1
|
Carrera-Justiz S. Introduction and Summary of Diagnosis and Treatment of Brain Tumors in Dogs and Cats. Vet Clin North Am Small Anim Pract 2025; 55:1-9. [PMID: 39227252 DOI: 10.1016/j.cvsm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Meningiomas are the most common tumor type in the brain in dogs and cats, and survival times are much higher for cats than dogs. Glioma is much more common in the dog, and median survival time is poor without definitive therapy. No recommendations currently exist for treatment of glioma in dogs, and there is ongoing research as the dog is a valid spontaneous model for the human equivalent disease. Other intracranial tumor types like lymphoma and histiocytic sarcoma do occur, though at a much lower frequency.
Collapse
Affiliation(s)
- Sheila Carrera-Justiz
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100126, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Lai YY, Horta RDS, Valenti P, Giuliano A. Retrospective Safety Evaluation of Combined Chlorambucil and Toceranib for the Treatment of Different Solid Tumours in Dogs. Animals (Basel) 2024; 14:3420. [PMID: 39682385 DOI: 10.3390/ani14233420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chlorambucil is used in veterinary medicine for various cancers, while Toceranib, which was licenced for treating canine mast cell tumours, is now used against other solid tumours. Both drugs are generally safe, but their combined use has not been studied. This study aimed to investigate retrospectively the safety profile of the Chlorambucil-Toceranib combination against canine solid tumours. Thirty-eight dogs received this combination. Chlorambucil was administered at a median dose intensity of 15.1 mg/m2 per week, while Toceranib was given at the median dosage of 2.5 mg/kg on a Monday-Wednesday-Friday schedule. Dosages were individually adjusted according to commercially available tablet formulation, co-morbidities, and adverse events (AEs). The resulting clinical benefit rate (CBR) and overall response rate (ORR) were 55.3% and 10.5%, respectively. The median progressive free survival (PFS) and median survival time (MST) were 45.5 (12-537) days and 259 (42-1178) days, respectively. Gastrointestinal AEs occurred in 39.5% of cases (n = 15), 15.8% (n = 6) experienced UPC elevation, while hematological and biochemistry AEs affected 13.2% (n = 5) each. Most of these AEs were grades 1-2 (G1-2). None of the dogs interrupted treatment due to AEs, and the combination appeared safe. Larger prospective clinical trials are required to confirm our findings and investigate its efficacy across various cancers.
Collapse
Affiliation(s)
- Yuk-Yin Lai
- Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Rodrigo Dos Santos Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Paola Valenti
- Clinica Veterinaria Malpensa AniCura, 21017 Samarate, VA, Italy
| | - Antonio Giuliano
- CityU Veterinary Medical Centre, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Petrucci GN, Magalhães TR, Dias M, Queiroga FL. Metronomic chemotherapy: bridging theory to clinical application in canine and feline oncology. Front Vet Sci 2024; 11:1397376. [PMID: 38903691 PMCID: PMC11187343 DOI: 10.3389/fvets.2024.1397376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Veterinary oncology has experienced significant evolution over the last few decades, with chemotherapy being currently applied to several neoplasms with therapeutic success. Traditionally, chemotherapy protocols are based on classic cytostatic drugs under the concept of maximum tolerated dose (MTD), which has been associated with a greater risk of toxicity and resistance. Thus, new therapeutic alternatives have emerged, such as metronomic chemotherapy (MC), introducing a new paradigm in cancer treatment. MC consists of administering low doses of chemotherapy drugs continuously over a long period of time, modulating the tumour microenvironment (TME) due to the combination of cytotoxic, antiangiogenic and immunomodulatory effects. This multi-targeted therapy has been described as a treatment option in several canine and feline cancers since 2007, with positive results already published in the literature, particularly in mammary carcinomas and soft tissue sarcomas in dogs. The aim of this review article is to describe the current knowledge about the use of MC in small animal oncology, with emphasis on its mechanisms of action, the most commonly used drugs and clinical outcome.
Collapse
Affiliation(s)
- Gonçalo N. Petrucci
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - Tomás Rodrigues Magalhães
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Márcia Dias
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Liang W, Fan Y, Liu Y, Fang T, Zhang J, Xu Y, Li J, Wang D. ROS/pH dual-sensitive emodin-chlorambucil co-loaded micelles enhance anti-tumor effect through combining oxidative damage and chemotherapy. Int J Pharm 2023; 647:123537. [PMID: 37866554 DOI: 10.1016/j.ijpharm.2023.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The high level of reactive oxygen species (ROS) at the tumor site has been widely used in the tumor targeted delivery. However, the ROS stimulus-responsive vector itself is also a ROS consumer, and the consumption of endogenous ROS may not be sufficient to maintain sustained drug release. In this study, we designed and synthesized ROS/pH dual-sensitive polymer micelles for the co-delivery of emodin (EMD) and chlorambucil (CLB). The release of quinone methides (QM) can consume glutathione (GSH), on the one hand, it can enhance the chemotoxicity of phenylbutyrate nitrogen mustard, on the other hand, emodin can induce oxidative damage of tumor cells and maintain the sustained targeted release of drugs.
Collapse
Affiliation(s)
- Wendi Liang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yingzhen Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yinghui Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yuyi Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
José-López R. Chemotherapy for the treatment of intracranial glioma in dogs. Front Vet Sci 2023; 10:1273122. [PMID: 38026627 PMCID: PMC10643662 DOI: 10.3389/fvets.2023.1273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Gliomas are the second most common primary brain tumor in dogs and although they are associated with a poor prognosis, limited data are available relating to the efficacy of standard therapeutic options such as surgery, radiation and chemotherapy. Additionally, canine glioma is gaining relevance as a naturally occurring animal model that recapitulates human disease with fidelity. There is an intense comparative research drive to test new therapeutic approaches in dogs and assess if results translate efficiently into human clinical trials to improve the poor outcomes associated with the current standard-of-care. However, the paucity of data and controversy around most appropriate treatment for intracranial gliomas in dogs make comparisons among modalities troublesome. To further inform therapeutic decision-making, client discussion, and future studies evaluating treatment responses, the outcomes of 127 dogs with intracranial glioma, either presumed (n = 49) or histologically confirmed (n = 78), that received chemotherapy as leading or adjuvant treatment are reviewed here. This review highlights the status of current chemotherapeutic approaches to intracranial gliomas in dogs, most notably temozolomide and lomustine; areas of novel treatment currently in development, and difficulties to consensuate and compare different study observations. Finally, suggestions are made to facilitate evidence-based research in the field of canine glioma therapeutics.
Collapse
Affiliation(s)
- Roberto José-López
- Hamilton Specialist Referrals – IVC Evidensia, High Wycombe, United Kingdom
| |
Collapse
|
6
|
Bentley RT, Fan TM, Lowrie M. Editorial: Chemotherapy and other pharmacotherapies for canine neurological disorders. Front Vet Sci 2023; 10:1323496. [PMID: 38026655 PMCID: PMC10643126 DOI: 10.3389/fvets.2023.1323496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- R. Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
- Department of Small Animal Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Mark Lowrie
- Neurology, Movement Referrals, Runcorn, United Kingdom
| |
Collapse
|
7
|
Maekawa N, Konnai S, Hosoya K, Kim S, Kinoshita R, Deguchi T, Owaki R, Tachibana Y, Yokokawa M, Takeuchi H, Kagawa Y, Takagi S, Ohta H, Kato Y, Yamamoto S, Yamamoto K, Suzuki Y, Okagawa T, Murata S, Ohashi K. Safety and clinical efficacy of an anti-PD-L1 antibody (c4G12) in dogs with advanced malignant tumours. PLoS One 2023; 18:e0291727. [PMID: 37792729 PMCID: PMC10550157 DOI: 10.1371/journal.pone.0291727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been developed for canine tumour treatment, and pilot clinical studies have demonstrated their antitumour efficacy in dogs with oral malignant melanoma (OMM). Although ICIs have been approved for various human malignancies, their clinical benefits in other tumour types remain to be elucidated in dogs. Here, we conducted a clinical study of c4G12, a canine chimeric anti-PD-L1 antibody, to assess its safety and efficacy in dogs with various advanced malignant tumours (n = 12) at the Veterinary Teaching Hospital of Hokkaido University from 2018 to 2023. Dogs with digit or foot pad malignant melanoma (n = 4), osteosarcoma (n = 2), hemangiosarcoma (n = 1), transitional cell carcinoma (n = 1), nasal adenocarcinoma (n = 1), B-cell lymphoma (n = 1), or undifferentiated sarcoma (n = 2) were treated with 2 or 5 mg/kg c4G12 every 2 weeks. Treatment-related adverse events of any grade were observed in eight dogs (66.7%), including elevated aspartate aminotransferase (grade 3) in one dog (8.3%) and thrombocytopenia (grade 4) in another dog (8.3%). Among dogs with target disease at baseline (n = 8), as defined by the response evaluation criteria for solid tumours in dogs (cRECIST), one dog with nasal adenocarcinoma and another with osteosarcoma experienced a partial response (PR), with an objective response rate of 25.0% (2 PR out of 8 dogs; 95% confidence interval: 3.2-65.1%). These results suggest that c4G12 is safe and tolerable and shows antitumor effects in dogs with malignant tumours other than OMM. Further clinical studies are warranted to identify the tumour types that are most likely to benefit from c4G12 treatment.
Collapse
Affiliation(s)
- Naoya Maekawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Ryohei Kinoshita
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Ryo Owaki
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Yurika Tachibana
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Madoka Yokokawa
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | | | - Satoshi Takagi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Ohta
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Keiichi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Yasuhiko Suzuki
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, International Affairs Office, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Survival Time after Surgical Debulking and Temozolomide Adjuvant Chemotherapy in Canine Intracranial Gliomas. Vet Sci 2022; 9:vetsci9080427. [PMID: 36006342 PMCID: PMC9414206 DOI: 10.3390/vetsci9080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Infiltrative brain tumours are common in dogs. Although different treatments have been used, such as surgery, radiotherapy, chemotherapy, or combinations, guidelines for the most effective management are lacking. In this study, we report the effect of combining surgery and chemotherapy on the survival of 14 dogs with infiltrative gliomas. Four dogs were operated on two or three times to remove the tumors, and only one of these dogs died shortly after the second surgery. All tolerated the surgery with minimal or no deterioration, and all were euthanized between 6 months to 2 years after diagnosis due to tumour progression. To conclude, surgery and chemotherapy, although not curative, can prolong survival in dogs with infiltrative brain tumours. This information may help future research into the most appropriate treatment for this debilitating condition. Abstract Intracranial gliomas are associated with a poor prognosis, and the most appropriate treatment is yet to be defined. The objectives of this retrospective study are to report the time to progression and survival times of a group of dogs with histologically confirmed intracranial gliomas treated with surgical debulking and adjuvant temozolomide chemotherapy. All cases treated in a single referral veterinary hospital from 2014 to 2021 were reviewed. Inclusion criteria comprised a histopathological diagnosis of intracranial glioma, adjunctive chemotherapy, and follow-up until death. Cases were excluded if the owner declined chemotherapy or there was insufficient follow-up information in the clinical records. Fourteen client-owned dogs were included with a median time to progression (MTP) of 156 days (95% CI 133–320 days) and median survival time (MST) of 240 days (95% CI 149–465 days). Temozolomide was the first-line adjuvant chemotherapy but changed to another chemotherapy agent (lomustine, toceranib phosphate, or melphalan) when tumour relapse was either suspected by clinical signs or confirmed by advanced imaging. Of the fourteen dogs, three underwent two surgical resections and one, three surgeries. Survival times (ST) were 241, 428, and 468 days for three dogs treated twice surgically and 780 days for the dog treated surgically three times. Survival times for dogs operated once was 181 days. One case was euthanized after developing aspiration pneumonia, and all other cases after progression of clinical signs due to suspected or confirmed tumour relapse. In conclusion, the results of this study suggest that debulking surgery and adjuvant chemotherapy are well-tolerated options in dogs with intracranial gliomas in which surgery is a possibility and should be considered a potential treatment option. Repeated surgery may be considered for selected cases.
Collapse
|
9
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
10
|
Boudreau CE, Najem H, Ott M, Horbinski C, Fang D, DeRay CM, Levine JM, Curran MA, Heimberger AB. Intratumoral Delivery of STING Agonist Results in Clinical Responses in Canine Glioblastoma. Clin Cancer Res 2021; 27:5528-5535. [PMID: 34433652 PMCID: PMC8989401 DOI: 10.1158/1078-0432.ccr-21-1914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Activation of STING (stimulator of interferon genes) can trigger a robust, innate antitumor immune response in immunologically "cold" tumors such as glioblastoma. PATIENTS AND METHODS A small-molecule STING agonist, IACS-8779, was stereotactically administered using intraoperative navigation intratumorally in dogs with spontaneously arising glioblastoma. The phase I trial used an escalating dose design, ascending through four dose levels (5-20 μg). Treatment was repeated every 4-6 weeks for a minimum of two cycles. Radiographic response to treatment was determined by response assessment in neuro-oncology (RANO) criteria applied to isovoxel postcontrast T1-weighted MR images obtained on a single 3T magnet. RESULTS Six dogs were enrolled and completed ≥1 cycle of treatment. One dog was determined to have an abscess and was removed from further analysis. One procedure-related fatality was observed. Radiographic responses were dose dependent after the first cycle. The first subject had progressive disease, whereas there was 25% volumetric reduction in one subject and greater than 50% in the remaining surviving subjects. The median progression-free survival time was 14 weeks (range: 0-22 weeks), and the median overall survival time was 32 weeks (range: 11-39 weeks). CONCLUSIONS Intratumoral STING agonist (IACS-8779) administration was well tolerated in dogs with glioblastoma to a dose of 15 μg. Higher doses of IACS-8779 were associated with radiographic responses.
Collapse
Affiliation(s)
- C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
| | - Hinda Najem
- Department of Neurosurgery, Northwestern University, Chicago, Illinois
| | | | - Craig Horbinski
- Department of Neurosurgery, Northwestern University, Chicago, Illinois
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chase M DeRay
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Michael A Curran
- Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University, Chicago, Illinois.
| |
Collapse
|
11
|
José‐López R, Gutierrez‐Quintana R, de la Fuente C, Manzanilla EG, Suñol A, Pi Castro D, Añor S, Sánchez‐Masian D, Fernández‐Flores F, Ricci E, Marioni‐Henry K, Mascort J, Matiasek LA, Matiasek K, Brennan PM, Pumarola M. Clinical features, diagnosis, and survival analysis of dogs with glioma. J Vet Intern Med 2021; 35:1902-1917. [PMID: 34117807 PMCID: PMC8295679 DOI: 10.1111/jvim.16199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gliomas in dogs remain poorly understood. OBJECTIVES To characterize the clinicopathologic findings, diagnostic imaging features and survival of a large sample of dogs with glioma using the Comparative Brain Tumor Consortium diagnostic classification. ANIMALS Ninety-one dogs with histopathological diagnosis of glioma. METHODS Multicentric retrospective case series. Signalment, clinicopathologic findings, diagnostic imaging characteristics, treatment, and outcome were used. Tumors were reclassified according to the new canine glioma diagnostic scheme. RESULTS No associations were found between clinicopathologic findings or survival and tumor type or grade. However, definitive treatments provided significantly (P = .03) improved median survival time (84 days; 95% confidence interval [CI], 45-190) compared to palliative treatment (26 days; 95% CI, 11-54). On magnetic resonance imaging (MRI), oligodendrogliomas were associated with smooth margins and T1-weighted hypointensity compared to astrocytomas (odds ratio [OR], 42.5; 95% CI, 2.42-744.97; P = .04; OR, 45.5; 95% CI, 5.78-333.33; P < .001, respectively) and undefined gliomas (OR, 84; 95% CI, 3.43-999.99; P = .02; OR, 32.3; 95% CI, 2.51-500.00; P = .008, respectively) and were more commonly in contact with the ventricles than astrocytomas (OR, 7.47; 95% CI, 1.03-53.95; P = .049). Tumor spread to neighboring brain structures was associated with high-grade glioma (OR, 6.02; 95% CI, 1.06-34.48; P = .04). CONCLUSIONS AND CLINICAL IMPORTANCE Dogs with gliomas have poor outcomes, but risk factors identified in survival analysis inform prognosis and the newly identified MRI characteristics could refine diagnosis of tumor type and grade.
Collapse
Affiliation(s)
- Roberto José‐López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
- Department of Animal Medicine and Surgery, Veterinary FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Rodrigo Gutierrez‐Quintana
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Cristian de la Fuente
- Department of Animal Medicine and Surgery, Veterinary FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Edgar G. Manzanilla
- School of Veterinary Medicine, University College DublinDublinIreland
- TEAGASC, The Irish Food and Agriculture AuthorityCorkIreland
| | - Anna Suñol
- ARS VeterinariaBarcelonaSpain
- Present address:
Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburghUK
| | - Dolors Pi Castro
- Department of Animal Medicine and Surgery, Veterinary FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Universitat Autònoma de BarcelonaBarcelonaSpain
- Present address:
Anicura Arvivet Hospital VeterinariBarcelonaSpain
| | - Sonia Añor
- Department of Animal Medicine and Surgery, Veterinary FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Daniel Sánchez‐Masian
- Institute of Veterinary Science, University of LiverpoolNestonUK
- Present address:
Anderson Moores Veterinary SpecialistsWinchesterUK
| | | | - Emanuele Ricci
- Institute of Veterinary Science, University of LiverpoolNestonUK
| | - Katia Marioni‐Henry
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of EdinburghEdinburghUK
| | | | - Lara A. Matiasek
- Tierklinik HaarHaarGermany
- Present address:
Anicura Small Animal ClinicBabenhausenGermany
| | - Kaspar Matiasek
- Centre for Clinical Veterinary Medicine, Ludwig‐Maximilians‐UniversitaetMunichGermany
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUK
| | - Martí Pumarola
- Department of Animal Medicine and Surgery, Veterinary FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Universitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
12
|
Bentley RT, Yanke AB, Miller MA, Heng HG, Cohen-Gadol A, Rossmeisl JH. Cerebrospinal Fluid Drop Metastases of Canine Glioma: Magnetic Resonance Imaging Classification. Front Vet Sci 2021; 8:650320. [PMID: 34012987 PMCID: PMC8126621 DOI: 10.3389/fvets.2021.650320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Dissemination of glioma in humans can occur as leptomeningeal nodules, diffuse leptomeningeal lesions, or ependymal lesions. Cerebrospinal fluid (CSF) drop metastasis of glioma is not well-recognized in dogs. Ten dogs with at least two anatomically distinct and histologically confirmed foci of glioma were included in this study. The 10 dogs underwent 28 magnetic resonance imaging (MRI) examinations, with distant CSF drop metastasis revealed in 13 MRIs. The CSF drop metastases appeared as leptomeningeal nodules in four dogs, diffuse leptomeningeal lesions in six dogs, and ependymal lesions in seven dogs; six dogs had a combination of lesion types. Primary tumors were generally T2-heterogeneous and contrast-enhancing. Many metastases were T2-homogeneous and non-enhancing. Diffuse leptomeningeal lesions were seen as widespread extra-axial contrast-enhancement, again very dissimilar to the intra-axial primary mass. Primary masses were rostrotentorial, whereas metastases generally occurred in the direction of CSF flow, in ventricles, CSF cisterns, and the central canal or leptomeninges of the cervical or thoracolumbar spinal cord. Seven of the dogs had received therapy limited to the primary mass, such as surgery or stereotactic radiation, then developed metastasis in the following months. CSF drop metastasis of glioma may take a very different appearance on MRI to the primary mass, including periventricular lesions that are more homogeneous and less contrast-enhancing, rostral horn signal changes, or leptomeningeal enhancement ventral to the brainstem or encircling the spinal cord.
Collapse
Affiliation(s)
- R Timothy Bentley
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Amy B Yanke
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Margaret A Miller
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Hock Gan Heng
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Aaron Cohen-Gadol
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
13
|
Lucroy MD, Suckow MA. Predictive modeling for cancer drug discovery using canine models. Expert Opin Drug Discov 2020; 15:731-738. [PMID: 32176534 DOI: 10.1080/17460441.2020.1739644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Rodent models of cancer lack many features associated with the disease in humans. Because dogs closely share an environment with humans, as well as comparable pathophysiology of cancer, they represent a powerful model with which to study novel approaches to cancer treatment. AREAS COVERED The authors summarize the weaknesses of rodent models of cancer and the ongoing need for better animal models with which to study potential therapeutic approaches. The homology of cancer in dogs and humans is described, along with examples specific to several common cancer types. EXPERT OPINION Laboratory mice and rats will continue to play a central role in cancer research; however, because of a variety of limitations, pet dogs with spontaneous cancer offer unique opportunities for research and should be included in the preclinical development of therapeutic compounds. Environmental homology between dogs and humans, along with biological and molecular similarities present circumstances that strengthen the translational rigor of studies conducted using canine patients. Progress will depend on a sufficient number of dogs to be diagnosed with cancer and available for use in studies; and essential to this will be the availability of enhanced resources for diagnosis of cancer in canine patients and reliable coordination between research scientists, veterinarians, and physicians.
Collapse
Affiliation(s)
- Michael D Lucroy
- Vice President, Oncology, Torigen Pharmaceuticals, Inc , Farmington, CT, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
14
|
Miller AD, Miller CR, Rossmeisl JH. Canine Primary Intracranial Cancer: A Clinicopathologic and Comparative Review of Glioma, Meningioma, and Choroid Plexus Tumors. Front Oncol 2019; 9:1151. [PMID: 31788444 PMCID: PMC6856054 DOI: 10.3389/fonc.2019.01151] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
In the dog, primary intracranial neoplasia represents ~2-5% of all cancers and is especially common in certain breeds including English and French bulldogs and Boxers. The most common types of primary intracranial cancer in the dog are meningioma, glioma, and choroid plexus tumors, generally occurring in middle aged to older dogs. Much work has recently been done to understand the characteristic imaging and clinicopathologic features of these tumors. The gross and histologic landscape of these tumors in the dog compare favorably to their human counterparts with many similarities noted in histologic patterns, subtype, and grades. Data informing the underlying molecular abnormalities in the canine tumors have only begun to be unraveled, but reveal similar pathways are mutated between canine and human primary intracranial neoplasia. This review will provide an overview of the clinicopathologic features of the three most common forms of primary intracranial cancer in the dog, delve into the comparative aspects between the dog and human neoplasms, and provide an introduction to current standard of care while also highlighting novel, experimental treatments that may help bridge the gap between canine and human cancer therapies.
Collapse
Affiliation(s)
- Andrew D. Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - C. Ryan Miller
- Division of Neuropathology, Department of Pathology, O'Neal Comprehensive Cancer Center and Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, United States
| | - John H. Rossmeisl
- Section of Neurology and Neurosurgery, Veterinary and Comparative Neuro-Oncology Laboratory, Department of Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|