cord may be that the significant inhibition of LINGO-1 expression in neural stem cells inactivated the RhoA and Notch signaling pathways, which act downstream of LINGO-1. CONCLUSIONS Our findings indicate that transplantation of LINGO-1-RNA interference-treated neural stem cells facilitates functional recovery after spinal cord injury and represents a promising potential strategy for the repair of spinal cord injury.
Collapse
|
32
|
Elliott Donaghue I, Tator CH, Shoichet MS. Local Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury. Tissue Eng Part A 2016; 22:733-41. [PMID: 27056081 DOI: 10.1089/ten.tea.2015.0471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue and functional repair after spinal cord injury (SCI) continue to elude researchers. Neurotrophin-3 (NT-3) and anti-NogoA have been shown to promote axonal regeneration in animal models of SCI; however, localized and sustained delivery to the central nervous system (CNS) remains a critical challenge for these and other macromolecular therapeutics. An injectable drug delivery system (DDS) has previously been developed, which can provide safe local delivery to the spinal cord. This DDS, composed of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (nps) dispersed in a hyaluronan methylcellulose hydrogel, was adapted for the tunable bioactive delivery of NT-3 and anti-NogoA. Furthermore, the combined delivery of NT-3 and anti-NogoA from the DDS in an impact/compression model of SCI increases axon density and improves locomotor function. The benefits of this np/hydrogel DDS observed for NT-3 and anti-NogoA demonstrate the utility of the DDS as a local delivery strategy for protein therapeutics to the CNS.
Collapse
Affiliation(s)
- Irja Elliott Donaghue
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada
| | - Charles H Tator
- 3 Division of Genetics and Development, Toronto Western Research Institute, University of Toronto , Toronto, Canada .,4 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,5 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| | - Molly S Shoichet
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada .,6 Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models. PLoS One 2015; 10:e0142660. [PMID: 26559822 PMCID: PMC4641584 DOI: 10.1371/journal.pone.0142660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.
Collapse
|
34
|
Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:260161. [PMID: 26539474 PMCID: PMC4619759 DOI: 10.1155/2015/260161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
Abstract
Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI). The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG) and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB) scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI.
Collapse
|
35
|
Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, Pochan DJ, Langhans SA. Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. Biomacromolecules 2015; 16:2672-83. [PMID: 26225909 PMCID: PMC4873771 DOI: 10.1021/acs.biomac.5b00541] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is intense interest in developing novel methods for the sustained delivery of low levels of clinical therapeutics. MAX8 is a peptide-based beta-hairpin hydrogel that has unique shear thinning properties that allow for immediate rehealing after the removal of shear forces, making MAX8 an excellent candidate for injectable drug delivery at a localized injury site. The current studies examined the feasibility of using MAX8 as a delivery system for nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), two neurotrophic growth factors currently used in experimental treatments of spinal cord injuries. Experiments determined that encapsulation of NGF and BDNF within MAX8 did not negatively impact gel formation or rehealing and that shear thinning did not result in immediate growth factor release. ELISA, microscopy, rheology, and Western blotting experiments collectively demonstrate the functional capabilities of the therapeutic-loaded hydrogels to (i) maintain a protective environment against in vitro degradation of encapsulated therapeutics for at least 28 days; and (ii) allow for sustained release of NGF and BDGF capable of initiating neurite-like extensions of PC12 cells, most likely due to NGF/BDGF signaling pathways. Importantly, while the 21 day release profiles could be tuned by adjusting the MAX8 hydrogel concentration, the initial shear thinning of the hydrogel (e.g., during injection) does not induce significant premature loss of the encapsulated therapeutic, most likely due to effective trapping of growth factors within structurally robust domains that are maintained during the application of shear forces. Together, our data suggests that MAX8 allows for greater dosage control and sustained therapeutic growth factor delivery, potentially alleviating side effects and improving the efficacy of current therapies.
Collapse
Affiliation(s)
- Stephan Lindsey
- Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Joseph H. Piatt
- Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Peter Worthington
- Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, DE 19803, USA
- Biomedical Engineering Graduate Program, University of Delaware, Newark, DE 19716, USA
| | - Cem Sönmez
- Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Sameer Satheye
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research, A. I. duPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
36
|
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219:141-154. [PMID: 26343846 DOI: 10.1016/j.jconrel.2015.08.060] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.
Collapse
Affiliation(s)
- Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
37
|
Dong Y, Yang L, Yang L, Zhao H, Zhang C, Wu D. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury. Neural Regen Res 2014; 9:1520-4. [PMID: 25317169 PMCID: PMC4192969 DOI: 10.4103/1673-5374.139478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/18/2022] Open
Abstract
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.
Collapse
Affiliation(s)
- Yuzhen Dong
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Libin Yang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Lin Yang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Hongxing Zhao
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Chao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Dapeng Wu
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| |
Collapse
|
38
|
Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast 2014; 2014:451639. [PMID: 25110592 PMCID: PMC4106224 DOI: 10.1155/2014/451639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
Collapse
|
39
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|