1
|
Yan RE, Greenfield JP. Emergence of Precision Medicine Within Neurological Surgery: Promise and Opportunity. World Neurosurg 2024; 190:564-572. [PMID: 39425298 DOI: 10.1016/j.wneu.2024.06.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Within neurosurgery, it has always been important to individualize patient care. In recent years, however, technological advances have brought a new dimension to personalized care as developing methods, including next-generation sequencing, have enabled us to molecularly profile pathologies with increasing scale and resolution. In this review, the authors discuss the history and advances in precision medicine and neurosurgery, focusing both on neuro-oncology, as well as its extension to other neurosurgical subspecialties. They highlight the important roles of neurosurgeons in past work and future work, with the extension of tissue collection and precision medicine principles to additional sample types and disease indications.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Grote A, Neumann F, Menzler K, Carl B, Nimsky C, Bopp MHA. Augmented Reality in Extratemporal Lobe Epilepsy Surgery. J Clin Med 2024; 13:5692. [PMID: 39407752 PMCID: PMC11477171 DOI: 10.3390/jcm13195692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Epilepsy surgery for extratemporal lobe epilepsy (ETLE) is challenging, particularly when MRI findings are non-lesional and seizure patterns are complex. Invasive diagnostic techniques are crucial for accurately identifying the epileptogenic zone and its relationship with surrounding functional tissue. Microscope-based augmented reality (AR) support, combined with navigation, may enhance intraoperative orientation, particularly in cases involving subtle or indistinct lesions, thereby improving patient outcomes and safety (e.g., seizure freedom and preservation of neuronal integrity). Therefore, this study was conducted to prove the clinical advantages of microscope-based AR support in ETLE surgery. Methods: We retrospectively analyzed data from ten patients with pharmacoresistant ETLE who underwent invasive diagnostics with depth and/or subdural grid electrodes, followed by resective surgery. AR support was provided via the head-up displays of the operative microscope, with navigation based on automatic intraoperative computed tomography (iCT)-based registration. The surgical plan included the suspected epileptogenic lesion, electrode positions, and relevant surrounding functional structures, all of which were visualized intraoperatively. Results: Six patients reported complete seizure freedom following surgery (ILAE 1), one patient was seizure-free at the 2-year follow-up, and one patient experienced only auras (ILAE 2). Two patients developed transient neurological deficits that resolved shortly after surgery. Conclusions: Microscope-based AR support enhanced intraoperative orientation in all cases, contributing to improved patient outcomes and safety. It was highly valued by experienced surgeons and as a training tool for less experienced practitioners.
Collapse
Affiliation(s)
- Alexander Grote
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Franziska Neumann
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Katja Menzler
- Department of Neurology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
3
|
Dellaretti M, Figueiredo HP, Soares AG, Froes LE, Gomes FC, Faraj F. Applications of Augmented Reality in Neuro-Oncology: A Case Series. Asian J Neurosurg 2024; 19:472-477. [PMID: 39205891 PMCID: PMC11349399 DOI: 10.1055/s-0044-1788064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Augmented reality (AR) is a technological tool that superimposes two-dimensional virtual images onto three-dimensional real-world scenarios through the integration of neuronavigation and a surgical microscope. The aim of this study was to demonstrate our initial experience with AR and to assess its application in oncological neurosurgery. This is a case series with 31 patients who underwent surgery at Santa Casa BH for the treatment of intracranial tumors in the period from March 4, 2022, to July 14, 2023. The application of AR was evaluated in each case through three parameters: whether the virtual images auxiliated in the incision and craniotomy and whether the virtual images aided in intraoperative microsurgery decisions. Of the 31 patients, 5 patients developed new neurological deficits postoperatively. One patient died, with a mortality rate of 3.0%. Complete tumor resection was achieved in 22 patients, and partial resection was achieved in 6 patients. In all patients, AR was used to guide the incision and craniotomy in each case, leading to improved and precise surgical approaches. As intraoperative microsurgery guidance, it proved to be useful in 29 cases. The application of AR seems to enhance surgical safety for both the patient and the surgeon. It allows a more refined immediate operative planning, from head positioning to skin incision and craniotomy. Additionally, it helps decision-making in the intraoperative microsurgery phase with a potentially positive impact on surgical outcomes.
Collapse
Affiliation(s)
- Marcos Dellaretti
- Department of Neurosurgery, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
- Research Department, Santa Casa BH College, Belo Horizonte, Minas Gerais, Brazil
| | - Hian P.G. Figueiredo
- Department of Neurosurgery, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
- Research Department, Santa Casa BH College, Belo Horizonte, Minas Gerais, Brazil
| | - André G. Soares
- Department of Neurosurgery, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
- Research Department, Santa Casa BH College, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz E.V. Froes
- Department of Neurosurgery, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
- Research Department, Santa Casa BH College, Belo Horizonte, Minas Gerais, Brazil
| | | | - Franklin Faraj
- Department of Neurosurgery, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
- Research Department, Santa Casa BH College, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Sulangi AJ, Husain A, Lei H, Okun J. Neuronavigation in glioma resection: current applications, challenges, and clinical outcomes. Front Surg 2024; 11:1430567. [PMID: 39165667 PMCID: PMC11334078 DOI: 10.3389/fsurg.2024.1430567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Glioma resection aims for maximal tumor removal while preserving neurological function. Neuronavigation systems (NS), with intraoperative imaging, have revolutionized this process through precise tumor localization and detailed anatomical navigation. Objective To assess the efficacy and breadth of neuronavigation and intraoperative imaging in glioma resections, identify operational challenges, and provide educational insights to medical students and non-neurosurgeons regarding their practical applications. Methods This systematic review analyzed studies from 2012 to 2023 on glioma patients undergoing surgical resection with neuronavigation, sourced from MEDLINE (PubMed), Embase, and Web of Science. A database-specific search strategy was employed, with independent reviewers screening for eligibility using Rayyan and extracting data using the Joanna Briggs Institute (JBI) tool. Results The integration of neuronavigation systems with intraoperative imaging modalities such as iMRI, iUS, and 5-ALA significantly enhances gross total resection (GTR) rates and extent of resection (EOR). While advanced technology improves surgical outcomes, it does not universally reduce operative times, and its impact on long-term survival varies. Combinations like NS + iMRI and NS + 5-ALA + iMRI achieve higher GTR rates compared to NS alone, indicating that advanced imaging adjuncts enhance tumor resection accuracy and success. The results underscore the multifaceted nature of successful surgical outcomes. Conclusions Integrating intraoperative imaging with neuronavigation improves glioma resection. Ongoing research is vital to refine technology, enhance accuracy, reduce costs, and improve training, considering various factors impacting patient survival.
Collapse
Affiliation(s)
- Albert Joseph Sulangi
- Nova Southeastern University, Dr. Kiran C. Patel College of Osteopathic Medicine—Tampa Bay Regional Campus, Clearwater, FL, United States
| | - Adam Husain
- University of Texas Medical Branch, Galveston, TX, United States
| | - Haoyi Lei
- Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica Okun
- Steward Medical Group, Fort Lauderdale, FL, United States
| |
Collapse
|
5
|
Tanrikulu L. Microscope-Based Augmented Reality: A New Approach in Intraoperative 3D Visualization in Microvascular Decompression? Cureus 2024; 16:e62417. [PMID: 39011207 PMCID: PMC11248489 DOI: 10.7759/cureus.62417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Neurovascular compression (NVC) syndromes such as trigeminal neuralgia (TN) are causally treated with microvascular decompression (MVD). Semiautomatic segmentation of high-resolution magnetic resonance imaging (MRI) data and constructive interference in steady state (CISS)/time-of-flight (TOF) sequences are utilized for the three-dimensional (3D) visualization of underlying causative vessels at the root entry zones of the relevant cranial nerves. Augmented reality (AR) of neurovascular structures was introduced especially in the resection of brain tumors or aneurysmatic operations. In this report, the potential feasibility of the implementation of microscope-based AR into the intraoperative microsurgical set-up of MVD was investigated. This article recommends the preoperative evaluation of 3D visualization besides the microscopical view of the surgeon. The implementation of multiple imaging data by AR into the operating microscope may afflict the experienced surgeon's view, which should be examined prospectively.
Collapse
Affiliation(s)
- Levent Tanrikulu
- Neurooncology, Klinik Sonnenblick, University of Marburg, Marburg, DEU
| |
Collapse
|
6
|
Sharma N, Mallela AN, Khan T, Canton SP, Kass NM, Steuer F, Jardini J, Biehl J, Andrews EG. Evolution of the meta-neurosurgeon: A systematic review of the current technical capabilities, limitations, and applications of augmented reality in neurosurgery. Surg Neurol Int 2024; 15:146. [PMID: 38742013 PMCID: PMC11090549 DOI: 10.25259/sni_167_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Background Augmented reality (AR) applications in neurosurgery have expanded over the past decade with the introduction of headset-based platforms. Many studies have focused on either preoperative planning to tailor the approach to the patient's anatomy and pathology or intraoperative surgical navigation, primarily realized as AR navigation through microscope oculars. Additional efforts have been made to validate AR in trainee and patient education and to investigate novel surgical approaches. Our objective was to provide a systematic overview of AR in neurosurgery, provide current limitations of this technology, as well as highlight several applications of AR in neurosurgery. Methods We performed a literature search in PubMed/Medline to identify papers that addressed the use of AR in neurosurgery. The authors screened three hundred and seventy-five papers, and 57 papers were selected, analyzed, and included in this systematic review. Results AR has made significant inroads in neurosurgery, particularly in neuronavigation. In spinal neurosurgery, this primarily has been used for pedicle screw placement. AR-based neuronavigation also has significant applications in cranial neurosurgery, including neurovascular, neurosurgical oncology, and skull base neurosurgery. Other potential applications include operating room streamlining, trainee and patient education, and telecommunications. Conclusion AR has already made a significant impact in neurosurgery in the above domains and has the potential to be a paradigm-altering technology. Future development in AR should focus on both validating these applications and extending the role of AR.
Collapse
Affiliation(s)
- Nikhil Sharma
- School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Arka N. Mallela
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Talha Khan
- Department of Computing and Information, University of Pittsburgh, Pittsburgh, United States
| | - Stephen Paul Canton
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, United States
| | | | - Fritz Steuer
- School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Jacquelyn Jardini
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States
| | - Jacob Biehl
- Department of Computing and Information, University of Pittsburgh, Pittsburgh, United States
| | - Edward G. Andrews
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, United States
| |
Collapse
|
7
|
Buwaider A, El-Hajj VG, Mahdi OA, Iop A, Gharios M, de Giorgio A, Romero M, Gerdhem P, Jean WC, Edström E, Elmi-Terander A. Extended reality in cranial and spinal neurosurgery - a bibliometric analysis. Acta Neurochir (Wien) 2024; 166:194. [PMID: 38662229 PMCID: PMC11045579 DOI: 10.1007/s00701-024-06072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE This bibliometric analysis of the top 100 cited articles on extended reality (XR) in neurosurgery aimed to reveal trends in this research field. Gender differences in authorship and global distribution of the most-cited articles were also addressed. METHODS A Web of Science electronic database search was conducted. The top 100 most-cited articles related to the scope of this review were retrieved and analyzed for trends in publications, journal characteristics, authorship, global distribution, study design, and focus areas. After a brief description of the top 100 publications, a comparative analysis between spinal and cranial publications was performed. RESULTS From 2005, there was a significant increase in spinal neurosurgery publications with a focus on pedicle screw placement. Most articles were original research studies, with an emphasis on augmented reality (AR). In cranial neurosurgery, there was no notable increase in publications. There was an increase in studies assessing both AR and virtual reality (VR) research, with a notable emphasis on VR compared to AR. Education, surgical skills assessment, and surgical planning were more common themes in cranial studies compared to spinal studies. Female authorship was notably low in both groups, with no significant increase over time. The USA and Canada contributed most of the publications in the research field. CONCLUSIONS Research regarding the use of XR in neurosurgery increased significantly from 2005. Cranial research focused on VR and resident education while spinal research focused on AR and neuronavigation. Female authorship was underrepresented. North America provides most of the high-impact research in this area.
Collapse
Affiliation(s)
- Ali Buwaider
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Omar Ali Mahdi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Gharios
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mario Romero
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul Gerdhem
- Department of Orthopaedics and Hand surgery, Uppsala University hospital, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Walter C Jean
- Division of Neurosurgery, Lehigh Valley Fleming Neuroscience Institute, Allentown, PA, USA
- Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Upplands-Väsby, Sweden
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Capio Spine Center Stockholm, Löwenströmska Hospital, Upplands-Väsby, Sweden.
- Department of Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
8
|
van Doormaal JAM, van Doormaal TPC. Augmented Reality in Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:351-374. [PMID: 39523276 DOI: 10.1007/978-3-031-64892-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Augmented Reality (AR) involves superimposing digital content onto the real environment. AR has evolved into a viable tool in neurosurgery, enhancing intraoperative navigation, medical education and surgical training by integrating anatomical data with the real world. Neurosurgical AR relies on several key techniques to be successful, which includes image segmentation, model rendering, AR projection, and image-to-patient registration. For each of these technical components, different solutions exist, with each having their own advantages and limitations.Intraoperative AR applications cover diverse neurosurgical disciplines including vascular, oncological, spinal, and functional surgeries. Preliminary studies indicate that AR may improve the understanding of complex anatomical structures and offer sufficient accuracy for use as a navigational tool. Additionally, AR shows promise in enhancing surgical training and patient education through interactive 3D models, aiding in the comprehension of intricate anatomical details. Despite its potential, the widespread adoption of AR in clinical settings depends on overcoming technical limitations and validating its clinical efficacy.
Collapse
Affiliation(s)
- Jesse A M van Doormaal
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
9
|
Jean WC, Piper K, Felbaum DR, Saez-Alegre M. The Inaugural "Century" of Mixed Reality in Cranial Surgery: Virtual Reality Rehearsal/Augmented Reality Guidance and Its Learning Curve in the First 100-Case, Single-Surgeon Series. Oper Neurosurg (Hagerstown) 2024; 26:28-37. [PMID: 37747331 DOI: 10.1227/ons.0000000000000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Virtual reality (VR) refers to a computer-generated three-dimensional space in which a surgeon can interact with patient-specific anatomic models for surgical planning. Augmented reality (AR) is the technology that places computer-generated objects, including those made in VR, into the surgeon's visual space. Together, VR and AR are called mixed reality (MxR), and it is gaining importance in neurosurgery. MxR is helpful for selecting and creating templates for an optimal surgical approach and identifying key anatomic landmarks intraoperatively. By reporting our experience with the first 100 consecutive cases planned with VR and executed with AR, our objective is to detail the learning curve and encountered obstacles while adopting the new technology. METHODS This series includes the first 100 consecutive complex cranial cases of a single surgeon for which MxR was intended for use. Effectiveness of the VR rehearsal and AR guidance was analyzed for four specific contributions: (1) opening size, (2) precise craniotomy placement, (3) guidance toward anatomic landmarks or target, and (4) antitarget avoidance. Seventeen cases in the study cohort were matched with historical non-MxR cases for comparison of outcome parameters. The cases in which MxR failed were plotted over time to determine the nature of the "learning curve." RESULTS AR guidance was abandoned in eight operations because of technical problems, but problem-free application of MxR increased between the 44th and 63rd cases. This provides some evidence of proficiency acquisition in between. Comparing the 17 pairs of matched MxR and non-MxR cases, no statistically significant differences exist in the groups regarding blood loss, length of stay nor duration of surgery. Cases where MxR had above-expectation performances are highlighted. CONCLUSION MxR is a powerful tool that can help tailor operations to patient-specific anatomy and provide efficient intraoperative guidance without additional time for surgery or hospitalization.
Collapse
Affiliation(s)
- Walter C Jean
- Division of Neurosurgery, Lehigh Valley Fleming Neuroscience Institute, Allentown , Pennsylvania , USA
- Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa , Florida , USA
| | - Keaton Piper
- Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa , Florida , USA
| | - Daniel R Felbaum
- Department of Neurosurgery, Georgetown University, Washington , District of Columbia , USA
| | - Miguel Saez-Alegre
- Division of Neurosurgery, Lehigh Valley Fleming Neuroscience Institute, Allentown , Pennsylvania , USA
| |
Collapse
|
10
|
Kos TM, Colombo E, Bartels LW, Robe PA, van Doormaal TPC. Evaluation Metrics for Augmented Reality in Neurosurgical Preoperative Planning, Surgical Navigation, and Surgical Treatment Guidance: A Systematic Review. Oper Neurosurg (Hagerstown) 2023; 26:01787389-990000000-01007. [PMID: 38146941 PMCID: PMC11008635 DOI: 10.1227/ons.0000000000001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Recent years have shown an advancement in the development of augmented reality (AR) technologies for preoperative visualization, surgical navigation, and intraoperative guidance for neurosurgery. However, proving added value for AR in clinical practice is challenging, partly because of a lack of standardized evaluation metrics. We performed a systematic review to provide an overview of the reported evaluation metrics for AR technologies in neurosurgical practice and to establish a foundation for assessment and comparison of such technologies. METHODS PubMed, Embase, and Cochrane were searched systematically for publications on assessment of AR for cranial neurosurgery on September 22, 2022. The findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The systematic search yielded 830 publications; 114 were screened full text, and 80 were included for analysis. Among the included studies, 5% dealt with preoperative visualization using AR, with user perception as the most frequently reported metric. The majority (75%) researched AR technology for surgical navigation, with registration accuracy, clinical outcome, and time measurements as the most frequently reported metrics. In addition, 20% studied the use of AR for intraoperative guidance, with registration accuracy, task outcome, and user perception as the most frequently reported metrics. CONCLUSION For quality benchmarking of AR technologies in neurosurgery, evaluation metrics should be specific to the risk profile and clinical objectives of the technology. A key focus should be on using validated questionnaires to assess user perception; ensuring clear and unambiguous reporting of registration accuracy, precision, robustness, and system stability; and accurately measuring task performance in clinical studies. We provided an overview suggesting which evaluation metrics to use per AR application and innovation phase, aiming to improve the assessment of added value of AR for neurosurgical practice and to facilitate the integration in the clinical workflow.
Collapse
Affiliation(s)
- Tessa M. Kos
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisa Colombo
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital Zürich, Zurich, The Netherlands
| | - L. Wilbert Bartels
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A. Robe
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tristan P. C. van Doormaal
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital Zürich, Zurich, The Netherlands
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Hey G, Guyot M, Carter A, Lucke-Wold B. Augmented Reality in Neurosurgery: A New Paradigm for Training. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1721. [PMID: 37893439 PMCID: PMC10608758 DOI: 10.3390/medicina59101721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023]
Abstract
Augmented reality (AR) involves the overlay of computer-generated images onto the user's real-world visual field to modify or enhance the user's visual experience. With respect to neurosurgery, AR integrates preoperative and intraoperative imaging data to create an enriched surgical experience that has been shown to improve surgical planning, refine neuronavigation, and reduce operation time. In addition, AR has the potential to serve as a valuable training tool for neurosurgeons in a way that minimizes patient risk while facilitating comprehensive training opportunities. The increased use of AR in neurosurgery over the past decade has led to innovative research endeavors aiming to develop novel, more efficient AR systems while also improving and refining present ones. In this review, we provide a concise overview of AR, detail current and emerging uses of AR in neurosurgery and neurosurgical training, discuss the limitations of AR, and provide future research directions. Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 386 articles were initially identified. Two independent reviewers (GH and AC) assessed article eligibility for inclusion, and 31 articles are included in this review. The literature search included original (retrospective and prospective) articles and case reports published in English between 2013 and 2023. AR assistance has shown promise within neuro-oncology, spinal neurosurgery, neurovascular surgery, skull-base surgery, and pediatric neurosurgery. Intraoperative use of AR was found to primarily assist with surgical planning and neuronavigation. Similarly, AR assistance for neurosurgical training focused primarily on surgical planning and neuronavigation. However, studies included in this review utilize small sample sizes and remain largely in the preliminary phase. Thus, future research must be conducted to further refine AR systems before widespread intraoperative and educational use.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael Guyot
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Khan DZ, Hanrahan JG, Baldeweg SE, Dorward NL, Stoyanov D, Marcus HJ. Current and Future Advances in Surgical Therapy for Pituitary Adenoma. Endocr Rev 2023; 44:947-959. [PMID: 37207359 PMCID: PMC10502574 DOI: 10.1210/endrev/bnad014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
The vital physiological role of the pituitary gland, alongside its proximity to critical neurovascular structures, means that pituitary adenomas can cause significant morbidity or mortality. While enormous advancements have been made in the surgical care of pituitary adenomas, numerous challenges remain, such as treatment failure and recurrence. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (eg, endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient's journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, surgical abilities will be augmented by the future operative armamentarium, including advanced optical devices, smart instruments, and surgical robotics. Intraoperative support to surgical team members will benefit from a data science approach, utilizing machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, neural networks leveraging multimodal datasets will allow early detection of individuals at risk of complications and assist in the prediction of treatment failure, thus supporting patient-specific discharge and monitoring protocols. While these advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of the translation of such technologies, ensuring systematic assessment of risk and benefit prior to clinical implementation. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future.
Collapse
Affiliation(s)
- Danyal Z Khan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - John G Hanrahan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Stephanie E Baldeweg
- Department of Diabetes & Endocrinology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Centre for Obesity and Metabolism, Department of Experimental and Translational Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Neil L Dorward
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Digital Surgery Ltd, Medtronic, London WD18 8WW, UK
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| |
Collapse
|
14
|
Cui M, Liu Y, Zhou C, Chen H, Gao X, Liu J, Guo Q, Guan B, Ma X. Resection of high-grade glioma involving language areas assisted by multimodal techniques under general anesthesia: a retrospective study. Chin Neurosurg J 2023; 9:25. [PMID: 37691110 PMCID: PMC10494413 DOI: 10.1186/s41016-023-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Multimodal techniques-assisted resection of glioma under general anesthesia (GA) has been shown to achieve similar clinical outcomes as awake craniotomy (AC) in some studies. In this study, we aim to validate the use of multimodal techniques can achieve the maximal safe resection of high-grade glioma involving language areas (HGILAs) under GA. METHODS HGILAs cases were reviewed and collected between January 2009 and December 2020 in our center. Patients were separated into multimodal group (using neuronavigation, intraoperative MRI combined with direct electrical stimulation [DES] and neuromonitoring [IONM]) and conventional group (neuronavigation alone) and clinical outcomes were compared between groups. Studies of HGILAs were reviewed systematically and the meta-analysis results of previous (GA or AC) studies were compared with our results. RESULTS Finally, there were 263 patients in multimodal group and 137 patients in conventional group. Compared to the conventional group, the multimodal group achieved the higher median EOR (100% versus 94.32%, P < 0.001) and rate of gross total resection (GTR) (73.8% versus 36.5%, P < 0.001) and the lower incidence of permanent language deficit (PLD) (9.5% versus 19.7%, P = 0.004). The multimodal group achieved the longer median PFS (16.8 versus 10.3 months, P < 0.001) and OS (23.7 versus 15.7 months, P < 0.001) than the conventional group. The multimodal group achieved a higher rate of GTR than the cohorts in previous multimodal studies under GA and AC (73.8% versus 55.7% [95%CI 32.0-79.3%] versus 53.4% [35.5-71.2%]). The multimodal group had a lower incidence of PLD than the cohorts in previous multimodal studies under GA (9.5% versus 14.0% [5.8-22.1%]) and our incidence of PLD was a little higher than that of previous multimodal studies under AC (9.5% versus 7.5% [3.7-11.2%]). Our multimodal group also achieved a relative longer survival than previous studies. CONCLUSIONS Surgery assisted by multimodal techniques can achieve maximal safe resection for HGILAs under GA. Further prospective studies are needed to compare GA with AC for HGILAs.
Collapse
Affiliation(s)
- Meng Cui
- Department of Emergency, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Yukun Liu
- Department of Neurosurgery, Chinese Air Force Medical Center, Beijing, China
| | - Chunhui Zhou
- Department of Neurosurgery, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hewen Chen
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Gao
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiayu Liu
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qingbao Guo
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bing Guan
- Department of Health Economics, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaodong Ma
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
15
|
Ragnhildstveit A, Li C, Zimmerman MH, Mamalakis M, Curry VN, Holle W, Baig N, Uğuralp AK, Alkhani L, Oğuz-Uğuralp Z, Romero-Garcia R, Suckling J. Intra-operative applications of augmented reality in glioma surgery: a systematic review. Front Surg 2023; 10:1245851. [PMID: 37671031 PMCID: PMC10476869 DOI: 10.3389/fsurg.2023.1245851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background Augmented reality (AR) is increasingly being explored in neurosurgical practice. By visualizing patient-specific, three-dimensional (3D) models in real time, surgeons can improve their spatial understanding of complex anatomy and pathology, thereby optimizing intra-operative navigation, localization, and resection. Here, we aimed to capture applications of AR in glioma surgery, their current status and future potential. Methods A systematic review of the literature was conducted. This adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, and Scopus electronic databases were queried from inception to October 10, 2022. Leveraging the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) framework, study eligibility was evaluated in the qualitative synthesis. Data regarding AR workflow, surgical application, and associated outcomes were then extracted. The quality of evidence was additionally examined, using hierarchical classes of evidence in neurosurgery. Results The search returned 77 articles. Forty were subject to title and abstract screening, while 25 proceeded to full text screening. Of these, 22 articles met eligibility criteria and were included in the final review. During abstraction, studies were classified as "development" or "intervention" based on primary aims. Overall, AR was qualitatively advantageous, due to enhanced visualization of gliomas and critical structures, frequently aiding in maximal safe resection. Non-rigid applications were also useful in disclosing and compensating for intra-operative brain shift. Irrespective, there was high variance in registration methods and measurements, which considerably impacted projection accuracy. Most studies were of low-level evidence, yielding heterogeneous results. Conclusions AR has increasing potential for glioma surgery, with capacity to positively influence the onco-functional balance. However, technical and design limitations are readily apparent. The field must consider the importance of consistency and replicability, as well as the level of evidence, to effectively converge on standard approaches that maximize patient benefit.
Collapse
Affiliation(s)
- Anya Ragnhildstveit
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Chao Li
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
| | | | - Michail Mamalakis
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Victoria N. Curry
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Willis Holle
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Physics and Astronomy, The University of Utah, Salt Lake City, UT, United States
| | - Noor Baig
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | | | - Layth Alkhani
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, England
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, England
| |
Collapse
|
16
|
Wu J, Gao L, Shi Q, Qin C, Xu K, Jiang Z, Zhang X, Li M, Qiu J, Gu W. Accuracy Evaluation Trial of Mixed Reality-Guided Spinal Puncture Technology. Ther Clin Risk Manag 2023; 19:599-609. [PMID: 37484696 PMCID: PMC10361284 DOI: 10.2147/tcrm.s416918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To evaluate the accuracy of mixed reality (MR)-guided visualization technology for spinal puncture (MRsp). Methods MRsp involved the following three steps: 1. Lumbar spine computed tomography (CT) data were obtained to reconstruct virtual 3D images, which were imported into a HoloLens (2nd gen). 2. The patented MR system quickly recognized the spatial orientation and superimposed the virtual image over the real spine in the HoloLens. 3. The operator performed the spinal puncture with structural information provided by the virtual image. A posture fixation cushion was used to keep the subjects' lateral decubitus position consistent. 12 subjects were recruited to verify the setup error and the registration error. The setup error was calculated using the first two CT scans and measuring the displacement of two location markers. The projection points of the upper edge of the L3 spinous process (L3↑), the lower edge of the L3 spinous process (L3↓), and the lower edge of the L4 spinous process (L4↓) in the virtual image were positioned and marked on the skin as the registration markers. A third CT scan was performed to determine the registration error by measuring the displacement between the three registration markers and the corresponding real spinous process edges. Results The setup errors in the position of the cranial location marker between CT scans along the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) axes of the CT bed measured 0.09 ± 0.06 cm, 0.30 ± 0.28 cm, and 0.22 ± 0.12 cm, respectively, while those of the position of the caudal location marker measured 0.08 ± 0.06 cm, 0.29 ± 0.18 cm, and 0.18 ± 0.10 cm, respectively. The registration errors between the three registration markers and the subject's real L3↑, L3↓, and L4↓ were 0.11 ± 0.09 cm, 0.15 ± 0.13 cm, and 0.13 ± 0.10 cm, respectively, in the SI direction. Conclusion This MR-guided visualization technology for spinal puncture can accurately and quickly superimpose the reconstructed 3D CT images over a real human spine.
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Lei Gao
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Qiao Shi
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital of China, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Chunhui Qin
- Department of Pain Management, Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Kai Xu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Ming Li
- Department of Radiology, Huadong Hospital affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Jianjian Qiu
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
17
|
Willett A, Haq M, Holland J, Bridwell E. Commentary: Augmented reality in neurosurgery, state of art and future projections. A systematic review. Front Surg 2023; 10:1218308. [PMID: 37456148 PMCID: PMC10349390 DOI: 10.3389/fsurg.2023.1218308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
|
18
|
De Benedictis A, Marasi A, Rossi-Espagnet MC, Napolitano A, Parrillo C, Fracassi D, Baldassari G, Borro L, Bua A, de Palma L, Luisi C, Pepi C, Savioli A, Luglietto D, Marras CE. Vertical Hemispherotomy: Contribution of Advanced Three-Dimensional Modeling for Presurgical Planning and Training. J Clin Med 2023; 12:jcm12113779. [PMID: 37297974 DOI: 10.3390/jcm12113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023] Open
Abstract
Vertical hemispherotomy is an effective treatment for many drug-resistant encephalopathies with unilateral involvement. One of the main factors influencing positive surgical results and long-term seizure freedom is the quality of disconnection. For this reason, perfect anatomical awareness is mandatory during each step of the procedure. Although previous groups attempted to reproduce the surgical anatomy through schematic representations, cadaveric dissections, and intraoperative photographs and videos, a comprehensive understanding of the approach may still be difficult, especially for less experienced neurosurgeons. In this work, we reported the application of advanced technology for three-dimensional (3D) modeling and visualization of the main neurova-scular structures during vertical hemispherotomy procedures. In the first part of the study, we built a detailed 3D model of the main structures and landmarks involved during each disconnection phase. In the second part, we discussed the adjunctive value of augmented reality systems for the management of the most challenging etiologies, such as hemimegalencephaly and post-ischemic encephalopathy. We demonstrated the contribution of advanced 3D modeling and visualization to enhance the quality of anatomical representation and interaction between the operator and model according to a surgical perspective, optimizing the quality of presurgical planning, intraoperative orientation, and educational training.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Alessandra Marasi
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | | | - Antonio Napolitano
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Chiara Parrillo
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Donatella Fracassi
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Giulia Baldassari
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Luca Borro
- Multimodal Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Antonella Bua
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Concetta Luisi
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Chiara Pepi
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Alessandra Savioli
- Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Davide Luglietto
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| | - Carlo E Marras
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza S. Onofrio, 00165 Rome, Italy
| |
Collapse
|
19
|
Cui M, Guo Q, Chi Y, Zhang M, Yang H, Gao X, Chen H, Liu Y, Ma X. Predictive model of language deficit after removing glioma involving language areas under general anesthesia. Front Oncol 2023; 12:1090170. [PMID: 36741717 PMCID: PMC9892894 DOI: 10.3389/fonc.2022.1090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Purpose To establish a predictive model to predict the occurrence of language deficit for patients after surgery of glioma involving language areas (GILAs) under general anesthesia (GA). Methods Patients with GILAs were retrospectively collected in our center between January 2009 and December 2020. Clinical variables (age, sex, aphasia quotient [AQ], seizures and KPS), tumor-related variables (recurrent tumor or not, volume, language cortices invaded or not, shortest distance to language areas [SDLA], supplementary motor area or premotor area [SMA/PMA] involved or not and WHO grade) and intraoperative multimodal techniques (used or not) were analyzed by univariate and multivariate analysis to identify their association with temporary or permanent language deficits (TLD/PLD). The predictive model was established according to the identified significant variables. Receiver operating characteristic (ROC) curve was used to assess the accuracy of the predictive model. Results Among 530 patients with GILAs, 498 patients and 441 patients were eligible to assess TLD and PLD respectively. The multimodal group had the higher EOR and rate of GTR than conventional group. The incidence of PLD was 13.4% in multimodal group, which was much lower than that (27.6%, P<0.001) in conventional group. Three factors were associated with TLD, including SDLA (OR=0.85, P<0.001), preoperative AQ (OR=1.04, P<0.001) and multimodal techniques used (OR=0.41, P<0.001). Four factors were associated with PLD, including SDLA (OR=0.83, P=0.001), SMA/PMA involved (OR=3.04, P=0.007), preoperative AQ (OR=1.03, P=0.002) and multimodal techniques used (OR=0.35, P<0.001). The optimal shortest distance thresholds in detecting the occurrence of TLD/PLD were 1.5 and 4mm respectively. The optimal AQ thresholds in detecting the occurrence of TLD/PLD were 52 and 61 respectively. The cutoff values of the predictive probability for TLD/PLD were 23.7% and 16.1%. The area under ROC curve of predictive models for TLD and PLD were 0.70 (95%CI: 0.65-0.75) and 0.72 (95%CI: 0.66-0.79) respectively. Conclusion The use of multimodal techniques can reduce the risk of postoperative TLD/PLD after removing GILAs under general anesthesia. The established predictive model based on clinical variables can predict the probability of occurrence of TLD and PLD, and it had a moderate predictive accuracy.
Collapse
Affiliation(s)
- Meng Cui
- Department of Emergency, The Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,Medical School of Chinese People's Liberation Army, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| | - Qingbao Guo
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yihong Chi
- Department of Information Technology, Xian Janssen Pharmaceutical Ltd., Beijing, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern District of Chinese People's Liberation Army Navy, Sanya, China
| | - Hui Yang
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Gao
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hewen Chen
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yukun Liu
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| |
Collapse
|
20
|
Ng PY, Bing EG, Cuevas A, Aggarwal A, Chi B, Sundar S, Mwanahamuntu M, Mutebi M, Sullivan R, Parham GP. Virtual reality and surgical oncology. Ecancermedicalscience 2023; 17:1525. [PMID: 37113716 PMCID: PMC10129400 DOI: 10.3332/ecancer.2023.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 04/29/2023] Open
Abstract
More than 80% of people diagnosed with cancer will require surgery. However, less than 5% have access to safe, affordable and timely surgery in low- and middle-income countries (LMICs) settings mostly due to the lack of trained workforce. Since its creation, virtual reality (VR) has been heralded as a viable adjunct to surgical training, but its adoption in surgical oncology to date is poorly understood. We undertook a systematic review to determine the application of VR across different surgical specialties, modalities and cancer pathway globally between January 2011 and 2021. We reviewed their characteristics and respective methods of validation of 24 articles. The results revealed gaps in application and accessibility of VR with a proclivity for high-income countries and high-risk, complex oncological surgeries. There is a lack of standardisation of clinical evaluation of VR, both in terms of clinical trials and implementation science. While all VR illustrated face and content validity, only around two-third exhibited construct validity and predictive validity was lacking overall. In conclusion, the asynchrony between VR development and actual global cancer surgery demand means the technology is not effectively, efficiently and equitably utilised to realise its surgical capacity-building potential. Future research should prioritise cost-effective VR technologies with predictive validity for high demand, open cancer surgeries required in LMICs.
Collapse
Affiliation(s)
- Peng Yun Ng
- King’s College London, London WC2R 2LS, UK
- Guy’s and St Thomas’ Trust, London SE1 9R, UK
| | - Eric G Bing
- Institute for Leadership Impact, Southern Methodist University, Dallas, TX 75205, USA
| | - Anthony Cuevas
- Department of Teaching and Learning, Technology-Enhanced Immersive Learning Cluster, Annette Simmons School of Education and Human Development, Southern Methodist University, Dallas, TX 75205, USA
| | - Ajay Aggarwal
- King’s College London, London WC2R 2LS, UK
- Guy’s and St Thomas’ Trust, London SE1 9R, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Benjamin Chi
- Icahn School of Medicine, New York, NY 10029-6574, USA
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B152TT, UK
- Pan Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, B187QH, UK
| | | | - Miriam Mutebi
- Department of Surgery, Aga Khan University Hospital, Nairobi 30270-00100, Kenya
| | - Richard Sullivan
- Conflict & Health Research Group, King’s College London, London WC2R 2LS, UK
| | - Groesbeck P Parham
- Department of Surgery, Aga Khan University Hospital, Nairobi 30270-00100, Kenya
| |
Collapse
|
21
|
Kögl FV, Léger É, Haouchine N, Torio E, Juvekar P, Navab N, Kapur T, Pieper S, Golby A, Frisken S. A Tool-free Neuronavigation Method based on Single-view Hand Tracking. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING. IMAGING & VISUALIZATION 2022; 11:1307-1315. [PMID: 37457380 PMCID: PMC10348700 DOI: 10.1080/21681163.2022.2163428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/30/2022]
Abstract
This work presents a novel tool-free neuronavigation method that can be used with a single RGB commodity camera. Compared with freehand craniotomy placement methods, the proposed system is more intuitive and less error prone. The proposed method also has several advantages over standard neuronavigation platforms. First, it has a much lower cost, since it doesn't require the use of an optical tracking camera or electromagnetic field generator, which are typically the most expensive parts of a neuronavigation system, making it much more accessible. Second, it requires minimal setup, meaning that it can be performed at the bedside and in circumstances where using a standard neuronavigation system is impractical. Our system relies on machine-learning-based hand pose estimation that acts as a proxy for optical tool tracking, enabling a 3D-3D pre-operative to intra-operative registration. Qualitative assessment from clinical users showed that the concept is clinically relevant. Quantitative assessment showed that on average a target registration error (TRE) of 1.3cm can be achieved. Furthermore, the system is framework-agnostic, meaning that future improvements to hand-tracking frameworks would directly translate to a higher accuracy.
Collapse
Affiliation(s)
- Fryderyk Victor Kögl
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
| | - Étienne Léger
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nazim Haouchine
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Erickson Torio
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Parikshit Juvekar
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nassir Navab
- Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
- Whiting School of Engineering, Johns Hopkins University, Baltimore, USA
| | - Tina Kapur
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Steve Pieper
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Isomics, Inc., Cambridge, MA, USA
| | - Alexandra Golby
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sarah Frisken
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Mofatteh M, Mashayekhi MS, Arfaie S, Chen Y, Mirza AB, Fares J, Bandyopadhyay S, Henich E, Liao X, Bernstein M. Augmented and virtual reality usage in awake craniotomy: a systematic review. Neurosurg Rev 2022; 46:19. [PMID: 36529827 PMCID: PMC9760592 DOI: 10.1007/s10143-022-01929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Augmented and virtual reality (AR, VR) are becoming promising tools in neurosurgery. AR and VR can reduce challenges associated with conventional approaches via the simulation and mimicry of specific environments of choice for surgeons. Awake craniotomy (AC) enables the resection of lesions from eloquent brain areas while monitoring higher cortical and subcortical functions. Evidence suggests that both surgeons and patients benefit from the various applications of AR and VR in AC. This paper investigates the application of AR and VR in AC and assesses its prospective utility in neurosurgery. A systematic review of the literature was performed using PubMed, Scopus, and Web of Science databases in accordance with the PRISMA guidelines. Our search results yielded 220 articles. A total of six articles consisting of 118 patients have been included in this review. VR was used in four papers, and the other two used AR. Tumour was the most common pathology in 108 patients, followed by vascular lesions in eight patients. VR was used for intraoperative mapping of language, vision, and social cognition, while AR was incorporated in preoperative training of white matter dissection and intraoperative visualisation and navigation. Overall, patients and surgeons were satisfied with the applications of AR and VR in their cases. AR and VR can be safely incorporated during AC to supplement, augment, or even replace conventional approaches in neurosurgery. Future investigations are required to assess the feasibility of AR and VR in various phases of AC.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yimin Chen
- Department of Neurology, Foshan Sanshui District People's Hospital, Foshan, China
| | | | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Feinberg School of Medicine, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Soham Bandyopadhyay
- Nuffield Department of Surgical Sciences, Oxford University Global Surgery Group, University of Oxford, Oxford, UK
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Edy Henich
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xuxing Liao
- Department of Neurosurgery, Foshan Sanshui District People's Hospital, Foshan, China
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, University Health Network, Toronto, Ontario, Canada
- Temmy Latner Center for Palliative Care, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Bopp MHA, Corr F, Saß B, Pojskic M, Kemmling A, Nimsky C. Augmented Reality to Compensate for Navigation Inaccuracies. SENSORS (BASEL, SWITZERLAND) 2022; 22:9591. [PMID: 36559961 PMCID: PMC9787763 DOI: 10.3390/s22249591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study aims to report on the capability of microscope-based augmented reality (AR) to evaluate registration and navigation accuracy with extracranial and intracranial landmarks and to elaborate on its opportunities and obstacles in compensation for navigation inaccuracies. In a consecutive single surgeon series of 293 patients, automatic intraoperative computed tomography-based registration was performed delivering a high initial registration accuracy with a mean target registration error of 0.84 ± 0.36 mm. Navigation accuracy is evaluated by overlaying a maximum intensity projection or pre-segmented object outlines within the recent focal plane onto the in situ patient anatomy and compensated for by translational and/or rotational in-plane transformations. Using bony landmarks (85 cases), there was two cases where a mismatch was seen. Cortical vascular structures (242 cases) showed a mismatch in 43 cases and cortex representations (40 cases) revealed two inaccurate cases. In all cases, with detected misalignment, a successful spatial compensation was performed (mean correction: bone (6.27 ± 7.31 mm), vascular (3.00 ± 1.93 mm, 0.38° ± 1.06°), and cortex (5.31 ± 1.57 mm, 1.75° ± 2.47°)) increasing navigation accuracy. AR support allows for intermediate and straightforward monitoring of accuracy, enables compensation of spatial misalignments, and thereby provides additional safety by increasing overall accuracy.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Felix Corr
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Mirza Pojskic
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - André Kemmling
- Department of Neuroradiology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
24
|
Shaikh TA, Dar TR, Sofi S. A data-centric artificial intelligent and extended reality technology in smart healthcare systems. SOCIAL NETWORK ANALYSIS AND MINING 2022; 12:122. [PMID: 36065420 PMCID: PMC9434088 DOI: 10.1007/s13278-022-00888-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Extended reality (XR) solutions are quietly maturing, and their novel use cases are already being investigated, particularly in the healthcare industry. By 2022, the extended reality market is anticipated to be worth $209 billion. Certain diseases, such as Alzheimer's, Schizophrenia, Stroke rehabilitation stimulating specific areas of the patient's brain, healing brain injuries, surgeon training, realistic 3D visualization, touch-free interfaces, and teaching social skills to children with autism, have shown promising results with XR-assisted treatments. Similar effects have been used in video game therapies like Akili Interactive's EndeavorRx, which has previously been approved by the Food and Drug Administration (FDA) as a treatment regimen for children with attention deficit hyperactivity disorder (ADHD). However, while these improvements have received positive feedback, the field of XR-assisted patient treatment is in its infancy. The growth of XR in the healthcare sphere has the potential to transform the delivery of medical services. Imagine an elderly patient in a remote setting having a consultation with a world-renowned expert without ever having to leave their house. Rather than operating on cadavers in a medical facility, a surgical resident does surgery in a virtual setting at home. On the first try, a nurse uses a vein finder to implant an IV. Through cognitive treatment in a virtual world, a war veteran recovers from post-traumatic stress disorder (PTSD). The paper discusses the potential impact of XR in transforming the healthcare industry, as well as its use cases, challenges, XR tools and techniques for intelligent health care, recent developments of XR in intelligent healthcare services, and the potential benefits and future aspects of XR techniques in the medical domain.
Collapse
|
25
|
Khan T, Biehl JT, Andrews EG, Babichenko D. A systematic comparison of the accuracy of monocular RGB tracking and LiDAR for neuronavigation. Healthc Technol Lett 2022; 9:91-101. [PMID: 36514478 PMCID: PMC9731545 DOI: 10.1049/htl2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022] Open
Abstract
With the advent of augmented reality (AR), the use of AR-guided systems in the field of medicine has gained traction. However, the wide-scale adaptation of these systems requires highly accurate and reliable tracking. In this work, the tracking accuracy of two technology platforms, LiDAR and Vuforia, are developed and rigorously tested for a catheter placement neurological procedure. Several experiments (900) are performed for each technology across various combinations of catheter lengths and insertion trajectories. This analysis shows that the LiDAR platform outperformed Vuforia; which is the state-of-the-art in monocular RGB tracking solutions. LiDAR had 75% less radial distance error and 26% less angle deviation error. Results provide key insights into the value and utility of LiDAR-based tracking in AR guidance systems.
Collapse
Affiliation(s)
- Talha Khan
- School of Computing and InformationUniversity of PittsburghPittsburghPAUSA
| | - Jacob T. Biehl
- School of Computing and InformationUniversity of PittsburghPittsburghPAUSA
| | - Edward G. Andrews
- Department of Neurological SurgerySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Dmitriy Babichenko
- School of Computing and InformationUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
26
|
Haddad AF, Aghi MK, Butowski N. Novel intraoperative strategies for enhancing tumor control: Future directions. Neuro Oncol 2022; 24:S25-S32. [PMID: 36322096 PMCID: PMC9629473 DOI: 10.1093/neuonc/noac090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Maximal safe surgical resection plays a key role in the care of patients with gliomas. A range of technologies have been developed to aid surgeons in distinguishing tumor from normal tissue, with the goal of increasing tumor resection and limiting postoperative neurological deficits. Technologies that are currently being investigated to aid in improving tumor control include intraoperative imaging modalities, fluorescent tumor makers, intraoperative cell and molecular profiling of tumors, improved microscopic imaging, intraoperative mapping, augmented and virtual reality, intraoperative drug and radiation delivery, and ablative technologies. In this review, we summarize the aforementioned advancements in neurosurgical oncology and implications for improving patient outcomes.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Bopp MHA, Saß B, Pojskić M, Corr F, Grimm D, Kemmling A, Nimsky C. Use of Neuronavigation and Augmented Reality in Transsphenoidal Pituitary Adenoma Surgery. J Clin Med 2022; 11:jcm11195590. [PMID: 36233457 PMCID: PMC9571217 DOI: 10.3390/jcm11195590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to report on the clinical experience with microscope-based augmented reality (AR) in transsphenoidal surgery compared to the classical microscope-based approach. AR support was established using the head-up displays of the operating microscope, with navigation based on fiducial-/surface- or automatic intraoperative computed tomography (iCT)-based registration. In a consecutive single surgeon series of 165 transsphenoidal procedures, 81 patients underwent surgery without AR support and 84 patients underwent surgery with AR support. AR was integrated straightforwardly within the workflow. ICT-based registration increased AR accuracy significantly (target registration error, TRE, 0.76 ± 0.33 mm) compared to the landmark-based approach (TRE 1.85 ± 1.02 mm). The application of low-dose iCT protocols led to a significant reduction in applied effective dosage being comparable to a single chest radiograph. No major vascular or neurological complications occurred. No difference in surgical time was seen, time to set-up patient registration prolonged intraoperative preparation time on average by twelve minutes (32.33 ± 13.35 vs. 44.13 ± 13.67 min), but seems justifiable by the fact that AR greatly and reliably facilitated surgical orientation and increased surgeon comfort and patient safety, not only in patients who had previous transsphenoidal surgery but also in cases with anatomical variants. Automatic intraoperative imaging-based registration is recommended.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (CMBB), 35032 Marburg, Germany
- Correspondence:
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
| | - Mirza Pojskić
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
| | - Felix Corr
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - Dustin Grimm
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - André Kemmling
- Department of Neuroradiology, University of Marburg, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, 35043 Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (CMBB), 35032 Marburg, Germany
| |
Collapse
|
28
|
Boaro A, Moscolo F, Feletti A, Polizzi G, Nunes S, Siddi F, Broekman M, Sala F. Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon. BRAIN & SPINE 2022; 2:100926. [PMID: 36248169 PMCID: PMC9560703 DOI: 10.1016/j.bas.2022.100926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
Introduction The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs.
Collapse
Affiliation(s)
- A. Boaro
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - F. Moscolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - A. Feletti
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - G.M.V. Polizzi
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - S. Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - F. Siddi
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
| | - M.L.D. Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| | - F. Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
29
|
Mamani R, Jacobo JA, Guinto-Nishimura GY, Hernández-Hernández A, Moreno-Jimenez S. Motor outcome after resective surgery for the central lobe gliomas. Surg Neurol Int 2022; 13:325. [PMID: 36128124 PMCID: PMC9479616 DOI: 10.25259/sni_363_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Extent of resection (EOR) plays a major role in the prognosis on patients with gliomas, although the postoperative functionality of the patient is of great importance as well. It is why many surgeons advocate to not operate extensively on tumors that involve eloquent regions such as the central lobe. Recent series have demonstrated that it is possible to achieve extensive resections in this area without significantly affecting the functional outcome for these patients. We illustrate this issue with the experience obtained at the National Institute of Neurology and Neurosurgery in Mexico City. Methods: This is an observational and retrospective study that included patients that received surgical resection for intracranial gliomas that involved the central lobe at the National Institute of Neurology and Neurosurgery of Mexico, between January 2017 and May 2020. Demographic and clinical variables of the patients at the time of diagnosis were collected as well as tumor morphological variables, surgical adjuncts, and clinical outcomes. Statistical analysis was performed with SPSS software. Results: A total of 28 patients were included in the study with 43% of patients having a motor deficit before surgery. The average EOR was 88.6%. Patients presented with worsening of their motor status in the immediate postoperative period in 21% of the cases, although most of the patients recovered within the 1st month of follow-up. After analyzing all variables, not having a presurgical motor deficit was a statistically significant risk factor for developing a new motor deficit in the immediate postoperative period (P: 0.02). Conclusion: A resective surgery for gliomas near or within the central lobe can be performed safely and a satisfactory motor outcome for patients can be achieved without sacrificing the EOR. An intact presurgical motor status is a risk factor for developing a new deficit after surgery.
Collapse
Affiliation(s)
- Rocio Mamani
- Department of Neurosurgery, Instituto Nacional de Ciencias Neurológicas, Lima, Peru,
| | - Javier A. Jacobo
- Department of Surgical Neuro-Oncology, La Cardio, Bogota, Colombia,
| | | | - Alan Hernández-Hernández
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sergio Moreno-Jimenez
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
30
|
Jean WC. Virtual and Augmented Reality in Neurosurgery: The Evolution of its Application and Study Designs. World Neurosurg 2022; 161:459-464. [PMID: 35505566 DOI: 10.1016/j.wneu.2021.08.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/18/2022]
Abstract
BACKGROUND As the art of neurosurgery evolves in the 21st century, more emphasis is placed on minimally invasive techniques, which require technical precision. Simultaneously, the reduction on training hours continues, and teachers of neurosurgery faces "double jeopardy"-with harder skills to teach and less time to teach them. Mixed reality appears as the neurosurgical educators' natural ally: Virtual reality facilitates the learning of spatial relationships and permits rehearsal of skills, while augmented reality can make procedures safer and more efficient. Little wonder then, that the body of literature on mixed reality in neurosurgery has grown exponentially. METHODS Publications involving virtual and augmented reality in neurosurgery were examined. A total of 414 papers were included, and they were categorized according to study design and analyzed. RESULTS Half of the papers were published within the last 3 years alone. Whereas in the earlier half, most of the publications involved experiments in virtual reality simulation and the efficacy of skills acquisition, many of the more recent publication are proof-of-concept studies. This attests to the evolution of mixed reality in neurosurgery. As the technology advances, neurosurgeons are finding more applications, both in training and clinical practice. CONCLUSIONS With parallel advancement in Internet speed and artificial intelligence, the utilization of mixed reality will permeate neurosurgery. From solving staff problems in global neurosurgery, to mitigating the deleterious effect of duty-hour reductions, to improving individual operations, mixed reality will have a positive effect in many aspects of neurosurgery.
Collapse
Affiliation(s)
- Walter C Jean
- Division of Neurological Surgery, Lehigh Valley Health Network, Allentown, Pennsylvania, USA; Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
31
|
Moon HC, Park SJ, Kim YD, Kim KM, Kang H, Lee EJ, Kim MS, Kim JW, Kim YH, Park CK, Kim YG, Dho YS. Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality. Sci Rep 2022; 12:4486. [PMID: 35296720 PMCID: PMC8927150 DOI: 10.1038/s41598-022-08390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Augmented reality (AR) offers a new medical treatment approach. We aimed to evaluate frameless (mask) fixation navigation using a 3D-printed patient model with fixed-AR technology for gamma knife radiosurgery (GKRS). Fixed-AR navigation was developed using the inside-out method with visual inertial odometry algorithms, and the flexible Quick Response marker was created for object-feature recognition. Virtual 3D-patient models for AR-rendering were created via 3D-scanning utilizing TrueDepth and cone-beam computed tomography (CBCT) to generate a new GammaKnife Icon™ model. A 3D-printed patient model included fiducial markers, and virtual 3D-patient models were used to validate registration accuracy. Registration accuracy between initial frameless fixation and re-fixation navigated fixed-AR was validated through visualization and quantitative method. The quantitative method was validated through set-up errors, fiducial marker coordinates, and high-definition motion management (HDMM) values. A 3D-printed model and virtual models were correctly overlapped under frameless fixation. Virtual models from both 3D-scanning and CBCT were enough to tolerate the navigated frameless re-fixation. Although the CBCT virtual model consistently delivered more accurate results, 3D-scanning was sufficient. Frameless re-fixation accuracy navigated in virtual models had mean set-up errors within 1 mm and 1.5° in all axes. Mean fiducial marker differences from coordinates in virtual models were within 2.5 mm in all axes, and mean 3D errors were within 3 mm. Mean HDMM difference values in virtual models were within 1.5 mm of initial HDMM values. The variability from navigation fixed-AR is enough to consider repositioning frameless fixation without CBCT scanning for treating patients fractionated with large multiple metastases lesions (> 3 cm) who have difficulty enduring long beam-on time. This system could be applied to novel GKRS navigation for frameless fixation with reduced preparation time.
Collapse
Affiliation(s)
- Hyeong Cheol Moon
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | | | | | - Kyung Min Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Department of Neurosurgery, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
| |
Collapse
|
32
|
Dmitriev AY, Dashyan VG. [Intraoperative magnetic resonance imaging in surgery of brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:121-127. [PMID: 35170285 DOI: 10.17116/neiro202286011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intraoperative magnetic resonance imaging (iMRI) is used in surgery of supratentorial gliomas to assess resection quality, as well as in neoplasm biopsy to control the needle position. Scanners coupled with operating table ensure fast intraoperative imaging, but they require the use of non-magnetic surgical tools. Surgery outside the scanner 5G line allows working with conventional instruments, but patient transportation takes time. Portable iMRI systems do not interfere with surgical workflow but these scanners have poor resolution. Positioning of MRI scanners in adjacent rooms allows imaging simultaneously for several surgeries. Low-field MRI scanners are effective for control of contrast-enhanced glioma resection quality. However, these scanners are less useful in demarcation of residual low-grade tumors. High-field MRI scanners have no similar disadvantage. These scanners ensure fast detection of residual gliomas of all types and functional imaging. Artifacts during iMRI are usually a result of iatrogenic traumatic brain injury and contrast agent leakage. Ways of their prevention are discussed in the review.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
33
|
Examining the benefits of extended reality in neurosurgery: A systematic review. J Clin Neurosci 2021; 94:41-53. [PMID: 34863461 DOI: 10.1016/j.jocn.2021.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/18/2021] [Accepted: 09/25/2021] [Indexed: 01/14/2023]
Abstract
While well-established in other surgical subspecialties, the benefits of extended reality, consisting of virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies, remains underexplored in neurosurgery despite its increasing utilization. To address this gap, we conducted a systematic review of the effects of extended reality (XR) in neurosurgery with an emphasis on the perioperative period, to provide a guide for future clinical optimization. Seven primary electronic databases were screened following guidelines outlined by PRISMA and the Institute of Medicine. Reported data related to outcomes in the perioperative period and resident training were all examined, and a focused analysis of studies reporting controlled, clinical outcomes was completed. After removal of duplicates, 2548 studies were screened with 116 studies reporting measurable effects of XR in neurosurgery. The majority (82%) included cranial based applications related to tumor surgery with 34% showing improved resection rates and functional outcomes. A rise in high-quality studies was identified from 2017 to 2020 compared to all previous years (p = 0.004). Primary users of the technology were: 56% neurosurgeon (n = 65), 28% residents (n = 33) and 5% patients (n = 6). A final synthesis was conducted on 10 controlled studies reporting patient outcomes. XR technologies have demonstrated benefits in preoperative planning and multimodal neuronavigation especially for tumor surgery. However, few studies have reported patient outcomes in a controlled design demonstrating a need for higher quality data. XR platforms offer several advantages to improve patient outcomes and specifically, the patient experience for neurosurgery.
Collapse
|
34
|
Chidambaram S, Stifano V, Demetres M, Teyssandier M, Palumbo MC, Redaelli A, Olivi A, Apuzzo MLJ, Pannullo SC. Applications of augmented reality in the neurosurgical operating room: A systematic review of the literature. J Clin Neurosci 2021; 91:43-61. [PMID: 34373059 DOI: 10.1016/j.jocn.2021.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Advancements in imaging techniques are key forces of progress in neurosurgery. The importance of accurate visualization of intraoperative anatomy cannot be overemphasized and is commonly delivered through traditional neuronavigation. Augmented Reality (AR) technology has been tested and applied widely in various neurosurgical subspecialties in intraoperative, clinical use and shows promise for the future. This systematic review of the literature explores the ways in which AR technology has been successfully brought into the operating room (OR) and incorporated into clinical practice. A comprehensive literature search was performed in the following databases from inception-April 2020: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library. Studies retrieved were then screened for eligibility against predefined inclusion/exclusion criteria. A total of 54 articles were included in this systematic review. The studies were sub- grouped into brain and spine subspecialties and analyzed for their incorporation of AR in the neurosurgical clinical setting. AR technology has the potential to greatly enhance intraoperative visualization and guidance in neurosurgery beyond the traditional neuronavigation systems. However, there are several key challenges to scaling the use of this technology and bringing it into standard operative practice including accurate and efficient brain segmentation of magnetic resonance imaging (MRI) scans, accounting for brain shift, reducing coregistration errors, and improving the AR device hardware. There is also an exciting potential for future work combining AR with multimodal imaging techniques and artificial intelligence to further enhance its impact in neurosurgery.
Collapse
Affiliation(s)
| | - Vito Stifano
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Neurosurgery, Catholic University, Rome, Italy
| | - Michelle Demetres
- Samuel J. Wood & C.V. Starr Biomedical Information Center, Weill Cornell Medical, College/New York Presbyterian Hospital, New York, NY, USA
| | | | - Maria Chiara Palumbo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Neurosurgery, Catholic University, Rome, Italy
| | | | - Susan C Pannullo
- Department of Neurosurgery, Weill Cornell Medical College, NY, USA.
| |
Collapse
|
35
|
Louis RG, Steinberg GK, Duma C, Britz G, Mehta V, Pace J, Selman W, Jean WC. Early Experience With Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series. Oper Neurosurg (Hagerstown) 2021; 21:189-196. [PMID: 34171909 PMCID: PMC8453400 DOI: 10.1093/ons/opab188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Virtual reality (VR) allows for presurgical planning. Intraoperatively, augmented reality (AR) enables integration of segmented anatomic information with neuronavigation into the microsurgical scene to provide guidance without workflow disruption. Combining VR and AR solutions may help guide microsurgical technique to improve safety, efficiency, and ergonomics. OBJECTIVE To describe a VR/AR platform that provides VR planning and intraoperative guidance via microscope ocular injection of a comprehensive AR overlay of patient-specific 360°/3D anatomic model aligned and synchronized with neuronavigation. METHODS Custom 360° models from preoperative imaging of 49 patients were utilized for preoperative planning using a VR-based surgical rehearsal platform. Each model was imported to SyncAR, the platform's intraoperative counterpart, which was coregistered with Medtronic StealthStation S8 and Zeiss or Leica microscope. The model was injected into the microscope oculars and referenced throughout by adjusting overlay opacity. For anatomic shifts or misalignment, the overlay was reregistered via manual realignment with known landmarks. RESULTS No SyncAR-related complications occurred. SyncAR contributed positively to the 3D understanding of patient-specific anatomy and ability to operate. Preoperative planning and intraoperative AR with 360° models allowed for more precise craniotomy planning and execution. SyncAR was useful for guiding dissection, identifying critical structures including hidden anatomy, understanding regional anatomy, and facilitating resection. Manual realignment was performed in 48/49 surgeries. Gross total resection was achieved in 34/40 surgeries. All aneurysm clipping and microvascular decompression procedures were completed without complications. CONCLUSION SyncAR combined with VR planning has potential to enhance surgical performance by providing critical information in a user-friendly, continuously available, heads-up display format.
Collapse
Affiliation(s)
- Robert G Louis
- Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian Newport Beach, Newport Beach, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher Duma
- Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian Newport Beach, Newport Beach, California, USA
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Vivek Mehta
- Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian Newport Beach, Newport Beach, California, USA
| | - Jonathan Pace
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Warren Selman
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Walter C Jean
- Department of Neurosurgery, George Washington University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
36
|
Haemmerli J, Davidovic A, Meling TR, Chavaz L, Schaller K, Bijlenga P. Evaluation of the precision of operative augmented reality compared to standard neuronavigation using a 3D-printed skull. Neurosurg Focus 2021; 50:E17. [PMID: 33386018 DOI: 10.3171/2020.10.focus20789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Augmented reality (AR) in cranial surgery allows direct projection of preregistered overlaid images in real time on the microscope surgical field. In this study, the authors aimed to compare the precision of AR-assisted navigation and standard pointer-based neuronavigation (NV) by using a 3D-printed skull in surgical conditions. METHODS A commercial standardized 3D-printed skull was scanned, fused, and referenced with an MR image and a CT scan of a patient with a 2 × 2-mm right frontal sinus defect. The defect was identified, registered, and integrated into NV. The target was physically marked on the 3D-printed skull replicating the right frontal sinus defect. Twenty-six subjects participated, 25 of whom had no prior NV or AR experience and 1 with little AR experience. The subjects were briefly trained in how to use NV, AR, and AR recalibration tools. Participants were asked to do the following: 1) "target the center of the defect in the 3D-printed skull with a navigation pointer, assisted only by NV orientation," and 2) "use the surgical microscope and AR to focus on the center of the projected object" under conventional surgical conditions. For the AR task, the number of recalibrations was recorded. Confidence regarding NV and AR precision were assessed prior to and after the experiment by using a 9-level Likert scale. RESULTS The median distance to target was statistically lower for AR than for NV (1 mm [Q1: 1 mm, Q3: 2 mm] vs 3 mm [Q1: 2 mm, Q3: 4 mm] [p < 0.001]). In the AR task, the median number of recalibrations was 4 (Q1: 4, Q3: 4.75). The number of recalibrations was significantly correlated with the precision (Spearman rho: -0.71, p < 0.05). The trust assessment after performing the experiment scored a median of 8 for AR and 5.5 for NV (p < 0.01). CONCLUSIONS This study shows for the first time the superiority of AR over NV in terms of precision. AR is easy to use. The number of recalibrations performed using reference structures increases the precision of the navigation. The confidence regarding precision increases with experience.
Collapse
Affiliation(s)
- Julien Haemmerli
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and
| | | | - Torstein R Meling
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and
| | - Lara Chavaz
- 2Faculty of Medicine, University of Geneva, Switzerland
| | - Karl Schaller
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and
| | - Philippe Bijlenga
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and
| |
Collapse
|
37
|
Ma L, Fei B. Comprehensive review of surgical microscopes: technology development and medical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200292VRR. [PMID: 33398948 PMCID: PMC7780882 DOI: 10.1117/1.jbo.26.1.010901] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery. AIM This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications. APPROACH More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described. RESULTS Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room. CONCLUSIONS The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.
Collapse
Affiliation(s)
- Ling Ma
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| |
Collapse
|
38
|
Liu T, Tai Y, Zhao C, Wei L, Zhang J, Pan J, Shi J. Augmented reality in neurosurgical navigation: a survey. Int J Med Robot 2020; 16:e2160. [PMID: 32890440 DOI: 10.1002/rcs.2160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Neurosurgery has exceptionally high requirements for minimally invasive and safety. This survey attempts to analyze the practical application of AR in neurosurgical navigation. Also, this survey describes future trends in augmented reality neurosurgical navigation systems. METHODS In this survey, we searched related keywords "augmented reality", "virtual reality", "neurosurgery", "surgical simulation", "brain tumor surgery", "neurovascular surgery", "temporal bone surgery", and "spinal surgery" through Google Scholar, World Neurosurgery, PubMed and Science Direct. We collected 85 articles published over the past five years in areas related to this survey. RESULTS Detailed study has been conducted on the application of AR in neurosurgery and found that AR is constantly improving the overall efficiency of doctor training and treatment, which can help neurosurgeons learn and practice surgical procedures with zero risks. CONCLUSIONS Neurosurgical navigation is essential in neurosurgery. Despite certain technical limitations, it is still a necessary tool for the pursuit of maximum security and minimal intrusiveness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tao Liu
- Yunnan Key Lab of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
| | - Yonghang Tai
- Yunnan Key Lab of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
| | - Chengming Zhao
- Yunnan Key Lab of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
| | - Lei Wei
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC, Australia
| | - Jun Zhang
- Yunnan Key Lab of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
| | - Junjun Pan
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Junsheng Shi
- Yunnan Key Lab of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
| |
Collapse
|
39
|
Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg 2020; 139:186-195. [DOI: 10.1016/j.wneu.2020.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
|
40
|
Lin M, Catapano JS, Fredrickson VL. Commentary: Use of Mixed Reality Visualization in Endoscopic Endonasal Skull Base Surgery. Oper Neurosurg (Hagerstown) 2020; 19:E19-E20. [PMID: 32147732 DOI: 10.1093/ons/opaa042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Vance L Fredrickson
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
41
|
Abstract
Background Augmented reality is a technology that expands on image-guided surgery to allow intraoperative guidance and navigation. Augmented reality-assisted surgery (ARAS) has not been implemented in the vascular field yet. The wealth of sensors found on modern smartphones make them a promising platform for implementing vascular ARAS. However, current smartphone augmented reality platforms suffer from tracking instability, making them unsuitable for precise surgery. Novel algorithms need to be developed to tackle the stability and performance limitations of mobile phone augmented reality. Aim The primary aim was to develop an ARAS system utilizing low-cost smartphone hardware for vascular surgery. The second aim was to assess its performance by evaluating the stability of its tracking algorithms. Methods We designed an ARAS system utilizing standard optical tracking (SOT) and developed a novel tracking algorithm: hybrid gyroscopic and optical tracking (HGOT) for improved tracking stability. We evaluated the stability of both tracking algorithms using a phantom model and calculated tracking errors using root mean square error (RMSE). Results The novel augmented reality system displayed a three-dimensional (3D) guidance model fused with the patient's anatomy on a smartphone in real-time. The rotational tracking RMSE was 3.12 degrees for SOT and 0.091 degrees for HGOT. Positional tracking RMSE was 3.3 mm for SOT compared to 0.03 mm for HGOT. Comparing the stability of both tracking techniques showed HGOT to be significantly superior to SOT (p = 0.004). Conclusion We have developed a novel augmented reality system for vascular procedures. The development of HGOT has significantly increased the stability of a low-cost handheld augmented reality solution.
Collapse
Affiliation(s)
- Omar Aly
- General Surgery, Queen Alexandra Hospital, Portsmouth, GBR
| |
Collapse
|
42
|
Rychen J, Goldberg J, Raabe A, Bervini D. Augmented Reality in Superficial Temporal Artery to Middle Cerebral Artery Bypass Surgery: Technical Note. Oper Neurosurg (Hagerstown) 2020; 18:444-450. [PMID: 31232435 DOI: 10.1093/ons/opz176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/06/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Augmented reality (AR) applied to surgery refers to the virtual superimposition of computer-generated anatomical information on the surgical field. AR assistance in extracranial-intracranial (EC-IC) bypass revascularization surgery has been reported to be a helpful technical adjunct. OBJECTIVE To describe our experience of using AR in superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery with the additional implementation of new technical processes to improve the safety and efficacy of the procedure. METHODS Data sets from preoperative imaging were loaded and fused in a single 3-dimensional matrix using the neuronavigation system. Anatomical structures of interest (the STA, a selected M4 branch of the MCA, the middle meningeal artery [MMA], and the primary motor cortex [PMC]) were segmented. After the registration of the patient and the operating microscope, the structures of interest were projected into the eyepiece of the microscope and superimposed onto the patient's head, creating the AR surgical field. RESULTS AR was shown to be useful in patients undergoing EC-IC bypass revascularization, mostly during the following 4 surgical steps: (1) microsurgical dissection of the donor vessel (STA); (2) tailoring the craniotomy above the recipient vessel (M4 branch of the MCA); (3) tailoring the craniotomy to spare the MMA; and (4) tailoring the craniotomy and the anastomosis to spare the PMC. CONCLUSION AR assistance in EC-IC bypass revascularization is a versatile technical adjunct for helping surgeons to ensure the safety and efficacy of the procedure.
Collapse
Affiliation(s)
- Jonathan Rychen
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Catapano JS, Fredrickson VL. Commentary: Augmented Reality in Superficial Temporal Artery to Middle Cerebral Artery Bypass Surgery: Technical Note. Oper Neurosurg (Hagerstown) 2020; 18:E108-E109. [PMID: 31529066 DOI: 10.1093/ons/opz263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Vance L Fredrickson
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
44
|
Piao H, Ye D, Yu T, Shi J. Comparison of intraoperative magnetic resonance imaging, ultrasound, 5-aminolevulinic acid, and neuronavigation for guidance in glioma resection: A network meta-analysis. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Pérez-Pachón L, Poyade M, Lowe T, Gröning F. Image Overlay Surgery Based on Augmented Reality: A Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:175-195. [PMID: 33211313 DOI: 10.1007/978-3-030-47483-6_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Augmented Reality (AR) applied to surgical guidance is gaining relevance in clinical practice. AR-based image overlay surgery (i.e. the accurate overlay of patient-specific virtual images onto the body surface) helps surgeons to transfer image data produced during the planning of the surgery (e.g. the correct resection margins of tissue flaps) to the operating room, thus increasing accuracy and reducing surgery times. We systematically reviewed 76 studies published between 2004 and August 2018 to explore which existing tracking and registration methods and technologies allow healthcare professionals and researchers to develop and implement these systems in-house. Most studies used non-invasive markers to automatically track a patient's position, as well as customised algorithms, tracking libraries or software development kits (SDKs) to compute the registration between patient-specific 3D models and the patient's body surface. Few studies combined the use of holographic headsets, SDKs and user-friendly game engines, and described portable and wearable systems that combine tracking, registration, hands-free navigation and direct visibility of the surgical site. Most accuracy tests included a low number of subjects and/or measurements and did not normally explore how these systems affect surgery times and success rates. We highlight the need for more procedure-specific experiments with a sufficient number of subjects and measurements and including data about surgical outcomes and patients' recovery. Validation of systems combining the use of holographic headsets, SDKs and game engines is especially interesting as this approach facilitates an easy development of mobile AR applications and thus the implementation of AR-based image overlay surgery in clinical practice.
Collapse
Affiliation(s)
- Laura Pérez-Pachón
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Matthieu Poyade
- School of Simulation and Visualisation, Glasgow School of Art, Glasgow, UK
| | - Terry Lowe
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Head and Neck Oncology Unit, Aberdeen Royal Infirmary (NHS Grampian), Aberdeen, UK
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
46
|
Mikhail M, Mithani K, Ibrahim GM. Presurgical and Intraoperative Augmented Reality in Neuro-Oncologic Surgery: Clinical Experiences and Limitations. World Neurosurg 2019; 128:268-276. [PMID: 31103764 DOI: 10.1016/j.wneu.2019.04.256] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Virtual reality (VR) and augmented reality (AR) represent novel adjuncts for neurosurgical planning in neuro-oncology. In addition to established use in surgical and medical training, VR/AR are gaining traction for clinical use preoperatively and intraoperatively. To understand the utility of VR/AR in the clinical setting, we conducted a literature search in Ovid MEDLINE and EMBASE with various search terms designed to capture the use of VR/AR in neurosurgical procedures for resection of cranial tumors. The search retrieved 302 articles, of which 35 were subjected to full-text review; 19 full-text articles were included in the review. Key findings highlighted by the individual authors were extracted and summarized into themes to present the value of VR/AR in the clinical setting. These studies included various VR/AR systems applied to surgeries involving heterogeneous pathologies and outcome measures. Overall, VR/AR were found to be qualitatively advantageous due to enhanced visualization of complex anatomy and improved intraoperative lesion localization. When these technologies were compared with existing neuronavigation systems, quantitative clinical benefits were also reported. The capacity to visualize three-dimensional images superimposed on patient anatomy is a potentially valuable tool in complex neurosurgical environments. Surgical limitations may be addressed through future advances in image registration and tracking as well as intraoperatively acquired imaging with the ability to yield real-time virtual models.
Collapse
Affiliation(s)
- Mirriam Mikhail
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Karim Mithani
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Quantification of Microsurgical Anatomy in Three-Dimensional Model: Transfrontal Approach for Anterior Portion of the Thalamus. J Craniofac Surg 2019; 30:926-929. [PMID: 30807475 DOI: 10.1097/scs.0000000000005275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The thalamus located in the deep site of cerebrum with the risk of internal capsule injury during operation. The purpose of this study was to compare the anatomy for exposure and injury using simulative surgical corridor of 3-dimensional model. The 3-dimensional anatomy model of thalamus in cerebrum was created based on magnetic resonance imaging performed for 15 patients with trigeminal neuralgia. The midpoint of line between anterior edge and top of thalamus was the target exposed. Axis connecting the target with the anterior edge and top of caudate head was used to outline the cylinder, respectively, simulating surgical corridors 1 and 2 of transfrontal approach. Cerebral tissues involved in the corridors were observed, measured, and compared. Incision of cortex was made on the anterior portion of inferior frontal gyrus through corridor 1 and middle frontal gyrus through corridor 2. Both of the 2 corridors passed the caudate nucleus, the anterior limb and genu of internal capsule, ultimately reached the upper anterior portion of thalamus. The volumes of white matter, caudate head, and thalamus in the corridor 1 were more than those in corridor 2. Conversely, the volumes of cortex, internal capsule in corridor 2 were more than those in corridor 1. In conclusion, surgical anatomy-specific volume is helpful to postulate the intraoperative injury of transfrontal approach exposing anterior portion of the thalamus. The detailed information in the quantification of microsurgical anatomy will be used to develop minimally invasive operation.
Collapse
|
48
|
Lee C, Wong GKC. Virtual reality and augmented reality in the management of intracranial tumors: A review. J Clin Neurosci 2019; 62:14-20. [PMID: 30642663 DOI: 10.1016/j.jocn.2018.12.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/22/2018] [Indexed: 01/19/2023]
Abstract
Neurosurgeons are faced with the challenge of planning, performing, and learning complex surgical procedures. With improvements in computational power and advances in visual and haptic display technologies, augmented and virtual surgical environments can offer potential benefits for tests in a safe and simulated setting, as well as improve management of real-life procedures. This systematic literature review is conducted in order to investigate the roles of such advanced computing technology in neurosurgery subspecialization of intracranial tumor removal. The study would focus on an in-depth discussion on the role of virtual reality and augmented reality in the management of intracranial tumors: the current status, foreseeable challenges, and future developments.
Collapse
Affiliation(s)
- Chester Lee
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
49
|
Gridding Microsurgical Anatomy of Far Lateral Approach in the Three-Dimensional Model. J Craniofac Surg 2018; 30:87-90. [PMID: 30394967 DOI: 10.1097/scs.0000000000004849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The far lateral craniotomy involves osteotomy of various portions of occipital condyle. Intracranial operation exposing clivus encounters complicated neurovascular anatomy. The aim of the present study was to make refinement for the anatomy of far lateral approach by gridding route in the 3-dimensional model. METHODS Computed tomography and magnetic resonance imaging data were used to construct 3-dimensional model containing osseous and neurovascular structures of skull base. Then, far lateral approach was simulated by triangular prism and divided into gridding surgical route. The relationship of surgical route and osseous and neurovascular structures was observed. Measurement of volume was performed to evaluate surgical exposure. RESULTS Observation of 3-dimensional model showed bony drilling of far lateral approach started with the occipital condyle and passed through the lateral edge of foramen magnum. The cerebellum and medulla oblongata were exempted from the surgical route exposing clivus. The anatomy variances of operative space, osseous, and neurovascular structures in the gridding route were displayed clearly and compared objectively. CONCLUSION The gridding operative spaces for the far lateral approach are useful to disclose the detailed discrepancy in the different surgical region. The volumetric measurement provides quantified information to facilitate a better understanding of the anatomy variance.
Collapse
|
50
|
Incekara F, Smits M, Dirven C, Vincent A. Clinical Feasibility of a Wearable Mixed-Reality Device in Neurosurgery. World Neurosurg 2018; 118:e422-e427. [DOI: 10.1016/j.wneu.2018.06.208] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
|