1
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413367. [PMID: 39854126 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Min Gu
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | | | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dan Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Jingwu Li
- The First Hospital of China Medical University, Liaoning, 110001, China
| |
Collapse
|
2
|
Erickson NJ, Stavarache M, Tekedereli I, Kaplitt MG, Markert JM. Herpes Simplex Oncolytic Viral Therapy for Malignant Glioma and Mechanisms of Delivery. World Neurosurg 2025; 194:123595. [PMID: 39710201 DOI: 10.1016/j.wneu.2024.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The authors present a comprehensive review on the history and development of oncolytic herpes simplex viral therapies for malignant glioma with a focus on mechanisms of delivery in prior and ongoing clinical trials. This review highlights the advancements made with regard to delivering these therapies to a highly complex immunologic environment in the setting of the blood-brain and blood-tumor barrier in a safe and effective manner.
Collapse
Affiliation(s)
- Nicholas J Erickson
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mihaela Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Ibrahim Tekedereli
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - James M Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Zhang Y, Chen B, Liu R, Mei W, Lin Y. Deciphering glioblastoma pathogenesis: Insights from mitophagy dysregulation and SNX7 as a therapeutic target. Brain Res Bull 2025; 220:111184. [PMID: 39736337 DOI: 10.1016/j.brainresbull.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Glioblastoma is a highly aggressive and invasive brain tumor with an extremely poor prognosis. The aims of the present study are to investigate the pathogenesis of glioblastoma and identify potential therapeutic targets. METHODS We performed a systematic analysis of gene expression data from multiple datasets, including GEO and TCGA, to identify hub genes and pathways associated with glioblastoma progression. Bioinformatics tools were utilized to analyze differential gene expression, pathway enrichment and survival prognosis. Both in vitro and in vivo functional experiments were conducted to validate biological roles of SNX7. RESULTS Pathway analysis revealed significant enrichment of the mitophagy pathway in glioblastoma, indicating its critical role in tumor development. We identified 12 hub genes associated with glioblastoma prognosis, with high-risk patients having worse survival outcomes. Among the hub gene set, sorting nexin 7 (SNX7) was found to be the most significant regulator of glioblastoma progression. Our results also demonstrated that SNX7 expression is associated with tumor ferroptosis and genomic variations, representing potential biomarkers for clinical diagnosis and treatment. Furthermore, functional experiments confirmed that SNX7 promotes glioblastoma cell proliferation, invasion and survival by inhibiting protective mitophagy. CONCLUSION Our results highlight the importance of mitophagy dysregulation in the pathogenesis of glioblastoma and identify SNX7 as a novel therapeutic target. Further research is needed to elucidate the underlying mechanisms of SNX7 in glioblastoma and validate its clinical significance. These findings may facilitate the development of personalized treatment strategies and improve outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China
| | - Binghong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China
| | - Renfu Liu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China
| | - Wenzhong Mei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China.
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China.
| |
Collapse
|
4
|
Lin JZ, Kominia M, Doorduin J, de Vries EFJ. PET imaging of the anticancer drug candidate [ 11C]trimebutine in a rat glioma model. Nucl Med Biol 2024; 142-143:108985. [PMID: 39662136 DOI: 10.1016/j.nucmedbio.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE Preclinical studies suggest that trimebutine could be a potential treatment for glioblastoma. The aim of this study was to investigate the distribution, kinetics and tumor accumulation of [11C]trimebutine. METHOD A proliferation assay and cell scratch healing assay were performed to confirm the antitumor effects of trimebutine on C6 glioma cells in-vitro. Trimebutine was subsequently labeled with 11C. The distribution and kinetics of [11C]trimebutine in health rats and rats with an orthotopic C6 glioma were evaluated by ex-vivo gamma counting and positron emission tomography, respectively. Blocking experiments with an excess of unlabeled trimebutine or the μ-opioid receptor ligand cyprodime were employed to determine if trimebutine exhibits saturable binding in the brain. In addition, plasma stability of the tracer was assessed. RESULTS The proliferation assay and cell scratch healing assay confirmed that trimebutine has anti-tumor effects in-vitro. [11C]Trimebutine with a radiochemical purity >98 % was synthesized in 15 ± 5 % radiochemical yield. In peripheral organs, the highest accumulation of the tracer was detected in excretion organs. In the brain, the highest tracer uptake was observed in the brainstem and the lowest in the hypothalamus, although differences between regions were small. PET imaging showed rapid brain uptake of [11C]trimebutine, followed by a gradual washout. Administration of an intravenous dose of trimebutine (10 mg/kg) significantly decreased the uptake in all brain regions (p < 0.05), except midbrain. Likewise, administration of cyprodime (2 mg/kg) significantly reduced [11C]trimebutine uptake in the brain (p < 0.01). However, uptake of [11C]trimebutine in the tumor was not significantly different from its brain uptake in rats bearing an orthotopic C6 glioma. The percentage of intact [11C]trimebutine at 60 min post injection was only 1.7 ± 0.6 %. CONCLUSION Trimebutine exhibits inhibitory effects on the growth and migration of glioma cells in a dose- and time-dependent manner. [11C]Trimebutine was able to penetrate the blood-brain barrier in rats and tracer uptake could be significantly reduced by administration of a μ-opioid receptor antagonist. However, [11C]trimebutine failed to selectively accumulate in orthotopic C6 glioma, which could be caused by low expression levels of the drug target in these tumors, or by fast metabolism of the tracer.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, Groningen, the Netherlands; Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Maria Kominia
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, Groningen, the Netherlands.
| |
Collapse
|
5
|
Li Y, Lin L, Zhang W, Wang Y, Guan Y. Genetic association of type 2 diabetes mellitus and glycaemic factors with primary tumours of the central nervous system. BMC Neurol 2024; 24:458. [PMID: 39581977 PMCID: PMC11587545 DOI: 10.1186/s12883-024-03969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a pivotal chronic disease with an increasing prevalence. Recent studies have found associations between T2DM and the development of central nervous system (CNS) tumours, a special class of solid tumours with an unclear pathogenesis. In this study, we aimed to explore the relationship between T2DM and certain glycaemic factors with common CNS tumours by using genetic data to conduct Mendelian randomization (MR) and co-localisation analysis. We found a causal relationship between T2DM and glioblastoma, fasting glucose and spinal cord tumours, glycated haemoglobin and spinal cord tumours, and insulin-like growth factor-1 and spinal cord tumours, pituitary tumours, and craniopharyngiomas. These results clarify the relationship between T2DM, glucose-related factors, and common CNS tumours, and they provide valuable insight into further clinical and basic research on CNS tumours, as well as new ideas for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yongxue Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lihao Lin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenhui Zhang
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
6
|
Li H, Niu X, Cheng R. Prevalence, prognostic and clinicopathological value of HIF-1α in glioblastoma patients: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:860. [PMID: 39562395 DOI: 10.1007/s10143-024-03087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
Several studies have investigated the role of HIF-1α in predicting the prognosis of patients with glioblastoma, yielding contradictory results. Therefore, we performed a meta-analysis to document the correlation between HIF-1α and glioblastoma in individuals diagnosed with glioblastoma. We searched the PubMed, Cochrane Library, EMBASE, and Web of Science by January 25, 2024. Hazard Ratio (HR) was used to evaluate the relationship between HIF-1α and survival outcome, and Odds Ratio (OR) was adopted for tumor features.There was incorporation of nine observational studies with 607 individuals. The total prevalence of HIF-1α (higher than cut-off values) among individuals with glioblastoma was 0.72 (95% confidence interval (CI) = 0.68-0.75, I2 = 95.1%). There is a strong association between increased levels of HIF-1α in tumour tissues and shorter Overall Survival (OS) (HR = 1.82, 95% CI = 1.41-2.34, I2 = 13.7%). Subgroup analysis also indicated a correlation between higher levels of HIF-1α and reduced OS, specifically in the Asian population (HR = 1.48, 95% CI = 1.13-1.83, I2 = 41.5%). In addition, there was a correlation between HIF-1α and age (older vs. younger, OR = 2.19, 95% CI = 1.25-3.86, P = 0.260). High levels of HIF-1α expression were associated with poorer survival outcomes and other clinicopathological characteristics of glioblastoma. Integrating HIF-1α into prognostic tools for glioblastoma aids in predicting survival, categorising risk, and advising patients on suitable treatment regimens.
Collapse
Affiliation(s)
- Hao Li
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China.
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China.
| |
Collapse
|
7
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Iqbal J, Hafeez MH, Amin A, Moradi I, Chhabra A, Iqbal A, Patel T, Shafique MA, Nadeem A, Jamil U. Synergistic effects of herpes oncolytic virus and cyclophosphamide for recurrent malignant glioma: a narrative review. Ann Med Surg (Lond) 2024; 86:5354-5360. [PMID: 39239066 PMCID: PMC11374197 DOI: 10.1097/ms9.0000000000002384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Gliomas, comprising nearly 80% of brain malignancies, present a formidable challenge with glioblastomas being the most aggressive subtype. Despite multidisciplinary care, including surgery and chemoradiotherapy, the prognosis remains grim, emphasizing the need for innovative treatment strategies. The blood-brain barrier complicates drug access, and the diverse histopathology hinders targeted therapies. Oncolytic herpes viruses (oHSVs), particularly HSV1716, G207, and rQNestin34.5v, show promise in glioma treatment by selectively replicating in tumor cells. Preclinical and clinical studies demonstrate the safety and efficacy of oHSVs, with T-Vec being FDA-approved. However, challenges like viral delivery limitations and antiviral responses persist. The combination of oHSVs and combining cyclophosphamide (CPA) addresses these challenges, demonstrating increased transgene expression and viral activity. The immunosuppressive properties of CPA, particularly in metronomic schedules, enhance oHSV efficacy, supporting the development of this combination for recurrent malignant gliomas. CPA with oHSVs enhances viral oncolysis and extends survival. CPA's immunomodulatory effects, suppressing regulatory T cells, improve oHSV efficiency. While obstacles remain, this synergistic approach offers hope for improved outcomes, necessitating further research and clinical validation.
Collapse
Affiliation(s)
| | | | - Aamir Amin
- Harefield Hospital, Guy's and St Thomas' NHS foundation trust, Harefield, UK
| | - Iman Moradi
- University of British Columbia, Vancouver, BC, Canada
| | | | - Ather Iqbal
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore
| | - Tirath Patel
- American University of Antigua College of Medicine, Saint John, Antigua and Barbuda
| | | | | | | |
Collapse
|
9
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
10
|
Wang D, Geng H, Gondi V, Lee NY, Tsien CI, Xia P, Chenevert TL, Michalski JM, Gilbert MR, Le QT, Omuro AM, Men K, Aldape KD, Cao Y, Srinivasan A, Barani IJ, Sachdev S, Huang J, Choi S, Shi W, Battiste JD, Wardak Z, Chan MD, Mehta MP, Xiao Y. Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach. Cancers (Basel) 2024; 16:2007. [PMID: 38893130 PMCID: PMC11171017 DOI: 10.3390/cancers16112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of radiation therapy (RT) treatment plans directly affects the outcomes of clinical trials. KBP solutions have been utilized in RT plan quality assurance (QA). In this study, we evaluated the quality of RT plans for brain and head/neck cancers enrolled in multi-institutional clinical trials utilizing a KBP approach. The evaluation was conducted on 203 glioblastoma (GBM) patients enrolled in NRG-BN001 and 70 nasopharyngeal carcinoma (NPC) patients enrolled in NRG-HN001. For each trial, fifty high-quality photon plans were utilized to build a KBP photon model. A KBP proton model was generated using intensity-modulated proton therapy (IMPT) plans generated on 50 patients originally treated with photon RT. These models were then applied to generate KBP plans for the remaining patients, which were compared against the submitted plans for quality evaluation, including in terms of protocol compliance, target coverage, and organ-at-risk (OAR) doses. RT plans generated by the KBP models were demonstrated to have superior quality compared to the submitted plans. KBP IMPT plans can decrease the variation of proton plan quality and could possibly be used as a tool for developing improved plans in the future. Additionally, the KBP tool proved to be an effective instrument for RT plan QA in multi-center clinical trials.
Collapse
Affiliation(s)
- Du Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | - Huaizhi Geng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | - Vinai Gondi
- Northwestern Medicine Cancer Center Warrenville, Warrenville, IL 60555, USA
| | - Nancy Y. Lee
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ping Xia
- Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Thomas L. Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Jeff M. Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Quynh-Thu Le
- Stanford Cancer Institute, Stanford, CA 94305, USA; (Q.-T.L.)
| | | | - Kuo Men
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | | | - Yue Cao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Igor J. Barani
- Saint Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Sean Sachdev
- Northwestern Medicine Cancer Center Warrenville, Warrenville, IL 60555, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Serah Choi
- UPMC-Shadyside Hospital, Case Western Reserve University, Pittsburgh, PA 15232, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - James D. Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zabi Wardak
- UT Southwestern, Simmons Cancer Center, Dallas, TX 75235, USA
| | - Michael D. Chan
- Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| |
Collapse
|
11
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Lu X, Xie Y, Ding G, Sun W, Ye H. RBM24 Suppresses the Tumorigenesis of Glioblastoma by Stabilizing LATS1 mRNA. Biochem Genet 2024:10.1007/s10528-024-10715-7. [PMID: 38499965 DOI: 10.1007/s10528-024-10715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
The ribose nucleic acid (RNA)-binding motif protein 24 (RBM24) has been recognized as a critical regulatory protein in various types of tumors. However, its specific role in glioblastoma (GBM) has not been thoroughly investigated. The objective of this study is to uncover the role of RBM24 in GBM and understand the underlying mechanism. The expression of RBM24 in GBM was initially analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA). Subsequently, the RBM24 expression levels in clinical samples of GBM were examined, and the survival curves of GBM patients were plotted based on high- and low-expression levels of RBM24 using Kaplan-Meier (KM) plotter. In addition, RBM24 knockdown cell lines and overexpression vectors were created to assess the effects on proliferation, apoptosis, and invasion abilities. Finally, the binding level of RBM24 protein to LATS1 messenger RNA (mRNA) was determined by RNA immunoprecipitation (RIP) assay, and the expression levels of RBM24 and LATS1 were measured through quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR) and Western blot (WB). Our data revealed a significant decrease in RBM24 mRNA and protein levels in GBM patients, indicating that those with low RBM24 expression had a worse prognosis. Overexpression of RBM24 led to inhibited cell proliferation, reduced invasion, and increased apoptosis in LN229 and U87 cells. In addition, knocking down LATS1 partially reversed the effects of RBM24 on cell proliferation, invasion, and apoptosis in GBM cells. In vivo xenograft model further demonstrated that RBM24 overexpression reduced the growth of subcutaneous tumors in nude mice, accompanied by a decrease in Ki-67 expression and an increase in apoptotic events in tumor tissues. There was also correlation between RBM24 and LATS1 protein expression in the xenograft tumors. RBM24 functions to stabilize LATS1 mRNA, thereby inhibiting the proliferation, suppressing invasion, and promoting apoptosis in GBM cells.
Collapse
Affiliation(s)
- Xuewen Lu
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Yong Xie
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Guolin Ding
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Wei Sun
- Department of Neurosurgery, Qujing Hospital of Traditional Chinese Medicine, No.771, Yingxia Road, Qilin District, Qujing, Yunnan, China
| | - Hao Ye
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China.
| |
Collapse
|
14
|
Serafim RB, Cardoso C, Storti CB, da Silva P, Qi H, Parasuram R, Navegante G, Peron JPS, Silva WA, Espreafico EM, Paçó-Larson ML, Price BD, Valente V. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 2024; 43:804-820. [PMID: 38279062 DOI: 10.1038/s41388-024-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.
Collapse
Affiliation(s)
- Rodolfo B Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
| | - Cibele Cardoso
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Camila B Storti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Patrick da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geovana Navegante
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Jean Pierre S Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Enilza M Espreafico
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Maria L Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Valeria Valente
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil.
| |
Collapse
|
15
|
Liguori GL. Challenges and Promise for Glioblastoma Treatment through Extracellular Vesicle Inquiry. Cells 2024; 13:336. [PMID: 38391949 PMCID: PMC10886570 DOI: 10.3390/cells13040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field. EVs are natural particles delimited by a lipidic bilayer and filled with functional cellular content that are released and uptaken by cells as key means of cell communication. Furthermore, EVs are stable in body fluids and well tolerated by the immune system, and are able to cross physiological, interspecies, and interkingdom barriers and to target specific cells, releasing inherent or externally loaded functionally active molecules. Therefore, EVs have the potential to be ideal allies in the fight against GB and to improve the prognosis for GB patients. The present work describes the main preclinical results obtained so far on the use of EVs for GB treatment, focusing on both the EV sources and molecular cargo used in the various functional studies, primarily in vivo. Finally, a SWOT analysis is performed, highlighting the main advantages and pitfalls of developing EV-based GB therapeutic strategies. The analysis also suggests the main directions to explore to realize the possibility of exploiting EVs for the treatment of GB.
Collapse
Affiliation(s)
- Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, 80131 Naples, Italy
| |
Collapse
|
16
|
Poniatowski ŁA, Woźnica M, Wojdasiewicz P, Mela-Kalicka A, Romanowska-Próchnicka K, Purrahman D, Żurek G, Krawczyk M, Nameh Goshay Fard N, Furtak-Niczyporuk M, Jaroszyński J, Mahmoudian-Sani MR, Joniec-Maciejak I. The Role of Progranulin (PGRN) in the Pathogenesis of Glioblastoma Multiforme. Cells 2024; 13:124. [PMID: 38247816 PMCID: PMC10814625 DOI: 10.3390/cells13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive malignant form of brain tumour in adults and is characterized by an extremely poor prognosis with dismal survival rates. Currently, expanding concepts concerning the pathophysiology of GBM are inextricably linked with neuroinflammatory phenomena. On account of this fact, the identification of novel pathomechanisms targeting neuroinflammation seems to be crucial in terms of yielding successful individual therapeutic strategies. In recent years, the pleiotropic growth factor progranulin (PGRN) has attracted significant attention in the neuroscience and oncological community regarding its neuroimmunomodulatory and oncogenic functions. This review of the literature summarizes and updates contemporary knowledge about PGRN, its associated receptors and signalling pathway involvement in GBM pathogenesis, indicating possible cellular and molecular mechanisms with potential diagnostic, prognostic and therapeutic targets in order to yield successful individual therapeutic strategies. After a review of the literature, we found that there are possible PGRN-targeted therapeutic approaches for implementation in GBM treatment algorithms both in preclinical and future clinical studies. Furthermore, PGRN-targeted therapies exerted their highest efficacy in combination with other established chemotherapeutic agents, such as temozolomide. The results of the analysis suggested that the possible implementation of routine determinations of PGRN and its associated receptors in tumour tissue and biofluids could serve as a diagnostic and prognostic biomarker of GBM. Furthermore, promising preclinical applications of PGRN-related findings should be investigated in clinical studies in order to create new diagnostic and therapeutic algorithms for GBM treatment.
Collapse
Affiliation(s)
- Łukasz A. Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036 Neubrandenburg, Germany
| | - Michał Woźnica
- Department of Spine Surgery, 7th Navy Hospital, Polanki 117, 80-305 Gdańsk, Poland;
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
| | - Aneta Mela-Kalicka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
- Department of Systemic Connective Tissue Diseases, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Grzegorz Żurek
- Department of Biostructure, Wrocław University of Health and Sport Sciences, I. J. Paderewskiego 35, 51-612 Wrocław, Poland;
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Najmeh Nameh Goshay Fard
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Marzena Furtak-Niczyporuk
- Department of Public Health, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Janusz Jaroszyński
- Department of Administrative Proceedings, Faculty of Law and Administration, Maria Curie-Skłodowska University of Lublin, Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
17
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
19
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Zhang X, Xu H. Azithromycin inhibits glioblastoma angiogenesis in mice via inducing mitochondrial dysfunction and oxidative stress. Cancer Chemother Pharmacol 2023; 92:291-302. [PMID: 37486388 DOI: 10.1007/s00280-023-04567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The poor outcomes in glioblastoma (GBM) necessitate new treatments. As GBM is highly vascularized and its growth is largely dependent on angiogenesis, angiogenesis inhibitors have been hotly evaluated in clinical trials for GBM treatment for the last decade. In line with these efforts, our work reveals that azithromycin, a clinically available antibiotic, is a novel angiogenesis inhibitor. Azithromycin inhibits vessel structure formation on Matrigel of GBM-derived endothelial cell (ECs) and other types of ECs. Time course analysis shows that azithromycin interferes with the early stage of angiogenesis. Azithromycin also inhibits GBM-derived EC adhesion, growth and survival but not migration. The transgenic zebrafish Tg (fli1a: EGFP) model clearly shows that azithromycin inhibits angiogenesis in vivo. Of note, azithromycin at non-toxic dose inhibits GBM growth in mice and increases overall survival, and furthermore, this is associated with angiogenesis inhibition. Mechanism studies show that azithromycin decreases mitochondrial respiration by suppressing the activity of multiple complexes, leading to ATP reduction, oxidative stress and damage. In addition, oxidative stress induced by azithromycin is through thiol redox-mediated pathways. Our work demonstrates the anti-angiogenic activity of azithromycin via inducing mitochondrial dysfunction and oxidative stress. Our pre-clinical evidence provides a rationale for initiating clinical trials using azithromycin in combination with standard-of-care drugs for GBM patients.
Collapse
Affiliation(s)
- Xiulan Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, 160 Donghu Road, 430071, Wuhan, People's Republic of China
- Department of Nuclear Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 160 Donghu Road, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
Hautiere M, Vivier D, Pineau D, Denis C, Kereselidze D, Herbet A, Costa N, Goncalves V, Selingue E, Larrat B, Hugnot JP, Denat F, Boquet D, Truillet C. ImmunoPET imaging-based pharmacokinetic profiles of an antibody and its Fab targeting endothelin A receptors on glioblastoma stem cells in a preclinical orthotopic model. Eur J Nucl Med Mol Imaging 2023; 50:3192-3201. [PMID: 37280303 DOI: 10.1007/s00259-023-06268-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The resistance of glioblastoma stem cells (GSCs) to treatment is one of the causes of glioblastoma (GBM) recurrence. Endothelin A receptor (ETA) overexpression in GSCs constitutes an attractive biomarker for targeting this cell subpopulation, as illustrated by several clinical trials evaluating the therapeutic efficacy of endothelin receptor antagonists against GBM. In this context, we have designed an immunoPET radioligand combining the chimeric antibody targeting ETA, chimeric-Rendomab A63 (xiRA63), with 89Zr isotope and evaluated the abilities of xiRA63 and its Fab (ThioFab-xiRA63) to detect ETA+ tumors in a mouse model xenografted orthotopically with patient-derived Gli7 GSCs. RESULTS Radioligands were intravenously injected and imaged over time by µPET-CT imaging. Tissue biodistribution and pharmacokinetic parameters were analyzed, highlighting the ability of [89Zr]Zr-xiRA63 to pass across the brain tumor barrier and achieve better tumor uptake than [89Zr]Zr-ThioFab-xiRA63. CONCLUSIONS This study shows the high potential of [89Zr]Zr-xiRA63 in specifically targeting ETA+ tumors, thus raising the possibility of detecting and treating ETA+ GSCs, which could improve the management of GBM patients.
Collapse
Affiliation(s)
- Marie Hautiere
- Université Paris-Saclay, CEA, DMTS, SPI, 91191, Gif-Sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | | | - Donovan Pineau
- Université de Montpellier, IGF, INSERM U 1191 - CNRS UMR 5203, 34094, Montpellier, France
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | | | - Amaury Herbet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191, Gif-Sur-Yvette, France
| | - Narciso Costa
- Université Paris-Saclay, CEA, DMTS, SPI, 91191, Gif-Sur-Yvette, France
| | | | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Gif-Sur-Yvette, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Gif-Sur-Yvette, France
| | - Jean Philippe Hugnot
- Université de Montpellier, IGF, INSERM U 1191 - CNRS UMR 5203, 34094, Montpellier, France
| | - Franck Denat
- Université de Bourgogne, ICMUB UMR CNRS 6302, Dijon, France
| | - Didier Boquet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191, Gif-Sur-Yvette, France.
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France.
| |
Collapse
|
23
|
Santamarina‐Ojeda P, Tejedor JR, Pérez RF, López V, Roberti A, Mangas C, Fernández AF, Fraga MF. Multi-omic integration of DNA methylation and gene expression data reveals molecular vulnerabilities in glioblastoma. Mol Oncol 2023; 17:1726-1743. [PMID: 37357610 PMCID: PMC10483606 DOI: 10.1002/1878-0261.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer and exhibits profound genetic and epigenetic heterogeneity, making the development of an effective treatment a major challenge. The recent incorporation of molecular features into the diagnosis of patients with GBM has led to an improved categorization into various tumour subtypes with different prognoses and disease management. In this work, we have exploited the benefits of genome-wide multi-omic approaches to identify potential molecular vulnerabilities existing in patients with GBM. Integration of gene expression and DNA methylation data from both bulk GBM and patient-derived GBM stem cell lines has revealed the presence of major sources of GBM variability, pinpointing subtype-specific tumour vulnerabilities amenable to pharmacological interventions. In this sense, inhibition of the AP-1, SMAD3 and RUNX1/RUNX2 pathways, in combination or not with the chemotherapeutic agent temozolomide, led to the subtype-specific impairment of tumour growth, particularly in the context of the aggressive, mesenchymal-like subtype. These results emphasize the involvement of these molecular pathways in the development of GBM and have potential implications for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Pablo Santamarina‐Ojeda
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
| | - Juan Ramón Tejedor
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Raúl F. Pérez
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Virginia López
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
| | - Annalisa Roberti
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Cristina Mangas
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
| | - Agustín F. Fernández
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| | - Mario F. Fraga
- Health Research Institute of Asturias (ISPA)Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA)Spain
- University Institute of Oncology of Asturias (IUOPA)Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER)MadridSpain
- Nanomaterials and Nanotechnology Research Centre (CINN‐CSIC)Principality of AsturiasSpain
| |
Collapse
|
24
|
Ortiz Rivera J, Velez Crespo G, Inyushin M, Kucheryavykh Y, Kucheryavykh L. Pyk2/FAK Signaling Is Upregulated in Recurrent Glioblastoma Tumors in a C57BL/6/GL261 Glioma Implantation Model. Int J Mol Sci 2023; 24:13467. [PMID: 37686276 PMCID: PMC10487692 DOI: 10.3390/ijms241713467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels-pPyk2 (579/580) and pFAK (925)-without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection.
Collapse
Affiliation(s)
- Jescelica Ortiz Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (G.V.C.); (M.I.); (Y.K.); (L.K.)
| | | | | | | | | |
Collapse
|
25
|
Singh K, Han C, Fleming JL, Becker AP, McElroy J, Cui T, Johnson B, Kumar A, Sebastian E, Showalter CA, Schrock MS, Summers MK, Becker V, Tong ZY, Meng X, Manring HR, Venere M, Bell EH, Robe PA, Grosu AL, Haque SJ, Chakravarti A. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways. Sci Rep 2023; 13:12424. [PMID: 37528172 PMCID: PMC10394028 DOI: 10.1038/s41598-023-32983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/05/2023] [Indexed: 08/03/2023] Open
Abstract
GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chunhua Han
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Aline P Becker
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph McElroy
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, 91010, USA
| | - Benjamin Johnson
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ashok Kumar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ebin Sebastian
- Corewell Health William Beaumont University Hospital, Royal Oak, MI, 48073, USA
| | - Christian A Showalter
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Morgan S Schrock
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Valesio Becker
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zhen-Yue Tong
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Xiaomei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Erica H Bell
- Neroscience Research Institute/Department of Neurology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - A L Grosu
- Freiburg University, 79098, Freiburg, Germany
| | - S Jaharul Haque
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Ainsworth V, Moreau M, Guthier R, Zegeye Y, Kozono D, Swanson W, Jandel M, Oh P, Quon H, Hobbs RF, Yasmin-Karim S, Sajo E, Ngwa W. Smart Radiotherapy Biomaterials for Image-Guided In Situ Cancer Vaccination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1844. [PMID: 37368273 PMCID: PMC10303169 DOI: 10.3390/nano13121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Recent studies have highlighted the potential of smart radiotherapy biomaterials (SRBs) for combining radiotherapy and immunotherapy. These SRBs include smart fiducial markers and smart nanoparticles made with high atomic number materials that can provide requisite image contrast during radiotherapy, increase tumor immunogenicity, and provide sustained local delivery of immunotherapy. Here, we review the state-of-the-art in this area of research, the challenges and opportunities, with a focus on in situ vaccination to expand the role of radiotherapy in the treatment of both local and metastatic disease. A roadmap for clinical translation is outlined with a focus on specific cancers where such an approach is readily translatable or will have the highest impact. The potential of FLASH radiotherapy to synergize with SRBs is discussed including prospects for using SRBs in place of currently used inert radiotherapy biomaterials such as fiducial markers, or spacers. While the bulk of this review focuses on the last decade, in some cases, relevant foundational work extends as far back as the last two and half decades.
Collapse
Affiliation(s)
- Victoria Ainsworth
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Michele Moreau
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Romy Guthier
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
| | - Ysaac Zegeye
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
- Department of Cell and Molecular Biology, Northeastern University, Boston, MA 02115, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
| | - William Swanson
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Marian Jandel
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Philmo Oh
- NanoCan Therapeutics Corporation, Princeton, NJ 08540, USA;
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
| | - Robert F. Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erno Sajo
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| |
Collapse
|
27
|
Kaye B, Ali A, Correa Bastianon Santiago RA, Ibrahim B, Isidor J, Awad H, Sabahi M, Obrzut M, Adada B, Ranjan S, Borghei-Razavi H. The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Curr Oncol 2023; 30:4946-4956. [PMID: 37232831 DOI: 10.3390/curroncol30050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Glioblastoma (GBM) patients have a 20-30 incidence of venous thromboembolic events. EGFR is a widely used prognostic marker for many cancers. Recent lung cancer studies have described relationships between EGFR amplification and an increased incidence of thromboembolic complications. We aim to explore this relationship in glioblastoma patients. Methods: Two hundred ninety-three consecutive patients with IDH wild-type GBM were included in the analysis. The amplification status of EGFR was measured using fluorescence in situ hybridization (FISH). Centromere 7 (CEP7) expression was recorded to calculate the EGFR-to-CEP7 ratio. All data were collected retrospectively through chart review. Molecular data were obtained through the surgical pathology report at the time of biopsy. Results: There were 112 subjects who were EGFR-amplified (38.2%) and 181 who were non-amplified (61.8%). EGFR amplification status was not significantly correlated with VTE risk overall (p = 0.2001). There was no statistically significant association between VTE and EGFR status after controlling for Bevacizumab therapy (p = 0.1626). EGFR non-amplified status was associated with an increased VTE risk in subjects greater than 60 years of age (p = 0.048). Conclusions: There was no significant difference in occurrence of VTE in patients with glioblastoma, regardless of EGFR amplification status. Patients older than 60 years of age with EGFR amplification experienced a lower rate of VTE, contrary to some reports on non-small-cell lung cancer linking EGFR amplification to VTE risk.
Collapse
Affiliation(s)
- Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Assad Ali
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Bilal Ibrahim
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Julio Isidor
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Hany Awad
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Michal Obrzut
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Badih Adada
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Surabhi Ranjan
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | |
Collapse
|
28
|
Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Montero-Hidalgo AJ, Martín-Colom J, Doval-Rosa C, Blanco-Acevedo C, Torres E, Toledano-Delgado Á, Sánchez-Sánchez R, Peralbo-Santaella E, Ortega-Salas RM, Jiménez-Vacas JM, Tena-Sempere M, López M, Castaño JP, Gahete MD, Solivera J, Luque RM. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. EBioMedicine 2023; 90:104484. [PMID: 36907105 PMCID: PMC10024193 DOI: 10.1016/j.ebiom.2023.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFβ-pathways). Interestingly, an enrichment analysis uncovered a TGFβ-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Julia Martín-Colom
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Carlos Doval-Rosa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Encarnación Torres
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Esther Peralbo-Santaella
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Flow Cytometry Unit, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004, Cordoba, Spain
| | - Rosa M Ortega-Salas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel López
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
29
|
Targeted nano-delivery of chemotherapy via intranasal route suppresses in vivo glioblastoma growth and prolongs survival in the intracranial mouse model. Drug Deliv Transl Res 2023; 13:608-626. [PMID: 36245060 DOI: 10.1007/s13346-022-01220-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology-based drug delivery platforms have shown great potential in overcoming the limitations of conventional therapy for glioblastoma (GBM). However, permeation across the blood-brain barrier (BBB), physiological complexity of the brain, and glioma targeting strategies cannot entirely meet the challenging requirements of distinctive therapeutic delivery stages. The objective of this research is to fabricate lipid nanoparticles (LNPs) for the co-delivery of paclitaxel (PTX) and miltefosine (HePc) a proapoptotic agent decorated with transferrin (Tf-PTX-LNPs) and investigate its anti-glioma activity both in vitro and in vivo orthotopic NOD/SCID GBM mouse model. The present study demonstrates the anti-glioma effect of the dual drug combination of PTX and proapoptotic HePc lipid-based transferrin receptor (TfR) targeted alternative delivery (direct nose to brain transportation) of the nanoparticulate system (Tf-PTX-LNPs, 364 ± 5 nm, -43 ± 9 mV) to overcome the O6-methylguanine-DNA methyltransferase induce drug-resistant for improving the effectiveness of GBM therapy. The resulting nasally targeted LNPs present good biocompatibility, stability, high BBB transcytosis through selective TfR-mediated uptake by tumor cells, and effective tumor penetration in the brain of GBM induced mice. We observed markedly enhanced anti-proliferative efficacy of the targeted LNPs in U87MG cells compared to free drug. Nasal targeted LNPs had shown significantly improved brain concentration (Cmax fivefold and AUC0-24 4.9 fold) with early tmax (0.5 h) than the free drug. In vivo intracranial GBM-bearing targeted LNPs treated mice exhibited significantly prolonged survival with improved anti-tumor efficacy accompanied by reduced toxicity compared to systemic Taxol® and nasal free drug. These findings indicate that the nasal delivery of targeted synergistic nanocarrier holds great promise as a non-invasive adjuvant chemotherapy therapy of GBM.
Collapse
|
30
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
31
|
Zhang Q, Zhao J, Xu T. Inhibition of eukaryotic initiation factor 4E by tomivosertib suppresses angiogenesis, growth, and survival of glioblastoma and enhances chemotherapy's efficacy. Fundam Clin Pharmacol 2023. [PMID: 36691859 DOI: 10.1111/fcp.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Glioblastoma is characterized by extensive vascularization and is highly resistant to current therapy. Identification of drugs that target tumor directly and angiogenesis processes present an effective therapeutic strategy for glioblastoma. Mnk kinase is required for the activation of eukaryotic initiation factor 4E (eIF4E), which mediates translation of oncogenic proteins. We investigated the effects of tomivosertib, a novel MAPK-interacting kinase (MNK) inhibitor, on glioblastoma angiogenesis, growth, and survival. We found that tomivosertib inhibited growth and induced caspase-dependent apoptosis in various glioblastoma cell lines. Tomivosertib disrupted glioblastoma endothelial cell capillary network formation, growth, and survival. Mechanistically, tomivosertib acted on glioblastoma via suppressing MNK-dependent eIF4E phosphorylation and activation in tumor and endothelial cells. We further found that temozolomide activated eIF4E and this was reversed by tomivosertib. Using glioblastoma xenograft mouse model, we demonstrated that temozolomide and tomivosertib combination had higher efficacy than tomivosertib alone. Of note, tomivosertib inhibited glioblastoma angiogenesis and decreased p-eIF4E level in mice. We finally showed that p-eIF4E activation was a common molecular feature in glioblastoma patients. Our pre-clinical findings suggest that tomivosertib is a useful addition to the treatment armamentarium for glioblastoma and that targeting MNK-eIF4E pathway represents a therapeutic strategy to overcome glioblastoma chemoresistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Juan Zhao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Tingwei Xu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 14 Dong Street, Xiangcheng District, Xiangyang, 441021, Hubei Province, China
| |
Collapse
|
32
|
Hosseinalizadeh H, Mohamadzadeh O, Kahrizi MS, Razaghi Bahabadi Z, Klionsky DJ, Mirzei H. TRIM8: a double-edged sword in glioblastoma with the power to heal or hurt. Cell Mol Biol Lett 2023; 28:6. [PMID: 36690946 PMCID: PMC9869596 DOI: 10.1186/s11658-023-00418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor and one of the most lethal central nervous system tumors in adults. Despite significant breakthroughs in standard treatment, only about 5% of patients survive 5 years or longer. Therefore, much effort has been put into the search for identifying new glioma-associated genes. Tripartite motif-containing (TRIM) family proteins are essential regulators of carcinogenesis. TRIM8, a member of the TRIM superfamily, is abnormally expressed in high-grade gliomas and is associated with poor clinical prognosis in patients with glioma. Recent research has shown that TRIM8 is a molecule of duality (MoD) that can function as both an oncogene and a tumor suppressor gene, making it a "double-edged sword" in glioblastoma development. This characteristic is due to its role in selectively regulating three major cellular signaling pathways: the TP53/p53-mediated tumor suppression pathway, NFKB/NF-κB, and the JAK-STAT pathway essential for stem cell property support in glioma stem cells. In this review, TRIM8 is analyzed in detail in the context of GBM and its involvement in essential signaling and stem cell-related pathways. We also discuss the basic biological activities of TRIM8 in macroautophagy/autophagy, regulation of bipolar spindle formation and chromosomal stability, and regulation of chemoresistance, and as a trigger of inflammation.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- grid.411874.f0000 0004 0571 1549Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Omid Mohamadzadeh
- grid.411705.60000 0001 0166 0922Department of Neurosurgery, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Zahra Razaghi Bahabadi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran ,grid.444768.d0000 0004 0612 1049Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Daniel J. Klionsky
- grid.214458.e0000000086837370Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA
| | - Hamed Mirzei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Yekula A, Hsia T, Kitchen RR, Chakrabortty SK, Yu W, Batool SM, Lewis B, Szeglowski AJ, Weissleder R, Lee H, Chi AS, Batchelor T, Carter BS, Breakefield XO, Skog J, Balaj L. Longitudinal analysis of serum-derived extracellular vesicle RNA to monitor dacomitinib treatment response in EGFR-amplified recurrent glioblastoma patients. Neurooncol Adv 2023; 5:vdad104. [PMID: 37811539 PMCID: PMC10559837 DOI: 10.1093/noajnl/vdad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R Kitchen
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | | | - Wei Yu
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | - Syeda M Batool
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Lewis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoni J Szeglowski
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Johan Skog
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Rosa P, De Falco E, Pacini L, Piazza A, Ciracì P, Ricciardi L, Fiorentino F, Trungu S, Miscusi M, Raco A, Calogero A. Next-Generation Sequencing Comparative Analysis of DNA Mutations between Blood-Derived Extracellular Vesicles and Matched Cancer Tissue in Patients with Grade 4 Glioblastoma. Biomedicines 2022; 10:biomedicines10102590. [PMID: 36289852 PMCID: PMC9599233 DOI: 10.3390/biomedicines10102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
The biological heterogeneity of glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4), the most aggressive type of brain cancer, is a critical hallmark, caused by changes in the genomic mutational asset and influencing clinical progression over time. The understanding and monitoring of the mutational profile is important not only to reveal novel therapeutic targets in this set of patients, but also to ameliorate the clinical stratification of subjects and the prognostic significance. As neurosurgery represents the primary technique to manage GBM, it is of utmost importance to optimize alternative and less invasive methods to monitor the dynamic mutation profile of these patients. Extracellular vesicles (EVs) are included in the liquid biopsy analysis and have emerged as the biological mirror of escaping and surviving mechanisms by many tumors, including glioblastoma. Very few studies have investigated the technical feasibility to detect and analyze the genomic profile by Next-Generation Sequencing (UMI system) in circulating EVs of patients with grade IV glioblastoma. Here, we attempted to characterize and to compare the corresponding matched tissue samples and potential variants with pathogenic significance of the DNA contained in peripheral-blood-derived EVs. The NGS analysis has revealed that patients with grade IV glioblastoma exhibited lesser DNA content in EVs than controls and that, both in EVs and matched cancer tissues, the NF1 gene was consistently mutated in all patients, with the c.2568C>G as the most common pathogenic variant expressed. This study supports the clinical utility of circulating EVs in glioblastoma as an eligible tool for personalized medicine.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so Della Repubblica 79, 04100 Latina, Italy
- Correspondence: (P.R.); (M.M.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so Della Repubblica 79, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Luca Pacini
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so Della Repubblica 79, 04100 Latina, Italy
| | - Amedeo Piazza
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Ciracì
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Ricciardi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sokol Trungu
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
- UO di Neurochirurgia, Azienda Ospedaliera Cardinal G. Panico, 73039 Tricase, Italy
| | - Massimo Miscusi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (P.R.); (M.M.)
| | - Antonino Raco
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so Della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
35
|
Urbaniak A, Reed MR, Heflin B, Gaydos J, Piña-Oviedo S, Jędrzejczyk M, Klejborowska G, Stępczyńska N, Chambers TC, Tackett AJ, Rodriguez A, Huczyński A, Eoff RL, MacNicol AM. Anti-glioblastoma activity of monensin and its analogs in an organoid model of cancer. Biomed Pharmacother 2022; 153:113440. [PMID: 36076555 PMCID: PMC9472755 DOI: 10.1016/j.biopha.2022.113440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma (GBM) remains the most frequently diagnosed primary malignant brain cancer in adults. Despite recent progress in understanding the biology of GBM, the clinical outcome for patients remains poor, with a median survival of approximately one year after diagnosis. One factor contributing to failure in clinical trials is the fact that traditional models used in GBM drug discovery poorly recapitulate patient tumors. Previous studies have shown that monensin (MON) analogs, namely esters and amides on C-26 were potent towards various types of cancer cell lines. In the present study we have investigated the activity of these molecules in GBM organoids, as well as in a host:tumor organoid model. Using a mini-ring cell viability assay we have identified seven analogs (IC50 = 91.5 ± 54.4–291.7 ± 68.8 nM) more potent than parent MON (IC50 = 612.6 ± 184.4 nM). Five of these compounds induced substantial DNA fragmentation in GBM organoids, suggestive of apoptotic cell death. The most active analog, compound 1, significantly reduced GBM cell migration, induced PARP degradation, diminished phosphorylation of STAT3, Akt and GSK3β, increased ɣH2AX signaling and upregulated expression of the autophagy associated marker LC3-II. To investigate the activity of MON and compound 1 in a tumor microenvironment, we developed human cerebral organoids (COs) from human induced pluripotent stem cells (iPSCs). The COs showed features of early developing brain such as multiple neural rosettes with a proliferative zone of neural stem cells (Nestin+), neurons (TUJ1 +), primitive ventricular system (SOX2 +/Ki67 +), intermediate zone (TBR2 +) and cortical plate (MAP2 +). In order to generate host:tumor organoids, we co-cultured RFP-labeled U87MG cells with fully formed COs. Compound 1 and MON reduced U87MG tumor size in the COs after four days of treatment and induced a significant reduction of PARP expression. These findings highlight the therapeutic potential of MON analogs towards GBM and support the application of organoid models in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Billie Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - John Gaydos
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Marta Jędrzejczyk
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Greta Klejborowska
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Natalia Stępczyńska
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
36
|
Wan W, Zhang X, Huang C, Chen L, Yang X, Bao K, Peng T. Preclinical anti-angiogenic and anti-cancer activities of BAY1143269 in glioblastoma via targeting oncogenic protein expression. Pharmacol Res Perspect 2022; 10:e00981. [PMID: 35796398 PMCID: PMC9260954 DOI: 10.1002/prp2.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma angiogenesis is critical for tumor growth, making it an appealing target for treatment development. BAY1143269 is a novel inhibitor of mitogen-activated protein kinase interacting serine/threonine-protein kinase 1 (MKN1) and has potent anti-cancer activity. We identified BAY1143269 as an angiogenesis inhibitor, by in vitro and in vivo glioblastoma angiogenesis models. BAY1143269 inhibited the capillary network formation of glioblastoma microvascular endothelial cells (GMECs), particularly the early stage of tubular structure formation. It also inhibited migration and proliferation, and induced apoptosis of GMECs isolated from glioblastoma patients. We found that BAY1143269 acted on GMECs by suppressing the eukaryotic translation initiation factor 4E (eIF4E) and eIF4E-mediated expression of oncogenic proteins, including those involved in cell cycle, epithelial-mesenchymal transition (EMT), and pro-survival. In addition, BAY1143269 suppressed eIF4E phosphorylation, inhibited proliferation, and induced apoptosis of glioblastoma cells. Interestingly, it reduced vascular endothelial growth factor (VEGF) level in tumor cells and culturing medium, demonstrating the inhibitory effect of BAY1143269 on tumor proangiogenic microenvironment. We finally challenged BAY1143269 on the glioblastoma xenograft mice model and observed a significant tumor growth reduction without toxicity in mice receiving oral BAY1143269. Immunoblotting analysis demonstrated significantly less phosphorylated-eIF4E (p-eIF4E), cluster of differentiation 31 (CD31) (microvascular endothelial cell marker), and VEGF in tumors from drug-treated mice. In summary, the inhibition of glioblastoma angiogenesis with BAY1143269 may provide an alternative approach for anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Weifeng Wan
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xin Zhang
- Department of NeurosurgeryLuzhou People's HospitalLuzhouPeople's Republic of China
| | - Changren Huang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Ligang Chen
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobo Yang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Kunyang Bao
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Tangming Peng
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
37
|
Kim S, Lim E, Yoo K, Zhao Y, Kang J, Lim E, Shin I, Kang S, Lim HW, Lee S. Glioblastoma‐educated mesenchymal stem‐like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment. Clin Transl Med 2022; 12:e997. [PMID: 35908277 PMCID: PMC9339241 DOI: 10.1002/ctm2.997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background The biological function of mesenchymal stem‐like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. Methods In vitro and in vivo co‐culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. Results Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM‐related gene expression in MSLC‐isolatable patients with that in MSLC non‐isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM‐derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody‐suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM‐educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. Conclusion Our findings provide mechanistic insights into the pro‐infiltrative tumour microenvironment produced by GBM‐educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.
Collapse
Affiliation(s)
- Seung‐Mo Kim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Jung Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Memorial Sloan Kettering, Cancer Center New York New York USA
| | - Ki‐Chun Yoo
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Department of Lymphoma and Myeloma Division of Cancer Medicine Center for Cancer Immunology Research The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Yi Zhao
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Jae‐Hyeok Kang
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Ji Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Incheol Shin
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Seok‐Gu Kang
- Department of Neurosurgery Brain Tumor Center, Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Han Woong Lim
- Department of Ophthalmology Hanyang University Hospital Hanyang University College of Medicine Seoul Korea
| | - Su‐Jae Lee
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Fibrosis and Cancer Targeting Biotechnology FNCT Biotech Seoul Korea
| |
Collapse
|
38
|
Qin J, Tang Y, Wang B. Regional 18F-fluoromisonidazole PET images generated from multiple advanced MR images using neural networks in glioblastoma. Medicine (Baltimore) 2022; 101:e29572. [PMID: 35905276 PMCID: PMC9333488 DOI: 10.1097/md.0000000000029572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Generated 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET) images for glioblastoma are highly sought after because 18F-FMISO can be radioactive, and the imaging procedure is not easy. This study aimed to explore the feasibility of using advanced magnetic resonance (MR) images to generate regional 18F-FMISO PET images and its predictive value for survival. Twelve kinds of advanced MR images of 28 patients from The Cancer Imaging Archive were processed. Voxel-by-voxel correlation analysis between 18F-FMISO images and advanced MR images was performed to select the MR images for generating regional 18F-FMISO images. Neural network algorithms provided by the MATLAB toolbox were used to generate regional 18F-FMISO images. The mean square error (MSE) was used to evaluate the regression effect. The prognostic value of generated 18F-FMISO images was evaluated by the Mantel-Cox test. A total of 299 831 voxels were extracted from the segmented regions of all patients. Eleven kinds of advanced MR images were selected to generate 18F-FMISO images. The best neural network algorithm was Bayesian regularization. The MSEs of the training, validation, and testing groups were 2.92E-2, 2.9E-2, and 2.92E-2, respectively. Both the maximum Tissue/Blood ratio (P = .017) and hypoxic volume (P = .023) of the generated images were predictive factors of overall survival, but only hypoxic volume (P = .029) was a predictive factor of progression-free survival. Multiple advanced MR images are feasible to generate qualified regional 18F-FMISO PET images using neural networks. The generated images also have predictive value in the prognostic evaluation of glioblastoma.
Collapse
Affiliation(s)
- Jianhua Qin
- School of Medicine, Qingdao University, Qingdao, P. R. China
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Yu Tang
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, P. R. China
- *Correspondence: Bao Wang, Department of Radiology, Qilu Hospital of Shandong University, Jinan, P. R. China, 250012 (e-mail: )
| |
Collapse
|
39
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
40
|
Ortiz-Rivera J, Albors A, Kucheryavykh Y, Harrison JK, Kucheryavykh L. The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sci 2022; 12:brainsci12070893. [PMID: 35884700 PMCID: PMC9313002 DOI: 10.3390/brainsci12070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
- Correspondence:
| | - Alejandro Albors
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| |
Collapse
|
41
|
Dong Y, Xiong Y, Zhou D, Yao M, Wang X, Bi W, Zhang J. TRIM56 Reduces Radiosensitization of Human Glioblastoma by Regulating FOXM1-Mediated DNA Repair. Mol Neurobiol 2022; 59:5312-5325. [PMID: 35696011 DOI: 10.1007/s12035-022-02898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/21/2022] [Indexed: 12/01/2022]
Abstract
Recurrent glioblastoma is characterized by resistance to radiotherapy or chemotherapy. In this study, we investigated the role of TRIM56 in radiosensitization and its potential underlying molecular mechanism. TRIM56 expression levels were measured in glioblastoma tissues and cell lines by immunohistochemical staining, western blot, and qRT-PCR. MTT assay, colony formation assay, and TUNEL assay were used to investigate the effect of TRIM56 on cell viability, cell proliferation, and cell apoptosis. Co-immunoprecipitation was used to clarify the interaction between TRIM56 and FOXM1. Finally, tumor xenograft experiments were performed to analyze the effect of TRIM56 on tumor growth in vivo. The expression of TRIM56 was significantly increased in glioblastoma tissues and cell lines and its expression was associated with poor prognosis of patients with glioblastoma. Moreover, TRIM56 reduced the radiosensitivity of glioblastoma cells and promoted DNA repairment. Mechanistically, TRIM56 promoted FOXM1 protein level, enhanced the stability of FOXM1 by de-ubiquitination, and promoted DNA damage repair through FOXM1 in glioblastoma cells. TRIM56 could reduce the radiosensitivity of glioblastoma in vivo. TRIM56 may suppress the radiosensitization of human glioblastoma by regulating FOXM1-mediated DNA repair. Targeting the TRIM56 may be an effective method to reverse radiotherapy-resistant in glioblastoma recurrent.
Collapse
Affiliation(s)
- Yun Dong
- School of Pharmacy and Food Sciences, Zhuhai College of Science and Technology, Zhuhai, 519040, Guangdong Province, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Yiping Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Duanyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen City, 815020, Guangdong Province, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China.
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Nanshan District, No.1066, Xueyuan Road, Shenzhen City, 518055, Guangdong Province, China.
| |
Collapse
|
42
|
Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther 2022; 28:884-896. [PMID: 35332692 PMCID: PMC9062567 DOI: 10.1111/cns.13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glioma is the most frequent primary cerebral tumor in adults. Recent evidence has suggested that circular RNAs (circRNAs) are associated with the pathological processes in glioma. In our study, we aimed to investigate the function and mechanism of circ_CAPG (circ_0055412) in glioma. METHODS Firstly, circ_0055412 expression was examined through RT-qPCR analysis. Loss-of-function assays and animal experiments were implemented to evaluate the role of circ_0055412 on cisplatin resistance of glioma cells. Moreover, mechanism assays were done to probe into the regulatory mechanism of circ_0055412 in glioma cells. RESULTS Circ_0055412 was found to be notably upregulated in glioma cells. Moreover, depletion of circ_0055412 enhanced cisplatin sensitivity of glioma cells in vitro and in vivo. Moreover, circ_0055412 recruited eukaryotic translation initiation factor 4A3 (EIF4A3) protein to stabilize capping actin protein, gelsolin like (CAPG) mRNA. Furthermore, circ_0055412 served as a sponge for microRNA-330-3p (miR-330-3p) and regulated nuclear factor of activated T cells 3 (NFATC3) expression to activate the transcription of catenin beta 1 (CTNNB1), thus participating in the activation of Wnt/β-catenin signaling pathway. CONCLUSION Circ_0055412 contributed to cisplatin resistance of glioma cells via stabilizing CAPG mRNA and modulating Wnt/β-catenin signaling pathway. This finding might provide novel information for the treatment of glioma.
Collapse
Affiliation(s)
- Qingjiu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiang Fu
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mahati Shaya
- Department of Oncology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yalikun Kugeluke
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shaoshan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yisireyili Dilimulati
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
43
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis 2022; 13:344. [PMID: 35418162 PMCID: PMC9008004 DOI: 10.1038/s41419-022-04699-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Extracellular vesicle (EV)-mediated transfer of long non-coding RNAs (lncRNAs) has been reported to regulate chemoresistance in various cancers. We herein investigate the therapeutic potential of bioinformatically identified HOTAIR transferred by serum-derived EVs (serum-EVs) in temozolomide (TMZ) resistance of glioblastoma (GBM) and the downstream mechanisms. EVs were isolated from the serum of GBM patients. Expression of HOTAIR was examined in the clinical tissue samples and serum-EVs of GBM patients. The downstream miRNAs of HOTAIR and its target genes were predicted in silico. The effects of the HOTAIR transmitted by serum-EVs in malignant phenotypes, tumor growth, and TMZ resistance were assessed in vitro and in vivo. HOTAIR expression was upregulated in clinical tissues, cells, and serum-EVs of GBM. Co-culture data showed that GBM-serum-EVs facilitated GBM cell proliferative and invasive phenotypes and TMZ resistance by elevating HOTAIR. In GBM cells, HOTAIR competitively bound to miR-526b-3p and weakened miR-526b-3p’s binding ability to EVA1, thus increasing the expression of EVA1. Furthermore, HOTAIR carried by serum-EVs promoted tumor growth and TMZ resistance in vivo by suppressing miR-526b-3p-mediated EVA1 inhibition. GBM-serum-EV-enclosed HOTAIR may augment GBM progression and chemoresistance through miR-526b-3p downregulation and EVA1 upregulation. These results provide a strategy to reduce TMZ resistance in GBM treatment.
Collapse
|
45
|
Beg S, Panda SS, Singh KK. Chemometrics-assisted development of a validated LC method for simultaneous estimation of temozolomide and γ-linolenic acid: greenness assessment and application to lipidic nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1200:123261. [DOI: 10.1016/j.jchromb.2022.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
|
46
|
Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2998132. [PMID: 35368869 PMCID: PMC8967583 DOI: 10.1155/2022/2998132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 01/18/2023]
Abstract
We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.
Collapse
|
47
|
Overexpression of prothymosin-alpha in glioma is associated with tumor aggressiveness and poor prognosis. Biosci Rep 2022; 42:231053. [PMID: 35297481 PMCID: PMC9069441 DOI: 10.1042/bsr20212685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/05/2022] Open
Abstract
Prothymosin-α (PTMA), a nuclear protein, is strikingly associated with unfavorable clinical outcomes in many cancers. However, no information about its clinical relevance in glioma was available. Therefore in the present study, we evaluated the prognostic utility of this protein in a cohort of 81 glioma patients. The PTMA expression was assessed by immunohistochemical analysis, quantitative PCR, and Western blotting. Furthermore, the association of PTMA with clinicopathological features and molecular alterations were assessed in the patient cohort and validated in multiomics datasets, The Cancer Genome Atlas (TCGA; n=667) and Chinese Glioma Genome Atlas (CGGA; n=1013). We observed an increase in PTMA expression with increasing histological grades of this malignancy. PTMA immunostaining also displayed a strong positive association with the MIB-1 index. Univariate analysis revealed a superior prognostic value of PTMA to predict overall survival (OS) as compared with the routinely used markers (p53, isocitrate dehydrogenase (IDH) 1 (IDH1), α-thalassemia/intellectual disability syndrome X-linked (ATRX), and Ki-67). Interestingly, in Cox regression analysis it emerged as an independent predictor of OS (hazard ratio (HR) = 13.71, 95% CI = 5.96–31.52, P<0.0001). Thus, our results demonstrate the potential prognostic utility of PTMA in glioma which may prove useful in the management of this deadly malignancy.
Collapse
|
48
|
MiR-526b-3p Inhibits the Resistance of Glioma Cells to Adriamycin by Targeting MAPRE1. JOURNAL OF ONCOLOGY 2022; 2022:2402212. [PMID: 35198024 PMCID: PMC8860534 DOI: 10.1155/2022/2402212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
Background Cell resistance is the main reason for the high mortality in glioma. Adriamycin (ADR) is a treatment drug for glioma and often leads to chemoresistance. Previous studies have confirmed that the abnormal expression of microRNA (miRNA) affects the resistance of glioma cells. Methods RT-qPCR and western blot were conducted for detecting miR-526b-3p levels and related protein expressions. CCK8 assay, colony formation, flow cytometry, and Transwell were adopted to assess cell viability, proliferation, apoptosis, and metastasis. Moreover, downstream targets of miR-526b-3p were identified through a dual-luciferase reporter and RNA pull-down analysis. Results Nevertheless, miR-526b-3p functions on glioma cell resistance to ADR are not well characterized. This study demonstrated that miR-526b-3p levels were decreased within glioma cells and further decreased within ADR-resistant glioma cells. Then, miR-526b-3p overexpression repressed glioma cell proliferation and invasion while inducing cell apoptosis. Overexpression of miR-526b-3p within ADR-resistant glioma cells obtained similar results, which suggested miR-526b-3p suppressed glioma cell resistance to ADR. Mechanistically, miR-526b-3p targeted MAPKE1 and negatively regulated MAPKE1 expressions. Restoration of MAPKE1 levels reversed miR-526b-3p effects on the glioma process and resistance to ADR. Conclusion These results suggest that miR-526b-3p acts as a diagnostic marker in glioma development and therapeutic target of the glioma resistance to ADR.
Collapse
|
49
|
Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, Eckroth J, Singer D, Stope MB, Wende K, Ritter CA, Schroeder HWS, Marx S. Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers (Basel) 2022; 14:cancers14030813. [PMID: 35159079 PMCID: PMC8834374 DOI: 10.3390/cancers14030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Despite treatment advances, glioblastoma multiforme (GBM) remains an often-fatal disease, motivating novel therapeutic avenues. Gas plasma is a technology that has been recently employed in preclinical oncology research and acts primarily via reactive oxygen-species-induced cell death. In addition, the modulation of immune processes and inflammation have been ascribed to gas plasma exposure. This is the first study that extends those observations from in vitro investigations to a set of 16 patient-derived GBM tumor biopsies analyzed after gas plasma treatment ex vivo. Besides cell culture results showing cell cycle arrest and apoptosis induction, an immunomodulatory potential was identified for gas plasma exposure in vitro and cultured GBM tissues. The proapoptotic action shown in this study might be an important step forward to the first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology. Abstract Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Correspondence:
| | - Mikael Ispirjan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frederik Kinnen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Juliane Moritz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Jacqueline Eckroth
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmaceutics, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany;
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Srivastava S, Makala H, Sharma V, Suri V, Sarkar C, Kulshreshtha R. MED12 is overexpressed in glioblastoma patients and serves as an oncogene by targeting the VDR/BCL6/p53 axis. Cell Mol Life Sci 2022; 79:104. [PMID: 35091793 PMCID: PMC11071957 DOI: 10.1007/s00018-021-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 11/03/2022]
Abstract
Glioblastoma is the most life-threatening tumor of the central nervous system. Despite recent therapeutic advancements, maximum survival of glioblastoma patients remains dismal. The mediator complex is a set of proteins, essential for eukaryotic gene expression. Abnormal expression/mutations of specific mediator genes have been associated with progression of various cancers, however, its role and status in glioblastoma remains largely unknown. Our work shows overexpression of a subunit of kinase assembly of mediator complex, MED12, in various glioblastoma patient cohorts including Indian glioblastoma patients and cell lines. Functional characterization of MED12 using both overexpression and knockdown approach revealed that it promotes glioblastoma cell proliferation, migration and inhibits apoptosis. Transcriptome analysis post MED12 knockdown revealed Vitamin D receptor (VDR) pathway to be one of the key pathways affected by MED12 in glioblastoma. We studied direct interaction of MED12 with VDR protein using docking studies and co-immunoprecipitation assay. We identify BCL6, a secondary regulator of VDR signaling, to be directly regulated by MED12 through a combination of chromatin immunoprecipitation, qRT-PCR and western analyses. We further show that MED12 brings about the inhibition of p53 levels and apoptosis partly through induction of BCL6 in glioblastoma. Overall, this stands as the first report of MED12 over-expression and involvement in glioblastoma pathogenesis and identifies MED12 as an important mediator of VDR signaling and an attractive molecule for development of new therapeutic interventions.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hima Makala
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vaishali Suri
- Neuropathology Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|