1
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Sleep loss, caffeine, sleep aids and sedation modify brain abnormalities of mild traumatic brain injury. Exp Neurol 2024; 372:114620. [PMID: 38029810 DOI: 10.1016/j.expneurol.2023.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Little evidence exists about how mild traumatic brain injury (mTBI) is affected by commonly encountered exposures of sleep loss, sleep aids, and caffeine that might be potential therapeutic opportunities. In addition, while propofol sedation is administered in severe TBI, its potential utility in mild TBI is unclear. Each of these exposures is known to have pronounced effects on cerebral metabolism and blood flow and neurochemistry. We hypothesized that they each interact with cerebral metabolic dynamics post-injury and change the subclinical characteristics of mTBI. MTBI in rats was produced by head rotational acceleration injury that mimics the biomechanics of human mTBI. Three mTBIs spaced 48 h apart were used to increase the likelihood that vulnerabilities induced by repeated mTBI would be manifested without clinically relevant structural damage. After the third mTBI, rats were immediately sleep deprived or administered caffeine or suvorexant (an orexin antagonist and sleep aid) for the next 24 h or administered propofol for 5 h. Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were performed 24 h after the third mTBI and again after 30 days to determine changes to the brain mTBI phenotype. Multi-modal analyses on brain regions of interest included measures of functional connectivity and regional homogeneity from rs-fMRI, and mean diffusivity (MD) and fractional anisotropy (FA) from DTI. Each intervention changed the mTBI profile of subclinical effects that presumably underlie healing, compensation, damage, and plasticity. Sleep loss during the acute post-injury period resulted in dramatic changes to functional connectivity. Caffeine, propofol sedation and suvorexant were especially noteworthy for differential effects on microstructure in gray and white matter regions after mTBI. The present results indicate that commonplace exposures and short-term sedation alter the subclinical manifestations of repeated mTBI and therefore likely play roles in symptomatology and vulnerability to damage by repeated mTBI.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| | - Mathew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Conti L, Pizzoli SFM, Marzorati C, Grasso R, Petralia G, Pravettoni G. Cognitive alterations and brain functional changes following chemotherapy treatment in breast cancer patients: A systematic review on resting-state fMRI studies. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-16. [PMID: 38261545 DOI: 10.1080/23279095.2024.2303362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Cognitive dysfunctions and functional brain modifications are among the side effects reported by breast cancer patients that persist beyond the chemotherapy. This paper aims at synthesizing the evidence on cognitive and functional brain changes and their associations in breast cancer patients treated with chemotherapy. A systematic literature search was performed using PubMed, Ovid MEDLINE, Scopus, and Embase up to July 2022. Eligible studies evaluated adult women with breast cancer treated with systemic chemotherapy, that performed cognitive assessment and resting-state functional MRI. Methodological quality was assessed. Sixteen studies were included, with a total of 1054 female participants. All studies reported alterations mainly concerned the fronto-parieto-temporal system and specifically involved the disruption of the DMN. Consistent with these findings, BCPs showed changes in cognitive performance reporting dysfunctions in executive ability, memory, and attention. However, not all the studies found a significant association between functional brain alterations and cognitive dysfunction. Some limitations including lack of sample homogeneity and different methodological approaches were reported. This work highlighted the presence of cognitive dysfunctions and functional brain alteration in breast cancer patients treated with chemotherapy. This allows a greater awareness of the side effects, promoting better clinical management. However, further research is needed to investigate the cause-effect relationship between cognitive and functional alterations.
Collapse
Affiliation(s)
- Lorenzo Conti
- Applied Research Division for Cognitive and Psychological Science, IRCCS European Institute of Oncology, Milan, Italy
| | | | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, IRCCS European Institute of Oncology, Milan, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Giuseppe Petralia
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
- Division of Radiology, IRCCS European Institute of Oncology, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| |
Collapse
|
3
|
Yu J, Cao X, Zhou R, Chen Q, Wang Y. Abnormal brain glucose metabolism patterns in patients with advanced non-small-cell lung cancer after chemotherapy:A retrospective PET study. Brain Res Bull 2023; 202:110751. [PMID: 37625525 DOI: 10.1016/j.brainresbull.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
PURPOSE This study was designed to investigate the acute or chronic post-chemotherapy effect and different chemotherapy cycles effect on brain glucose metabolism. METHODS A total of seventy-three patients who received chemotherapy after being diagnosed with advanced non-small-cell lung cancer (NSCLC) and underwent 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scan at Nuclear Medicine Department of the Fifth Hospital of Sun Yat-sen University between September 2017 and August 2022 were included. Seventy-two healthy control patients who underwent whole-body 18F-FDG PET/CT scans at our department, without any evidence of malignancy and confirmed by follow-up visits, were included. Advanced NSCLC patients were classified into six arms: short-to-long course (chemotherapy cycles under 4, between 5 and 8 and more than 8) in acute chemotherapy effect (AC) group (scanned 18F-FDG PET/CT within 6 months post-chemotherapy) or chronic chemotherapy effect (CC) group (the interval between scanning and the last chemotherapy session more than six months). Statistical Parametric Mapping (SPM) analysis between patients' groups and healthy controls' brain 18F-FDG PET was performed (uncorrected p ˂ 0.001 with cluster size above 20 contiguous voxels). RESULTS There were no significant differences between patients' groups and healthy controls in age, gender and body mass index (BMI). SPM PET analyses revealed anomalous brain metabolic activity in different groups (p ˂ 0.001). Short-course + AC group exhibited hypermetabolism in the cerebellum and widespread hypometabolism in bilateral frontal lobe predominantly. Only hypometabolic brain regions were observed in middle-course + AC patients. Long-course + AC group displayed a greater number of abnormalities. Notably, these metabolic abnormalities tended to decrease in CC groups versus AC groups across all courses. CONCLUSION Our study revealed that patients with advanced NSCLC who underwent chemotherapy exhibited persistent abnormal brain metabolism patterns during continuous chemotherapy and these abnormalities tended to recover after completion of chemotherapy over time, but without correlation to an increasing number of chemotherapy cycles. 18F-FDG PET/CT may serve as a possible modality for evaluating brain function and guiding appropriate treatment timing.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaoling Cao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Renwei Zhou
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Qingling Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Saita K, Amano S, Kaneko F, Okamura H. A scoping review of cognitive assessment tools and domains for chemotherapy-induced cognitive impairments in cancer survivors. Front Hum Neurosci 2023; 17:1063674. [PMID: 36891148 PMCID: PMC9987518 DOI: 10.3389/fnhum.2023.1063674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Backgrounds Cancer survivors suffer from specific symptoms known as chemotherapy-induced cognitive impairments (CICIs). CICIs are difficult to capture with existing assessments such as the brief screening test for dementia. Although recommended neuropsychological tests (NPTs) exist, international consensus and shared cognitive domains of assessment tools are unknown. The aim of this scoping review was as follows: (1) to identify studies that assess CICIs in cancer survivors; (2) to identify shared cognitive assessment tools and domains by mapping the domains reported in studies using the International Classification of Functioning, Disability and Health (ICF) framework. Methods The study followed the recommendations made by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. We searched the following three databases through October 2021: PubMed, CINAHL, and Web of Science. Prospective longitudinal or cross-sectional studies were selected to determine CICI-specific assessment tools for adult cancer survivors. Results Sixty-four prospective studies (36 longitudinal studies and 28 cross-sectional studies) were included after checking for eligibility. The NPTs were divided into seven main cognitive domains. The specific mental functions were often used in the order of memory, attention, higher-level cognitive functions, and psychomotor functions. Perceptual functions were used less frequently. In some ICF domains, shared NPTs were not clearly identified. In some different domains, the same NPTs were used, such as the trail making test and the verbal fluency test. When the association between the publishing year and the amount of NPT use was examined, it was found that the amount of tool use tended to decline over the publication years. The Functional Assessment of Cancer Therapy-Cognitive function (FACT-Cog) was a shared consensus tool among the patient-reported outcomes (PROs). Conclusion Chemotherapy-induced cognitive impairments are currently gaining interest. Shared ICF domains such as memory and attention were identified for NPTs. There was a gap between the publicly recommended tools and the tools actually used in the studies. For PROs, a clearly shared tool, FACT-Cog, was identified. Mapping the domains reported in studies using the ICF can help in the process of reviewing consensus on which NPTs may be used to target cognitive domains. Systematic review registration https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000053710, identifier UMIN000047104.
Collapse
Affiliation(s)
- Kazuya Saita
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoru Amano
- Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Fumiko Kaneko
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Okamura
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Adzrago D, Sulley S, Tagoe I, Ormiston CK, Odame EA, Mamudu L, Williams F. Assessment of anxiety/depression among cancer patients before and during the COVID-19 pandemic. Psychooncology 2022; 31:1681-1691. [PMID: 36029183 PMCID: PMC9762178 DOI: 10.1002/pon.6026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To assess differences in the prevalence of anxiety/depression symptoms among cancer patients before (2019) and during the COVID-19 pandemic (2020); and the associations between anxiety/depression and sociodemographic and health behavior factors among cancer patients before and during the pandemic. METHODS We analyzed data from the 2019 (n = 856) and 2020 (n = 626) Health Information National Trends Survey, a nationally representative survey of United States adults aged ≥18 years. Only adults with a cancer diagnosis were used in the analyses. Anxiety/depression was assessed using the Patient Health Questionnaire-4 (low/none [0-2], mild [3-5], moderate [6-8], and severe [9-12]) and dichotomized as low/none and current anxiety/depression (mild/moderate/severe). Multivariate analysis was performed. RESULTS The prevalence of anxiety/depression symptoms among cancer patients was 32.7% before the COVID-19 pandemic and 31.1% during the pandemic. The odds of anxiety/depression among patients with fair/poor health status was higher during the pandemic relative to before (before: odds ratio [OR] = 1.85 vs. during: OR = 3.89). Participants aged 50-64 years (before: OR = 0.29, 95% confidence interval [95% CI] = 0.11-0.76; during: OR = 0.33, 95% CI = 0.11-0.97) and ≥65 years (before: OR = 0.13, 95% CI = 0.05-0.34; during: OR = 0.18, 95% CI = 0.07-0.47) had lower odds of anxiety/depression before and during the pandemic compared to those aged 35-49 years. Hispanics/Latinos had higher odds of anxiety/depression (OR = 2.70, 95% CI = 1.11-6.57) before the pandemic and lower odds of anxiety/depression during the pandemic (OR = 0.2, 95% CI = 0.05-1.01) compared to non-Hispanic Whites. Those who completed high school (before: OR = 0.08, 95% CI = 0.01-0.42), some college (before: OR = 0.10, 95% CI = 0.02-0.42), ≥college degree had lower odds of anxiety/depression symptoms (before: OR = 0.05, 95% CI = 0.01-0.26; during: OR = 0.06, 95% CI = 0.01-0.61) compared to those with less than a high school education. CONCLUSION Our results suggest the need to increase the provision of mental health services to cancer patients at high risk of developing anxiety/depression symptoms, particularly during public health emergencies, to alleviate further health burdens.
Collapse
Affiliation(s)
- David Adzrago
- Center for Health Promotion and Prevention ResearchThe University of Texas School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | | | - Ishmael Tagoe
- School of Population HealthUniversity of ToledoToledoOhioUSA
| | - Cameron K. Ormiston
- Division of Intramural ResearchNational Institute on Minority Health and Health DisparitiesNational Institutes of HealthBethesdaMarylandUSA
| | - Emmanuel A. Odame
- Department of Environmental Health SciencesSchool of Public HealthUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Lohuwa Mamudu
- Department of Public HealthCalifornia State UniversityFullertonCaliforniaUSA
| | - Faustine Williams
- Division of Intramural ResearchNational Institute on Minority Health and Health DisparitiesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Huehnchen P, Bangemann N, Lischewski S, Märschenz S, Paul F, Schmitz-Hübsch T, Blohmer JU, Eberhardt C, Rauch G, Flöel A, Adam S, Schwenkenbecher P, Meinhold-Heerlein I, Hoffmann O, Ziemssen T, Endres M, Boehmerle W. Rationale and design of the prevention of paclitaxel-related neurological side effects with lithium trial - Protocol of a multicenter, randomized, double-blind, placebo- controlled proof-of-concept phase-2 clinical trial. Front Med (Lausanne) 2022; 9:967964. [PMID: 36035422 PMCID: PMC9403739 DOI: 10.3389/fmed.2022.967964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Chemotherapy-induced polyneuropathy (CIPN) and post-chemotherapy cognitive impairment (PCCI) are frequent side effects of paclitaxel treatment. CIPN/PCCI are potentially irreversible, reduce quality of life and often lead to treatment limitations, which affect patients' outcome. We previously demonstrated that paclitaxel enhances an interaction of the Neuronal calcium sensor-1 protein (NCS-1) with the Inositol-1,4,5-trisphosphate receptor (InsP3R), which disrupts calcium homeostasis and triggers neuronal cell death via the calcium-dependent protease calpain in dorsal root ganglia neurons and neuronal precursor cells. Prophylactic treatment of rodents with lithium inhibits the NCS1-InsP3R interaction and ameliorates paclitaxel-induced polyneuropathy and cognitive impairment, which is in part supported by limited retrospective clinical data in patients treated with lithium carbonate at the time of chemotherapy. Currently no data are available from a prospective clinical trial to demonstrate its efficacy. Methods and analysis The PREPARE study will be conducted as a multicenter, randomized, double-blind, placebo-controlled phase-2 trial with parallel group design. N = 84 patients with breast cancer will be randomized 1:1 to either lithium carbonate treatment (targeted serum concentration 0.5-0.8 mmol/l) or placebo with sham dose adjustments as add-on to (nab-) paclitaxel. The primary endpoint is the validated Total Neuropathy Score reduced (TNSr) at 2 weeks after the last (nab-) paclitaxel infusion. The aim is to show that the lithium carbonate group is superior to the placebo group, meaning that the mean TNSr after (nab-) paclitaxel is lower in the lithium carbonate group than in the placebo group. Secondary endpoints include: (1) severity of CIPN, (2) amount and dose of pain medication, (3) cumulative dose of (nab-) paclitaxel, (4) patient-reported symptoms of CIPN, quality of life and symptoms of anxiety and depression, (5) severity of cognitive impairment, (6) hippocampal volume and changes in structural/functional connectivity and (7) serum Neurofilament light chain protein concentrations. Ethics and dissemination The study protocol was approved by the Berlin ethics committee (reference: 21/232 - IV E 10) and the respective federal agency (Bundesinstitut für Arzneimittel und Medizinprodukte, reference: 61-3910-4044771). The results of the study will be published in peer-reviewed medical journals as well as presented at relevant (inter)national conferences. Clinical trial registration [https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027165], identifier [DRKS00027165].
Collapse
Affiliation(s)
- Petra Huehnchen
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Bangemann
- Carl-Thiem-Klinikum Cottbus, Klinik für Senologie und Systemische Gynäkoonkologie mit Brustzentrum, Cottbus, Germany
| | - Sandra Lischewski
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Stefanie Märschenz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jens-Uwe Blohmer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Klinik für Gynäkologie und Brustzentrum, Berlin, Germany
| | - Cornelia Eberhardt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pharmacy, Berlin, Germany
| | - Geraldine Rauch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Biometrie und Klinische Epidemiologie, Berlin, Germany
| | - Agnes Flöel
- Universitätsmedizin Greifswald, Department of Neurology, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | | | | | - Ivo Meinhold-Heerlein
- Universitätsklinikum Giessen, Klinik für Gynäkologie und Geburtshilfe, Giessen, Germany
| | - Oliver Hoffmann
- Universitätsklinikum Essen, Klinik für Frauenheilkunde und Geburtshilfe, Essen, Germany
| | - Tjalf Ziemssen
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Neurologie, Dresden, Germany
| | - Matthias Endres
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Carl-Thiem-Klinikum Cottbus, Klinik für Senologie und Systemische Gynäkoonkologie mit Brustzentrum, Cottbus, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Wolfgang Boehmerle
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zhou W, Tian W, Xia J, Li Y, Li X, Yao T, Bi J, Zhu Z. Alterations in degree centrality and cognitive function in breast cancer patients after chemotherapy. Brain Imaging Behav 2022; 16:2248-2257. [PMID: 35689165 DOI: 10.1007/s11682-022-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
The goal of this study was to determine the presence or absence of persistent functional impairments in specific brain regions in breast cancer patients during the recovery period after chemotherapy. We calculated degree centrality (DC) and explored the correlation between brain changes and cognitive scores in 29 female patients with breast cancer who had completed chemotherapy within 1-6 years (C + group) and in 28 age-matched patients with breast cancer who did not receive chemotherapy (C- group). All patients underwent rs-fMRI and cognitive testing. Differences in brain functional activity were explored using DC parameters. Correlations between brain features and cognitive scores were analyzed via correlation analysis. Compared with the C- group, the C + group obtained significantly lower motor and cognitive subscores on the Fatigue Scale for Motor and Cognitive Functions and four subscale scores of the Functional Assessment of Cancer Therapy-Cognitive Function (P < 0.05). Furthermore, the C + group exhibited a significantly higher DC z-score (zDC) in the right superior temporal gyrus and left postcentral gyrus (P < 0.01, FWE-corrected), and a lower zDC in the left caudate nucleus (P < 0.01, FWE-corrected). We found a positive correlation between digit symbol test (DST) scores and zDC values in the right superior temporal gyrus (r = 0.709, P < 0.001), and a negative correlation between DST scores and zDC values in the right angular gyrus (r = -0.784, P < 0.001) and left superior parietal gyrus (r = -0.739, P < 0.001). Chemotherapy can cause abnormal brain activity and cognitive decline in patients with breast cancer, and these effects are likely to persist. DC can be used as an imaging marker for chemotherapy-related cognitive impairment after chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Wensu Zhou
- Graduate School of Dalian Medical University, 116044, Dalian, China
| | - Weizhong Tian
- Department of Radiology, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China.
| | - Jianguo Xia
- Department of Radiology, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China.
| | - Yuan Li
- Department of Radiology, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China
| | - Xiaolu Li
- Graduate School of Dalian Medical University, 116044, Dalian, China
| | - Tianyi Yao
- Department of Breast and Thyroid Surgery, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China
| | - Jingcheng Bi
- Department of Breast and Thyroid Surgery, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China
| | - Zhengcai Zhu
- Department of Breast and Thyroid Surgery, Taizhou People's Hospital, 225300, Taizhou, Jiangsu, China
| |
Collapse
|
8
|
Durán-Gómez N, López-Jurado CF, Nadal-Delgado M, Pérez-Civantos D, Guerrero-Martín J, Cáceres MC. Chemotherapy-Related Cognitive Impairment in Patients with Breast Cancer Based on Functional Assessment and NIRS Analysis. J Clin Med 2022; 11:jcm11092363. [PMID: 35566489 PMCID: PMC9100963 DOI: 10.3390/jcm11092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Chemotherapy-related cognitive impairment (CRCI), or “chemobrain,” isdefined as a phenomenon of cognitive deficits in cancer patients after chemotherapy and is characterized by deficits in areas of cognition, including memory, attention, speed of processing, and executive function, which seriously affect quality of life. The purpose of this study is to investigate the impact of CRCI in breast cancer (BC) patients in chemotherapy treatment (CT+) or not (CT−) and to analyze their relationship with detectable objective changes in cerebral activity during the execution of a phonological and semantic verbal fluency task (PVF and SVF). Methods: An observational, cross-sectional study was carried out at Badajoz University Hospital (Spain). A total of 180 women with BC were included. We used Cognitive Scale (FACT-Cog) for neuropsychological subjective assessment, obtaining scores of perceived cognitive impairment (PCI), and near-infrared spectroscopy system (NIRS) for neuropsychological objective assessment during a verbal fluency task (PVF and SVF), determining alterations in the prefrontal cortex (PFC) assessed as changes in regional saturation index (rSO2). Results: A total of 41.7% percent of the patients in the sample had PCI. CT+ was significantly associated with a worse impact in PCI (X¯ = 50.60 ± 15.64 vs. X¯ = 55.01 ± 12.10; p = 0.005). Average rSO2 decreased significantly in CT+ (X¯ = 63.30 ± 8.02 vs. X¯ = 67.98 ± 7.80; p < 0.001), and BC patients showed a significant decrease in PVF and SVF on average (X¯ = 41.99 ± 9.52 vs. X¯ = 47.03 ± 9.31, and X¯ = 33.43 ± 11.0 vs. X¯ = 36.14 ± 10.68, respectively; p < 0.001). Conclusions: Our findings suggest that cognitive impairments in the domain of executive functioning exist among patients with BC who received CT. The results corroborate the hypothesis that CT is an important factor in cognitive impairment in patients with BC, which has been demonstrated by both subjective (PCI) and objective (PVF, SVF, and rSO2) neuropsychological measures. The combination of doxorubicin, cyclophosphamide, and docetaxel induce cognitive impairment.
Collapse
Affiliation(s)
- Noelia Durán-Gómez
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
- Correspondence: ; Tel.: +34-92-428-9466
| | - Casimiro Fermín López-Jurado
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| | | | - Demetrio Pérez-Civantos
- Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Hospital Universitario de Badajoz, 06006 Badajoz, Spain;
| | - Jorge Guerrero-Martín
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| | - Macarena C. Cáceres
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| |
Collapse
|
9
|
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, Chaykovskaya A, Makhanova A, Mikhalicheva A, Bukkieva T, Restor K, Combs S, Shevtsov M. Potential Molecular Biomarkers of Central Nervous System Damage in Breast Cancer Survivors. J Clin Med 2022; 11:jcm11051215. [PMID: 35268306 PMCID: PMC8911416 DOI: 10.3390/jcm11051215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Damage of the central nervous system (CNS), manifested by cognitive impairment, occurs in 80% of women with breast cancer (BC) as a complication of surgical treatment and radiochemotherapy. In this study, the levels of ICAM-1, PECAM-1, NSE, and anti-NR-2 antibodies which are associated with the damage of the CNS and the endothelium were measured in the blood by ELISA as potential biomarkers that might reflect pathogenetic mechanisms in these patients. A total of 102 patients enrolled in this single-center trial were divided into four groups: (1) 26 patients after breast cancer treatment, (2) 21 patients with chronic brain ischemia (CBI) and asymptomatic carotid stenosis (ICA stenosis) (CBI + ICA stenosis), (3) 35 patients with CBI but without asymptomatic carotid stenosis, and (4) 20 healthy female volunteers (control group). Intergroup analysis demonstrated that in the group of patients following BC treatment there was a significant increase of ICAM-1 (mean difference: −368.56, 95% CI −450.30 to −286.69, p < 0.001) and PECAM-1 (mean difference: −47.75, 95% CI −68.73 to −26.77, p < 0.001) molecules, as compared to the group of healthy volunteers. Additionally, a decrease of anti-NR-2 antibodies (mean difference: 0.89, 95% CI 0.41 to 1.48, p < 0.001) was detected. The intergroup comparison revealed comparable levels of ICAM-1 (mean difference: −33.58, 95% CI −58.10 to 125.26, p = 0.76), PECAM-1 (mean difference: −5.03, 95% CI −29.93 to 19.87, p = 0.95), as well as anti-NR-2 antibodies (mean difference: −0.05, 95% CI −0.26 to 0.16, p = 0.93) in patients after BC treatment and in patients with CBI + ICA stenosis. The NSE level in the group CBI + ICA stenosis was significantly higher than in women following BC treatment (mean difference: −43.64, 95% CI 3.31 to −83.99, p = 0.03). Comparable levels of ICAM-1 were also detected in patients after BC treatment and in the group of CBI (mean difference: −21.28, 95% CI −111.03 to 68.48, p = 0.92). The level of PECAM-1 molecules in patients after BC treatment was also comparable to group of CBI (mean difference: −13.68, 95% CI −35.51 to 8.15, p = 0.35). In conclusion, among other mechanisms, endothelial dysfunction might play a role in the damage of the CNS in breast cancer survivors.
Collapse
Affiliation(s)
- Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Nikita Trofimov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Maria Topuzova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Alexandra Chaykovskaya
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Anna Mikhalicheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Kenneth Restor
- Nursing Programme, University of St. Francis, Joliet, IL 60435, USA;
| | - Stephanie Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technishe Universität München (TUM), 81675 Munich, Germany;
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
- Department of Radiation Oncology, Klinikum rechts der Isar, Technishe Universität München (TUM), 81675 Munich, Germany;
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
- Correspondence: ; Tel.: +49-173-1488882
| |
Collapse
|
10
|
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, Chaykovskaya A, Makhanova A, Bukkieva T, Kayumova E, Combs S, Shevtsov M. Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. PATHOPHYSIOLOGY 2022; 29:52-65. [PMID: 35366289 PMCID: PMC8952280 DOI: 10.3390/pathophysiology29010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common tumor in women worldwide with high mortality rates. Surgical methods followed by radio–chemotherapy are used to treat these tumors. Such treatment can lead to various side effects, including neurological complications. The development of a reliable biomarker to predict the onset of CNS complications could improve clinical outcomes. In the current study, ICAM-1 and PECAM-1 serum levels were measured as potential biomarkers in 45 female patients in a long-term follow-up period after breast cancer treatment, and compared to 25 age-matched female healthy volunteers. Serum levels of both biomarkers, ICAM-1 and PECAM-1 were significantly higher in patients after breast cancer treatment and could be associated with cognitive dysfunction, depression, and vestibulocerebellar ataxia. In conclusion, our results provide a first hint that elevated serum levels of ICAM-1 and PECAM-1 could serve as early predictive biomarkers in breast cancer survivors that might help to improve the management of these patients.
Collapse
Affiliation(s)
- Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nikita Trofimov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Mariya Topuzova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Alexandra Chaykovskaya
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Evgeniya Kayumova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Stephanie Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 Saint Petersburg, Russia
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
- Correspondence: ; Tel.: +49-173-1488882
| |
Collapse
|
11
|
Clemastine Rescues Chemotherapy-Induced Cognitive Impairment by Improving White Matter Integrity. Neuroscience 2022; 484:66-79. [PMID: 35007691 DOI: 10.1016/j.neuroscience.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
With the improvement of cancer treatment techniques, increasing attention has been given to chemotherapy-induced cognitive impairment through white matter injury. Clemastine fumarate has been shown to enhance white matter integrity in cuprizone- or hypoxia-induced demyelination mouse models. However, whether clemastine can be beneficial for reversing chemotherapy-induced cognitive impairment remains unexplored. In this study, the mice received oral administration of clemastine after chemotherapy. The open-field test and Morris water maze test were used to evaluate their anxiety, locomotor activity and cognitive function. Luxol Fast Blue staining and transmission electron microscopy were used to detect the morphological damage to the myelin. Demyelination and damage to the mature oligodendrocytes and axons were observed by immunofluorescence and western blotting. Clemastine significantly improved their cognitive function and ameliorated white matter injury in the chemotherapy-treated mice. Clemastine enhanced myelination, promoted oligodendrocyte precursor cell differentiation and increased the neurofilament 200 protein levels in the corpus callosum and hippocampus. We concluded that clemastine rescues cognitive function damage caused by chemotherapy through improving white matter integrity. Remyelination, oligodendrocyte differentiation and the increase of neurofilament protein promoted by clemastine are potential strategies for reversing the cognitive dysfunction caused by chemotherapy.
Collapse
|
12
|
Plata-Bello J, Plata-Bello A, Pérez-Martín Y, López-Curtis D, Acosta-López S, Modroño C, Concepción-Massip T. Changes in resting-state measures of prostate cancer patients exposed to androgen deprivation therapy. Sci Rep 2021; 11:23350. [PMID: 34857811 PMCID: PMC8639725 DOI: 10.1038/s41598-021-02611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the present work is to describe the differences in rs-fMRI measures (Amplitude of low frequency fluctuations [ALFF], Regional Homogeneity [ReHo] and Functional Connectivity [FC]) between patients exposed to Androgen deprivation therapy (ADT) and a control group. Forty-nine ADT patients and fifteen PC-non-ADT patients (Controls) were included in the study. A neuropsychological evaluation and a resting-state fMRI was performed to evaluate differences in ALFF and ReHo. Region of interest (ROI) analysis was also performed. ROIs were selected among those whose androgen receptor expression (at RNA-level) was the highest. FC analysis was performed using the same ROIs. Higher ALFF in frontal regions and temporal regions was identified in Controls than in ADT patients. In the ROI analysis, higher activity for Controls than ADT patients was shown in the left inferior frontal gyrus and in the left precentral gyrus. Lower ALFF in the right hippocampus and the lateral geniculate nucleus of the right thalamus was identified for Controls than ADT patients. Higher ReHo was observed in Controls in the left parietal-occipital area. Finally, ADT patients presented an increase of FC in more regions than Controls. These differences may reflect an impairment in brain functioning in ADT users.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain.
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain.
- Neuroscience Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, La Laguna, CP 38320, S/C de Tenerife, Spain.
| | - Ana Plata-Bello
- Department of Urology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
| | - David López-Curtis
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Silvia Acosta-López
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, S/C de Tenerife, Spain
| | | |
Collapse
|
13
|
Bury-Kamińska M, Szudy-Szczyrek A, Nowaczyńska A, Jankowska-Łęcka O, Hus M, Kot K. Chemotherapy-Related Differences in Cognitive Functioning and Their Biological Predictors in Patients with Multiple Myeloma. Brain Sci 2021; 11:1166. [PMID: 34573187 PMCID: PMC8466339 DOI: 10.3390/brainsci11091166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
The paper presents a study on the changes in cognitive functioning in patients undergoing chemotherapy with diagnosed multiple myeloma (MM). The aim of the study was to answer the following two main research questions: Does the treatment stage differentiate the functioning of cognitive processes in patients with diagnosed MM and to what extent? Is it possible to treat biological factors (TNF-α, IL-6, IL-10, and BDNF) as predictors of patients' cognitive functioning? The patients were examined twice, before the treatment and after 4-6 cycles of chemotherapy. Selected neuropsychological research methods as well as experimental and clinical trials were employed to diagnose the patients' general cognitive state, attention, memory, and executive functions. The level of biological factors was assessed with the ELISA test. The results show that the patients' cognitive functioning was worse before the treatment than during the cytostatic therapy. It was also possible to predict the cognitive state of patients suffering from multiple myeloma based on a selected biological parameter (neurotrophin BDNF).
Collapse
Affiliation(s)
- Magdalena Bury-Kamińska
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Maria Curie-Skłodowska University in Lublin, 45 Głęboka, 20-612 Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, 2 Karmelicka, 20-400 Lublin, Poland; (A.S.-S.); (A.N.); (O.J.-Ł.); (M.H.); (K.K.)
| | - Aleksandra Nowaczyńska
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, 2 Karmelicka, 20-400 Lublin, Poland; (A.S.-S.); (A.N.); (O.J.-Ł.); (M.H.); (K.K.)
| | - Olga Jankowska-Łęcka
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, 2 Karmelicka, 20-400 Lublin, Poland; (A.S.-S.); (A.N.); (O.J.-Ł.); (M.H.); (K.K.)
| | - Marek Hus
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, 2 Karmelicka, 20-400 Lublin, Poland; (A.S.-S.); (A.N.); (O.J.-Ł.); (M.H.); (K.K.)
| | - Klaudia Kot
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University of Lublin, 2 Karmelicka, 20-400 Lublin, Poland; (A.S.-S.); (A.N.); (O.J.-Ł.); (M.H.); (K.K.)
| |
Collapse
|
14
|
Bernstein LJ, Edelstein K, Sharma A, Alain C. Chemo-brain: An activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2021; 130:314-325. [PMID: 34454915 DOI: 10.1016/j.neubiorev.2021.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Adults with non-central nervous system (CNS) cancers frequently report problems in attention, memory and executive function during or after chemotherapy, referred to as cancer-related cognitive dysfunction (CRCD). Despite numerous studies investigating CRCD, there is no consensus regarding the brain areas implicated. We sought to determine if there are brain areas that consistently show either hyper- or hypo-activation in people treated with chemotherapy for non-CNS cancer (Chemo+). Using activation likelihood estimation on brain coordinates from 14 fMRI studies yielding 25 contrasts from 375 Chemo+ and 429 chemotherapy-naive controls while they performed cognitive tasks, the meta-analysis yielded two significant clusters which are part of the frontoparietal attention network, both showing lower activation in Chemo+. One cluster peaked in the left superior parietal cortex, extending into precuneus, inferior parietal lobule, and angular gyrus. The other peaked in the right superior prefrontal areas, extending into inferior prefrontal cortex. We propose that these observed lower activations reflect a dysfunction in mobilizing and/or sustaining attention due to depletion of cognitive resources. This could explain higher level of mental fatigue reported by Chemo+ and why cancer survivors report problems in a wide variety of cognitive domains.
Collapse
Affiliation(s)
- Lori J Bernstein
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Kim Edelstein
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Alisha Sharma
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Health Centre, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|